JP2976455B2 - Oscillation / mixing circuit - Google Patents

Oscillation / mixing circuit

Info

Publication number
JP2976455B2
JP2976455B2 JP1293517A JP29351789A JP2976455B2 JP 2976455 B2 JP2976455 B2 JP 2976455B2 JP 1293517 A JP1293517 A JP 1293517A JP 29351789 A JP29351789 A JP 29351789A JP 2976455 B2 JP2976455 B2 JP 2976455B2
Authority
JP
Japan
Prior art keywords
sawr
circuit
oscillation
frequency
mixing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1293517A
Other languages
Japanese (ja)
Other versions
JPH03154408A (en
Inventor
輝元 赤塚
登 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1293517A priority Critical patent/JP2976455B2/en
Publication of JPH03154408A publication Critical patent/JPH03154408A/en
Application granted granted Critical
Publication of JP2976455B2 publication Critical patent/JP2976455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、CATVコンバータの第2局部発振回路及び第
2混合回路等に用いられる発振・混合回路に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oscillation / mixing circuit used for a second local oscillation circuit and a second mixing circuit of a CATV converter.

従来の技術 従来のCATVコンバータの第2局部発振回路及び第2混
合回路は、第14図〜第16図に示すようなものであった。
2. Description of the Related Art A second local oscillation circuit and a second mixing circuit of a conventional CATV converter are as shown in FIG. 14 to FIG.

以下図面にもとづいて説明する。 This will be described below with reference to the drawings.

第14図の1は増幅器、2と4は整合回路、3は弾性表
面波共振子(SAWR)、11は容量、12はRF信号源、41は第
2混合回路、22はIF出力端子を示す。この特徴は、発振
電力を増幅器出力端子より直接取り出している点であ
る。
14 is an amplifier, 2 and 4 are matching circuits, 3 is a surface acoustic wave resonator (SAWR), 11 is a capacitor, 12 is an RF signal source, 41 is a second mixing circuit, and 22 is an IF output terminal. . This feature is that the oscillation power is directly extracted from the amplifier output terminal.

第15図は第14図のほとんど同じ構成であるが、発振電
力をSAWRの入力端子から直接取り出している点が異な
る。
FIG. 15 has almost the same configuration as FIG. 14, except that the oscillation power is directly extracted from the input terminal of the SAWR.

第16図は第2混合回路にMOS電界効果トランジスタ(F
ET42)を用いた場合を示してあり、43〜45はバイアス回
路を46は出力結合容量を示す。
FIG. 16 shows that a MOS field effect transistor (F
ET42) is used, 43 to 45 are bias circuits, and 46 is an output coupling capacitance.

発明が解決しようとする課題 SAWRを用いた発振回路においては、発振動作状態にお
けるSAWRへの高周波励振電力(あるいは高周波励振電
流)を許容値以下に押さえた設計が必要不可欠である。
Problems to be Solved by the Invention In an oscillation circuit using a SAWR, it is essential to design a high-frequency excitation power (or high-frequency excitation current) to the SAWR in an oscillation operation state to be equal to or less than an allowable value.

例えばSAWRを許容電力を越えて長時間使用した場合、
SAWRの内部電極の劣化に帰因する発振周波数の大幅な変
動や挿入損失の増大による発振ストップなど致命的な故
障の原因となる。
For example, if SAWR is used for a long time exceeding the allowable power,
Fatal failures such as a large fluctuation of the oscillation frequency due to the deterioration of the internal electrodes of the SAWR and oscillation stop due to an increase in the insertion loss are caused.

そこで、SAWRを用いた発振回路を実用化する場合、高
周波励振電力を許容値以下に押さえる手段と、その高周
波励振電力を測定する手段の両方をいかに実現するかが
重要な点である。
Therefore, when an oscillation circuit using SAWR is put into practical use, it is important how to realize both means for suppressing the high-frequency excitation power below an allowable value and means for measuring the high-frequency excitation power.

第14図,第16図のような従来方式では、高周波励振電
力を許容値以下にする手段として、例えばSAWRの共振周
波数を予め発振周波数より高目(例えば20KHz)に設定
し、発振周波数を第9図のa点に設定し、発振回路の閉
ループ利得を等価的に下げて、結果として高周波励振電
力を許容値以下にする方法がとられていた。
In the conventional method as shown in FIGS. 14 and 16, as a means for reducing the high-frequency excitation power to an allowable value or less, for example, the resonance frequency of the SAWR is set in advance to a higher value (for example, 20 KHz) than the oscillation frequency, and At point a in FIG. 9, the closed-loop gain of the oscillation circuit is equivalently reduced, and as a result, the high-frequency excitation power is reduced to an allowable value or less.

この方法ではSAWRの動作点が位相特性でA点に相当す
ることになり、例えば周囲温度の変化により増幅器の位
相特性が変動した時の発振周波数の変動が非常に大きく
なり、SAWRが本来持つ安定した温度特性を生かしきれな
い欠点があった。
In this method, the operating point of the SAWR is equivalent to the point A in the phase characteristic. For example, when the phase characteristic of the amplifier fluctuates due to a change in the ambient temperature, the fluctuation of the oscillation frequency becomes very large, and the SAWR inherently has a stable characteristic. There is a disadvantage that the obtained temperature characteristics cannot be fully utilized.

又高周波励振電力を測定する具体的手段として、高周
波用の高インピーダンスプローブを直接SAWRの入力ある
いは出力端子に接続して測定する方法がとられている
が、プローブのもつ容量などにより測定時に発振周波数
が50〜100KHz位下がることが避けられず、実際の高周波
励振電力との間に誤差が生じるなどの欠点があった。
As a specific means of measuring high-frequency excitation power, a method is used in which a high-frequency high-impedance probe is directly connected to the input or output terminal of the SAWR for measurement. However, there is a drawback that the frequency cannot be reduced by about 50 to 100 KHz, and an error occurs with the actual high-frequency excitation power.

本発明は上記問題点を解決するもので、SAWRにかかる
高周波励振電力を許容電力以下に押さえるとともに発振
回路に影響を与えることなく、SAWRにかかる励振電力を
正しく測定することのできる回路方式を提供することを
目的としている。
The present invention solves the above problems, and provides a circuit system capable of suppressing the high-frequency excitation power applied to the SAWR to an allowable power or less and correctly measuring the excitation power applied to the SAWR without affecting the oscillation circuit. It is intended to be.

課題を解決するための手段 この問題点を解決するために本発明は、発振回路のFE
TのドレインとSAWRの間及びFETのゲートとSAWRの間のい
づれか一方あるいは両方に抵抗を挿入するとともに、SA
WRの入力端子あるいは出力端子のいずれか一方の端子を
容量を介して直接、ダイオード混合回路に接続し、かつ
前記ダイオード混合回路の直流帰還回路に抵抗を入れ、
発振・混合回路を構成したものである。
Means for Solving the Problems To solve this problem, the present invention provides an FE of an oscillation circuit.
Insert a resistor between the drain of T and SAWR and / or between the gate of FET and SAWR.
Either the input terminal or the output terminal of the WR is directly connected to the diode mixing circuit via a capacitor, and a resistor is inserted in the DC feedback circuit of the diode mixing circuit,
It constitutes an oscillation / mixing circuit.

作用 本発明は上記した構成の様に、SAWRの入力及び出力端
子側に抵抗を入れることにより、発振回路の閉ループの
利得を自由に制御する事が可能となり、SAWRの高周波励
振電力を許容値以下に簡単かつ確実に実現できる。
Function The present invention allows the closed-loop gain of the oscillation circuit to be freely controlled by inserting resistors on the input and output terminals of the SAWR as in the above-described configuration. Can be easily and reliably realized.

又SAWRの入力端子あるいは出力端子より容量を介して
直接にダイオード混合回路に接続するとともに、混合回
路の直流帰還回路に設けた抵抗により被検電力を測定す
ることが可能となる。この検波電圧は、SAWRの入力ある
いは出力端子から直接入力された高周波電力を混合器の
ダイオードにより検波した検波電流で生じるため、この
検波電圧はSAWRの入力あるいは出力端子の高周波励振電
力と相関があるとともに、その検波電圧を測定すること
により、発振器の発振状態は何の影響も受けない。
In addition to connecting directly to the diode mixing circuit from the input terminal or output terminal of the SAWR via a capacitor, the power to be measured can be measured by a resistor provided in the DC feedback circuit of the mixing circuit. Since this detection voltage is generated by the detection current obtained by detecting the high-frequency power directly input from the input or output terminal of the SAWR by the diode of the mixer, the detection voltage is correlated with the high-frequency excitation power of the input or output terminal of the SAWR. At the same time, by measuring the detection voltage, the oscillation state of the oscillator is not affected at all.

以上のように本発明によれば、SAWRの高周波励振電力
を簡単に許容値以下に制御することが可能となる他その
高周波励振電力を発振回路の動作に影響を全く与えるこ
となく検波電圧という非常に簡単な方法で測定すること
ができる。
As described above, according to the present invention, it is possible to easily control the high-frequency excitation power of the SAWR to be equal to or less than the allowable value, and to use the high-frequency excitation power as the detection voltage without affecting the operation of the oscillation circuit at all. Can be measured in a simple way.

実施例 以下本発明の実施例を添付図面に基づいて説明する。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図はFETのドレインとSAWRの間に抵抗5を挿入し
た例、第2図はFETのゲートとSAWRの間に抵抗9を挿入
した例、第3図は両方に抵抗5,9を挿入した例、第4図
はSAWRに直流電圧が印加されないようにコンデンサー6,
10を付加するとともに、SAWRの入出力端子を、直流的に
接地する目的に抵抗7,8を付加したものである。第5図
と第6図はSAWRのそれぞれ出力端子あるいは入力端子よ
り容量11を介して直接ダイオード混合回路に接続したも
のであり、抵抗19は直流帰還回路に入れた抵抗である。
15は混合用ダイオードを12はRF信号源、13,14はRF信号
源とダイオード混合回路の結合回路を、16は高周波接地
用コンデンサー、17,18,20,21は中間周波信号出力回路
である。ここで混合回路の直流帰還回路は、14,15,17,1
9,20で構成される。なお図中、第14図〜第16図と同一部
分には同一番号を付して説明を省略する。
FIG. 1 shows an example in which a resistor 5 is inserted between the drain of the FET and SAWR, FIG. 2 shows an example in which a resistor 9 is inserted between the gate of the FET and SAWR, and FIG. FIG. 4 shows that capacitors 6 and 6 are connected so that no DC voltage is applied to SAWR.
In addition to adding 10, resistors 7 and 8 are added for the purpose of DC grounding the input / output terminals of the SAWR. FIGS. 5 and 6 show a configuration in which the output terminal or the input terminal of the SAWR is directly connected to a diode mixing circuit via a capacitor 11, and a resistor 19 is a resistor provided in a DC feedback circuit.
15 is a mixing diode, 12 is an RF signal source, 13 and 14 are a combination circuit of an RF signal source and a diode mixing circuit, 16 is a high-frequency grounding capacitor, and 17, 18, 20, and 21 are intermediate frequency signal output circuits. . Here, the DC feedback circuit of the mixing circuit is 14, 15, 17, 1
Consists of 9,20. In the drawings, the same parts as those in FIGS. 14 to 16 are denoted by the same reference numerals, and description thereof will be omitted.

第7図は第1図の具体的実施例を示す。ここで1aはFE
Tを、25から35はバイアス回路を示す。2a,2bは整合回路
2の実施例を、4a,4bは整合回路4の一実施例を示す。
第8図はダイオード混合回路を含めた実施例を示す。図
12はSAWRの伝送特性(実線は位相特性、破線は選択度特
性)を示す。第10図は第8図のSAWRの入力端子Dの高周
波励振電力とダイオード混合回路の抵抗19のE点に生じ
た検波電圧との相関値の一例を示す。第11図は第4図の
整合回路の2a及び4aを調整することにより発振周波数を
調整した時の発振周波数と検波電圧の関係を示す。
FIG. 7 shows a specific embodiment of FIG. Where 1a is FE
T represents a bias circuit from 25 to 35. 2a and 2b show an embodiment of the matching circuit 2, and 4a and 4b show an embodiment of the matching circuit 4.
FIG. 8 shows an embodiment including a diode mixing circuit. Figure
Numeral 12 indicates the transmission characteristics of the SAWR (solid lines are phase characteristics, broken lines are selectivity characteristics). FIG. 10 shows an example of a correlation value between the high-frequency excitation power at the input terminal D of the SAWR in FIG. 8 and the detection voltage generated at the point E of the resistor 19 of the diode mixing circuit. FIG. 11 shows the relationship between the oscillation frequency and the detection voltage when the oscillation frequency is adjusted by adjusting 2a and 4a of the matching circuit of FIG.

第12図は発振周波数の温度特性を第13図は検波電圧の
温度特性を示す。
FIG. 12 shows the temperature characteristic of the oscillation frequency, and FIG. 13 shows the temperature characteristic of the detection voltage.

次にSAWRの特性を図12に示したが、SAWRの持つ共振子
としての特性を引き出すためには、例えば位相特性が±
45度の範囲の位相特性が急峻な周波数領域で使いこなす
ことが必要である。
Next, the characteristics of the SAWR are shown in FIG. 12. In order to draw out the characteristics of the SAWR as a resonator, for example, the phase characteristic is ± 10%.
It is necessary to make good use of the phase characteristics in the range of 45 degrees in the steep frequency region.

一方周波数が共振点よりはなれるに従ってSAWRの挿入
損失が増加するため、SAWRを広い周波数領域で調整でき
るようにするためには、発振回路の閉ループ利得を大き
くする必要がある。
On the other hand, since the insertion loss of the SAWR increases as the frequency departs from the resonance point, it is necessary to increase the closed-loop gain of the oscillation circuit so that the SAWR can be adjusted in a wide frequency range.

一方、SAWRの高周波励振電力には許容できる限界があ
り、これを守らなければならない。
On the other hand, the high frequency excitation power of SAWR has an acceptable limit, which must be observed.

以上の事を配慮した設計を第8図を例に取って説明す
ればSAWRの共振周波数近傍で最大になる高周波励振電力
を例えば第11図の抵抗5により許容値以下になるように
決定するとともに、整合回路の2aあるいは4aを調整する
ことにより、SAWRの共振周波数のバラツキを吸収して希
望の発振周波数に合わせることができる他その時のSAWR
のD点の高周波励振電力は、E点の検波電圧で簡単かつ
正確に測定することができる。
The design taking the above into consideration will be described with reference to FIG. 8 as an example. The high-frequency excitation power which becomes maximum near the resonance frequency of the SAWR is determined by, for example, the resistor 5 shown in FIG. By adjusting the matching circuit 2a or 4a, the variation of the SAWR resonance frequency can be absorbed and adjusted to the desired oscillation frequency.
The high frequency excitation power at point D can be easily and accurately measured with the detection voltage at point E.

又高周波励振電力を許容値以下に押える目的の抵抗値
5あるいは9は、共振周波数が希望の発振周波数と大き
く離れたもの(例えば100KHz)を使う場合にはSAWRの選
択度特性により発振回路の閉ループ利得が下がっている
ので、5,9の抵抗値は小さ目の値に変更する等の使い分
けをすることも可能である。
The resistance value 5 or 9 for the purpose of keeping the high-frequency excitation power below the allowable value is the closed loop of the oscillation circuit due to the selectivity characteristics of the SAWR when the resonance frequency is much different from the desired oscillation frequency (for example, 100 KHz). Since the gain is reduced, it is possible to use the resistors 5, 9 in different ways, such as changing them to smaller values.

更に抵抗5,9は、可変抵抗として用いれば、検波電圧
をモニターしながら2aあるいは4bを調整し確実に高周波
励振電力を許容値以下に押さえながら、SAWRの共振周波
数や挿入損失のバラツキを十分に吸収した発振混合回路
を実現できる。
Furthermore, if the resistors 5 and 9 are used as variable resistors, adjust the 2a or 4b while monitoring the detection voltage to ensure that the high-frequency excitation power is kept below the allowable value, and that the variation in the SAWR resonance frequency and insertion loss is sufficiently reduced. The absorbed oscillation mixing circuit can be realized.

発明の効果 以上のように本発明によれば、FETとSAWRの間に抵抗
を入れるという簡単な構成で、SAWRの高周波励振電力を
確実に制御でき、SAWRを用いた安定した発振回路を実現
することができる他、従来その高周波励振電力を簡単か
つ正確に測定することが困難であったという課題に対し
ては第2図混合回路にダイオード方式を用いかつその直
流帰還回路に抵抗を入れるという非常に簡単な手段で、
前記SAWRの励振電力を検波電圧という直流電圧の測定と
してモニターするだけで実現できたことになり、工業的
効果は非常に高いものである。
As described above, according to the present invention, the high-frequency excitation power of the SAWR can be reliably controlled with a simple configuration in which a resistor is inserted between the FET and the SAWR, and a stable oscillation circuit using the SAWR is realized. In addition to the problem that it has been difficult to measure the high-frequency excitation power simply and accurately in the past, it is very difficult to use a diode system in the mixing circuit and to insert a resistor in the DC feedback circuit in FIG. By simple means,
This can be realized only by monitoring the excitation power of the SAWR as a measurement of a DC voltage called a detection voltage, and the industrial effect is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第3図,第4図は本発明の発振・混合
回路の基本構成を示す構成図、第5図,第6図は同回路
のダイオード混合回路部の構成を示す構成図、第7図は
同回路の発振回路の一実施例を示す回路図、第8図は同
発振・混合回路の一実施例を示す回路図、第9図は同回
路のSAWRの伝送特性を示す特性図、第10図は同高周波励
振電力と検波電圧の関係を示す特性図、第11図は同発振
周波数の調整範囲と検波電圧の関係を示す特性図、第12
図,第13図は同発振周波数及び検波電圧の温度特性を示
す特性図、第14図,第15図,第16図は従来例を示す構成
図である。 1……増幅器、2,4……整合回路、3……SAWR(弾性表
面波共振子)。
FIGS. 1, 2, 3, and 4 are diagrams showing the basic configuration of an oscillation / mixing circuit according to the present invention, and FIGS. 5 and 6 show the configuration of a diode mixing circuit section of the circuit. FIG. 7 is a circuit diagram showing an embodiment of an oscillation circuit of the circuit, FIG. 8 is a circuit diagram showing an embodiment of the oscillation / mixing circuit, and FIG. 9 is a transmission characteristic of SAWR of the circuit. FIG. 10 is a characteristic diagram showing the relationship between the high-frequency excitation power and the detection voltage, FIG. 11 is a characteristic diagram showing the relationship between the adjustment range of the oscillation frequency and the detection voltage, and FIG.
FIG. 13 and FIG. 13 are characteristic diagrams showing the temperature characteristics of the oscillation frequency and the detection voltage, and FIG. 14, FIG. 15, and FIG. 16 are configuration diagrams showing a conventional example. 1 ... amplifier, 2,4 ... matching circuit, 3 ... SAWR (surface acoustic wave resonator).

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H03B 5/30 - 5/42 H03D 7/02 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H03B 5/30-5/42 H03D 7/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弾性表面波共振子(SAWR)と電界効果型ト
ランジスタ(FET)を備えた発振回路のFETのドレインと
SAWRの間及びFETのゲートとSAWRの間のいづれか一方あ
るいは両方に抵抗を挿入するとともに、SAWRの入力端子
あるいは出力端子のいずれか一方の端子を容量を介して
直接にダイオード混合回路に接続し、かつ前記ダイオー
ド混合回路の直流帰還回路に抵抗を入れたことを特徴と
する発振・混合回路。
An oscillator circuit comprising a surface acoustic wave resonator (SAWR) and a field effect transistor (FET), and a drain of the FET.
A resistor is inserted between SAWR and / or between the gate of FET and SAWR, and either the input terminal or the output terminal of SAWR is connected directly to the diode mixing circuit via the capacitor, An oscillation / mixing circuit, wherein a resistor is provided in the DC feedback circuit of the diode mixing circuit.
JP1293517A 1989-11-10 1989-11-10 Oscillation / mixing circuit Expired - Fee Related JP2976455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293517A JP2976455B2 (en) 1989-11-10 1989-11-10 Oscillation / mixing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1293517A JP2976455B2 (en) 1989-11-10 1989-11-10 Oscillation / mixing circuit

Publications (2)

Publication Number Publication Date
JPH03154408A JPH03154408A (en) 1991-07-02
JP2976455B2 true JP2976455B2 (en) 1999-11-10

Family

ID=17795764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293517A Expired - Fee Related JP2976455B2 (en) 1989-11-10 1989-11-10 Oscillation / mixing circuit

Country Status (1)

Country Link
JP (1) JP2976455B2 (en)

Also Published As

Publication number Publication date
JPH03154408A (en) 1991-07-02

Similar Documents

Publication Publication Date Title
SE1073908T5 (en) Stroemmaetningsanordning
JP2005503690A (en) Even-order nonlinearity correction feedback for Gilbert-type mixers
KR100450252B1 (en) Oscillation circuit and oscillation method
JPH04326206A (en) Power amplifier
JP2976455B2 (en) Oscillation / mixing circuit
US6278097B2 (en) Burn-in apparatus for burning-in microwave transistors
US4843344A (en) High voltage amplifier
JP2588823B2 (en) Variable frequency oscillation circuit
JP3075635B2 (en) Temperature compensated amplifier
JPS61142471A (en) Impedance measuring apparatus
US4733173A (en) Electronic component measurement apparatus
JPH02503252A (en) high voltage amplifier
Paradysz et al. Crystal controlled oscillators for radiation environments
US4124827A (en) Variable sinusoidal oscillator
JPH0236142Y2 (en)
JP2530866Y2 (en) Detection and amplification circuit of ceramic resonator type electrostatic sensor
JP2573782Y2 (en) Broadband amplifier
SU1190319A1 (en) Apparatus for measuring magnetic susceptibility
JPS63198414A (en) Proximity switch
JP3012280B2 (en) Function trimming method for hybrid integrated circuits
KR20040038174A (en) Digital audio amplifier capable of increasing self-oscillation frequency and reducing the number of component
JPS6165607A (en) Crystal oscillation circuit
JPS6053306A (en) Microwave integrated circuit oscillator
Hess et al. A new K-band frequency divider by three using an injection locked oscillator in microstrip technique
JPS62172810A (en) Reactance regulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees