JP2975470B2 - Electrochemical device - Google Patents

Electrochemical device

Info

Publication number
JP2975470B2
JP2975470B2 JP4013602A JP1360292A JP2975470B2 JP 2975470 B2 JP2975470 B2 JP 2975470B2 JP 4013602 A JP4013602 A JP 4013602A JP 1360292 A JP1360292 A JP 1360292A JP 2975470 B2 JP2975470 B2 JP 2975470B2
Authority
JP
Japan
Prior art keywords
fuel
gas
electrode
potential
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4013602A
Other languages
Japanese (ja)
Other versions
JPH05205764A (en
Inventor
憲朗 光田
俊明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4013602A priority Critical patent/JP2975470B2/en
Publication of JPH05205764A publication Critical patent/JPH05205764A/en
Application granted granted Critical
Publication of JP2975470B2 publication Critical patent/JP2975470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的還元反応を
行なうための電気化学デバイスに関する。
The present invention relates to an electrochemical device for performing an electrochemical reduction reaction.

【0002】[0002]

【従来の技術】電気化学的還元反応は、ある物質に対し
て電極から電子を、溶液側からプロトンなどのイオンを
与えて還元反応を行なうもので、代表的なものとしては
炭酸ガスから一酸化炭素、ギ酸、メタノールなどへの還
元反応があげられる。
2. Description of the Related Art In an electrochemical reduction reaction, an electron is given to a substance from an electrode and an ion such as a proton is given from a solution to perform a reduction reaction. A reduction reaction to carbon, formic acid, methanol and the like can be mentioned.

【0003】最近地球の温暖化現象に対する対策とし
て、炭酸ガスの効率的な電気化学的還元方法の必要性が
クローズアップされている。電気化学的還元方法の従来
例として、たとえば平成3年10月12日および13日に名古
屋工大で行なわれた講演の「1991年電気化学秋季大会講
演要旨集、平成3年9月28日、(社)電気化学協会、19
0〜197頁」には14件もの炭酸ガスの電気化学的還元方法
に関する研究論文が掲載されている。これらの論文の大
部分は、主として効率よく電気化学的還元を行なうため
の触媒に関するものである。
Recently, as a measure against the global warming phenomenon, the necessity of an efficient electrochemical reduction method of carbon dioxide has been highlighted. As a conventional example of the electrochemical reduction method, for example, a lecture given at Nagoya Institute of Technology on October 12 and 13, 1991, “Summary of the 1991 Autumn Meeting of Electrochemistry, September 28, 1991, ( Company) Electrochemical Society, 19
On pages 0 to 197, as many as 14 research papers on the electrochemical reduction method of carbon dioxide gas have been published. Most of these papers mainly relate to catalysts for efficiently performing electrochemical reduction.

【0004】[0004]

【発明が解決しようとする課題】しかし、いずれの従来
例においても、電気化学的に還元反応を行なう際に必ず
電圧をかけて電流を流す必要がある。すなわち、前記方
法は、電力という最も質のよいエネルギーを消費して初
めて炭酸ガスの電気化学的還元を行なえる方法である。
したがって前記従来法では、エネルギー問題の解決と地
球環境問題の解決を両立させることができない。
However, in any of the prior arts, it is necessary to apply a voltage and to flow a current without fail when electrochemically performing a reduction reaction. That is, the above-mentioned method is a method in which the carbon dioxide gas can be electrochemically reduced only by consuming the highest quality energy of electric power.
Therefore, the conventional method cannot achieve both the solution of the energy problem and the solution of the global environmental problem.

【0005】本発明は前記のような問題点を解消するた
めになされたもので、電力を消費せずに電気化学的還元
反応を行なうことのできる電気化学デバイスを提供する
ことを目的とする。
The present invention has been made to solve the above problems, and has as its object to provide an electrochemical device that can perform an electrochemical reduction reaction without consuming power.

【0006】[0006]

【課題を解決するための手段】本発明者らは、先に独自
に開発した評価装置である12極参照電極付単セルを用
い、通常の燃料電池の電極ではおこりえないと考えられ
ていたカーボンの腐食反応や白金の溶出反応が、実際の
燃料電池ではおこることおよびその原因について世界で
初めて明らかにした(ジャーナル オブ アプライド
エレクトロケミストリー(Journal of Applied Electroc
hemistry) 、21(1991)、p524〜530参照)。すなわちそ
の内容は、燃料電池の電解液の電気化学的電位と相関関
係を有する酸性度がpH−5以下の超強酸からプロトン
欠乏部ではpH0程度の強酸まで変化し、これにより0.
3V以上の電気化学的電位のずれが生じ、このためプロ
トン欠乏部の空気極電位が1V(vs.可逆水素電極電
位(以下、RHE電位という))をこえて貴な電位(R
HE電位に対してプラス側の電位)になり白金の溶出や
カーボンの腐食反応がおこるというものである。
Means for Solving the Problems The inventors of the present invention used a single cell with a 12-electrode reference electrode, which was an evaluation device originally developed earlier, and thought that this would not occur with the electrodes of a normal fuel cell. For the first time in the world, we have clarified that the corrosion reaction of carbon and the elution reaction of platinum occur in actual fuel cells and their causes (Journal of Applied
Electrochemistry (Journal of Applied Electroc)
hemistry), 21 (1991), pp. 524-530). That is, the content changes from a super-strong acid having a correlation with the electrochemical potential of the electrolyte solution of the fuel cell of pH-5 or less to a strong acid having a pH of about 0 in the proton-deficient portion, and thereby has a value of 0.1.
A deviation of the electrochemical potential of 3 V or more occurs, so that the air electrode potential of the proton deficient portion exceeds 1 V (vs. reversible hydrogen electrode potential (hereinafter referred to as RHE potential)) and is noble potential (R
(Potential on the positive side with respect to the HE potential), and the elution of platinum and the corrosion reaction of carbon occur.

【0007】さらに1991年4月に開催された電気化学協
会第58回大会の要旨集No.1G18、平成3年3月22
日、(社)電気化学協会、p166に記載されているよう
に、本発明者らは、80℃の低温においても燃料電池の空
気極電位がRHE電位に対して1.6Vをこえ、カーボン
の著しい腐食がおこる例を報告している。このときのセ
ル電圧は0.9V程度であり、前記現象は、セル電圧をは
るかにこえる貴な電位をセル面内の電解液の酸性度を変
化させることで実現できることを示しており、前記事項
は本発明者らが前記報告において初めて明らかにしたも
のである。
[0007] In addition, the Abstract No. 58 of the 58th Annual Meeting of the Electrochemical Society held in April 1991 1G18, March 22, 1991
As described in the Electrochemical Society of Japan, p.166, the present inventors have found that even at a low temperature of 80 ° C., the air electrode potential of the fuel cell exceeds 1.6 V with respect to the RHE potential, and that the carbon An example of corrosion is reported. The cell voltage at this time is about 0.9 V, indicating that the phenomenon can be realized by changing the acidity of the electrolytic solution in the cell plane to a noble potential that far exceeds the cell voltage. The present inventors have clarified for the first time in the above report.

【0008】本発明者らは、逆にプロトン過剰部を発生
させることでアノード電位をRHE電位よりもマイナス
側(卑な電位)にできることおよび前記方法が本発明の
目的である電力を消費せずに電気化学的還元反応を行な
う装置に応用できることを見出し、本発明を完成するに
至った。
On the other hand, the inventors of the present invention have concluded that the anode potential can be made to be more negative (lower potential) than the RHE potential by generating a proton-excess portion, and that the above-described method does not consume power as the object of the present invention. The present inventors have found that the present invention can be applied to an apparatus for performing an electrochemical reduction reaction, and have completed the present invention.

【0009】すなわち、本発明は、燃料極、電解質マト
リックス層および酸化剤極からなる単セルを燃料極側ガ
ス供給板と酸化剤極側ガス供給板とにより挾持し、前記
酸化剤極側ガス供給板に仕切り板を設けて燃料上流側と
燃料下流側とに分け、燃料上流側の酸化剤極に酸化剤ガ
スを供給するとともに燃料下流側の酸化剤極に水素を含
むガスを供給し、さらに燃料ガスを燃料極に供給して燃
料ガスに含まれる成分を電気化学的に還元することを特
徴とする電気化学デバイスに関する。
That is, according to the present invention, a single cell comprising a fuel electrode, an electrolyte matrix layer and an oxidant electrode is sandwiched between a fuel electrode side gas supply plate and an oxidant electrode side gas supply plate, and the oxidant electrode side gas supply plate is provided. A partition plate is provided on the plate, divided into a fuel upstream side and a fuel downstream side, and an oxidant gas is supplied to the oxidant electrode on the fuel upstream side and a gas containing hydrogen is supplied to the oxidant electrode on the fuel downstream side, and further, The present invention relates to an electrochemical device characterized in that a fuel gas is supplied to a fuel electrode to electrochemically reduce components contained in the fuel gas.

【0010】[0010]

【作用】本発明の電気化学デバイスにおける燃料下流側
の酸化剤極に供給される水素を含むガスは燃料下流側の
電気化学的電位を燃料上流側よりも酸性度の強い方向に
シフトさせ、その結果燃料下流側の燃料極の電位はRH
E電位よりも卑な電位(マイナスの電位)となるため、
燃料ガスに含まれる成分は外部電力を消費することなく
電気化学的に還元される。
The gas containing hydrogen supplied to the oxidizer electrode on the downstream side of the fuel in the electrochemical device of the present invention shifts the electrochemical potential on the downstream side of the fuel to a direction having a higher acidity than that on the upstream side of the fuel. As a result, the potential of the fuel electrode on the downstream side of the fuel is RH
Since the potential is lower than the E potential (negative potential),
The components contained in the fuel gas are electrochemically reduced without consuming external power.

【0011】[0011]

【実施例】以下、本発明の電気化学デバイスの一実施例
を図1および2に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the electrochemical device of the present invention will be described below with reference to FIGS.

【0012】図1において、1は本発明の電気化学デバ
イスの一実施例を示す断面図であり、2はその断面方向
での電気化学的電位をRHE電位を基準に示したもので
ある。1で示される電気化学デバイスの断面図におい
て、3は燃料極、4は電解質マトリックス層、5は酸化
剤極、6は燃料極3、電解質マトリックス層4および酸
化剤極5からなる単セル、7は燃料極側ガス供給板、8
は酸化剤極側ガス供給板、9は仕切り板、10は酸化剤ガ
ス、11は水素を含むガス、12は燃料ガスであり、図中、
燃料ガスの流れを矢印で示している。さらに2で示され
る電気化学的電位を示す図において、13はカソード電位
(酸化剤極の電位)、14はアノード電位(燃料極電
位)、15はRHE電位を示す。
In FIG. 1, reference numeral 1 denotes a cross-sectional view showing an embodiment of the electrochemical device of the present invention, and reference numeral 2 denotes an electrochemical potential in the cross-sectional direction based on the RHE potential. In the cross-sectional view of the electrochemical device denoted by 1, reference numeral 3 denotes a fuel electrode, 4 denotes an electrolyte matrix layer, 5 denotes an oxidant electrode, 6 denotes a single cell including the fuel electrode 3, the electrolyte matrix layer 4 and the oxidant electrode 5, 7 Is a fuel electrode side gas supply plate, 8
Is an oxidant electrode side gas supply plate, 9 is a partition plate, 10 is an oxidant gas, 11 is a gas containing hydrogen, and 12 is a fuel gas.
The flow of the fuel gas is indicated by arrows. Further, in the diagram showing the electrochemical potential indicated by 2, 13 indicates the cathode potential (potential of the oxidant electrode), 14 indicates the anode potential (fuel electrode potential), and 15 indicates the RHE potential.

【0013】また、図2は図1に示す電気化学デバイス
にガス供給のためのマニホールドが取付けられたものを
示す平面図であり、16は酸化剤ガスの入口、17は酸化剤
ガスの出口、18は水素を含むガスの入口、19は水素を含
むガスの出口、20は燃料ガスの入口、21は燃料ガスの出
口、22は酸化剤ガス入口側マニホールド、23は酸化剤ガ
ス出口側マニホールド、24は燃料ガス入口側マニホール
ド、25は燃料ガス出口側マニホールドである。図2の実
線矢印は酸化剤ガスおよび水素を含むガスの流れを、一
点鎖線の矢印は燃料ガスの流れを示している。
FIG. 2 is a plan view showing a state in which a manifold for gas supply is attached to the electrochemical device shown in FIG. 1, 16 is an oxidizing gas inlet, 17 is an oxidizing gas outlet, 18 is an inlet of gas containing hydrogen, 19 is an outlet of gas containing hydrogen, 20 is an inlet of fuel gas, 21 is an outlet of fuel gas, 22 is an oxidant gas inlet side manifold, 23 is an oxidant gas outlet side manifold, 24 is a fuel gas inlet side manifold, and 25 is a fuel gas outlet side manifold. 2 indicate the flow of a gas containing an oxidizing gas and hydrogen, and the dashed-dotted arrow indicates the flow of a fuel gas.

【0014】前記図2に示される電気化学デバイスをリ
ン酸型燃料電池単セルの部品を用いて作製した。
The electrochemical device shown in FIG. 2 was manufactured using parts of a single cell of a phosphoric acid type fuel cell.

【0015】本実施例では電極の有効面積は100cm2(10c
m×10cm)でカーボンからなる厚さ約200μmの基材に白
金を有する触媒が塗布されている。電解質マトリックス
層の厚さは約100μmであり、リン酸を含浸したシリコ
ンカーバイドの微粒子で構成されている。仕切り板は電
極の有効長さ10cmに対して下流側から約3cmの位置に設
けた。燃料極側ガス供給板、酸化剤極側ガス供給板およ
び仕切り板には緻密なカーボン材を用い、反応ガス流路
溝を1.5mmピッチで設けた。
In this embodiment, the effective area of the electrode is 100 cm 2 (10 c
A catalyst having platinum is applied to a carbon substrate having a thickness of about 200 μm (m × 10 cm). The thickness of the electrolyte matrix layer is about 100 μm, and is composed of phosphoric acid-impregnated silicon carbide fine particles. The partition plate was provided at a position about 3 cm from the downstream side with respect to the effective length of the electrode of 10 cm. A dense carbon material was used for the fuel electrode side gas supply plate, the oxidant electrode side gas supply plate and the partition plate, and reaction gas flow grooves were provided at a pitch of 1.5 mm.

【0016】なお、その際、単セル6の周囲に12個の可
逆水素電極(RHE)を備えたものを用い、各RHEと
カソード(酸化剤極)およびアノード(燃料極)との間
の電位をタケダ理研工業(株)製のトレンドロガーを用
いて測定した。
In this case, a single cell 6 having 12 reversible hydrogen electrodes (RHE) around the cell was used, and the potential between each RHE and the cathode (oxidant electrode) and anode (fuel electrode) was used. Was measured using a trend logger manufactured by Takeda Riken Industry Co., Ltd.

【0017】まず酸化剤ガス10として空気を毎分100c
cの流量でガス供給板8に供給し、燃料ガス12として二
酸化炭素を20%(体積%、以下同様)含む水素混合ガス
(CO220%、H280%)を毎分50ccの流量でガス供給
板7に供給し、仕切り板9を隔てて燃料下流側のガス供
給板側8には純水素(H2100%)を毎分50ccの流量で
供給した。このとき温度はヒーターを用いて160℃に保
ち、負荷は一切かけない状態とした。このときセル電圧
(カソードとアノード間の電圧)は0.8V程度であった
が、燃料下流側ではアノード電位がRHE電位に対して
−0.5Vにまで達していた。RHE電位に対して−0.5V
というのは白金電極を用いたばあい、よほどの大電流を
流さない限り、なかなか実現できない卑な電位であり、
外部電流を流して水などの電気分解をしたばあいでも前
記のような電位を達成するのは難しい。
First, air is used as oxidant gas 10 at 100 c / min.
The gas is supplied to the gas supply plate 8 at a flow rate of c, and a hydrogen mixed gas (20% CO 2 , 80% H 2 ) containing 20% carbon dioxide (volume%, hereinafter the same) as the fuel gas 12 at a flow rate of 50 cc / min. Pure hydrogen (100% H 2 ) was supplied to the gas supply plate 7 at a flow rate of 50 cc / min to the gas supply plate side 8 on the fuel downstream side with the partition plate 9 interposed therebetween. At this time, the temperature was maintained at 160 ° C. using a heater, and no load was applied. At this time, the cell voltage (voltage between the cathode and the anode) was about 0.8 V, but on the downstream side of the fuel, the anode potential reached -0.5 V with respect to the RHE potential. -0.5V to RHE potential
That is, when a platinum electrode is used, it is a low potential that cannot be easily realized unless a very large current flows.
It is difficult to achieve the above potential even when an external current is applied to electrolyze water or the like.

【0018】これは、白金触媒上での水素の酸化還元反
応がほとんど過電圧を生じずにおこるためであり、水な
どの電気分解のばあい、通常−0.5Vまで電圧を下げる
と大量の水素が発生してしまう。このことが白金電極で
は電気化学的還元による生成物が100%水素に限られて
しまう原因になっている。
This is because the oxidation-reduction reaction of hydrogen on the platinum catalyst occurs with almost no overvoltage. In the case of electrolysis of water or the like, a large amount of hydrogen is reduced when the voltage is reduced to -0.5 V. Will occur. This is the reason that the electrochemical reduction of the platinum electrode is limited to 100% hydrogen.

【0019】ところが本発明者らはガス検知管やガスク
ロマトグラフィーを用いて燃料ガス出口側のガス組成を
調べたところ、1〜2%の一酸化炭素が生成物として含
まれることを確認した。この一酸化炭素は燃料ガス中の
二酸化炭素から反応式(1)に示される電気化学的反応に
より生成したものであり、その理由は燃料下流部のアノ
ードが−0.5Vという低い電位を有するためであると考
えられる。
However, the present inventors examined the gas composition on the fuel gas outlet side using a gas detector tube or gas chromatography, and found that 1 to 2% of carbon monoxide was contained as a product. This carbon monoxide is generated from the carbon dioxide in the fuel gas by the electrochemical reaction shown in the reaction formula (1) because the anode downstream of the fuel has a low potential of -0.5 V. It is believed that there is.

【0020】 CO2(g)+2H++2e-=CO(g)+H2O (1) E°=−0.103V(vs.SHE) このことから、白金以外の適当な触媒あるいは白金と他
の合金触媒を図1や図2に示される電気化学デバイスに
用いれば、次式のギ酸の生成やメタノールなどの合成が
可能であることが明らかである。
CO 2 (g) + 2H + + 2e = CO (g) + H 2 O (1) E ° = −0.103 V (vs. SHE) From this, a suitable catalyst other than platinum or platinum and other alloys It is clear that the use of the catalyst in the electrochemical device shown in FIGS. 1 and 2 enables the formation of formic acid of the following formula and the synthesis of methanol and the like.

【0021】 CO2(g)+2H++2e-=HCOOH(aq) (2) E°=−0.199V(vs.SHE) したがって、本発明により、燃料ガスとしてたとえば燃
焼廃ガスなどから一酸化炭素やメタノールなどの有用な
物質を外部電力を消費することなく合成することができ
る。
CO 2 (g) + 2H + + 2e = HCOOH (aq) (2) E ° = −0.199 V (vs. SHE) Therefore, according to the present invention, as a fuel gas, for example, carbon monoxide or Useful substances such as methanol can be synthesized without consuming external power.

【0022】前記燃料ガスとしては、二酸化炭素を含む
ガスの他、たとえば二酸化チッ素(NO2)、一酸化チ
ッ素(NO)などの無機物や、たとえばホルムアルデヒ
ド、アセトアルデヒドなどの有機物を含むガスがあげら
れ、前記燃料ガスが利用価値の少ない燃焼廃ガスなどで
あるばあいが経済的に有利であり、とくに好ましい。
Examples of the fuel gas include gases containing carbon dioxide, inorganic gases such as nitrogen dioxide (NO 2 ) and nitrogen monoxide (NO), and gases containing organic substances such as formaldehyde and acetaldehyde. When the fuel gas is a combustion waste gas having little use value, it is economically advantageous, and particularly preferable.

【0023】また、前記燃料ガスより生成される有用な
化合物としては、前記一酸化炭素、ギ酸、メタノールの
他、たとえば、酢酸、エタノール、アンモニアなどがあ
げられる。
Useful compounds produced from the fuel gas include, for example, acetic acid, ethanol, ammonia and the like in addition to the above-mentioned carbon monoxide, formic acid, and methanol.

【0024】このときに必要なエネルギーは、下記の燃
料電池反応により与えられる。
The energy required at this time is provided by the following fuel cell reaction.

【0025】H2+1/2O2→H2O (3) なお、本実施例では、水素を含むガスとして純水素を用
いたが、他のガスで希釈された希薄な水素を含むガスで
も充分効果がある。また酸化剤ガスとして空気の代わり
に酸素を含む廃ガスを用いてもよい。
H 2 + 1 / 2O 2 → H 2 O (3) In this embodiment, pure hydrogen is used as the gas containing hydrogen. However, a gas containing dilute hydrogen diluted with another gas is sufficient. effective. Further, instead of air, waste gas containing oxygen may be used as the oxidizing gas.

【0026】さらに、本実施例では、単セルとしてリン
酸型燃料電池の部品を用いた例を示したが、たとえば固
体高分子電解質型燃料電池、硫酸型燃料電池、溶融炭酸
塩型燃料電池などの燃料電池やその部品などを用いて本
発明の電気化学デバイス構成してもよい。ただし、この
ばあい面積に比べて単セルの厚さが薄く、電解質の酸性
度の変化がプロトンの移動によって解消されにくいとい
う条件が満たされる必要がある。
Further, in this embodiment, an example in which parts of a phosphoric acid type fuel cell are used as a single cell has been described. For example, a solid polymer electrolyte type fuel cell, a sulfuric acid type fuel cell, a molten carbonate type fuel cell, etc. The electrochemical device of the present invention may be constituted by using the above fuel cell and its parts. However, in this case, it is necessary to satisfy the condition that the thickness of the single cell is smaller than the area, and the change in the acidity of the electrolyte is not easily eliminated by the movement of the protons.

【0027】温度については、還元する物質と使用する
触媒、電解質の種類などで最適値を選択すればよく、必
ずしもヒーターによる加温は必要ではない。
As for the temperature, an optimum value may be selected depending on the type of the substance to be reduced, the catalyst to be used, the electrolyte and the like, and the heating by the heater is not necessarily required.

【0028】すなわち、多くのばあい単セルでの電子や
プロトンの移動に伴う過電圧による発熱で賄うことがで
きるからである。また、他の廃熱を利用して昇温しても
よい。
That is, in most cases, heat can be covered by heat generated by an overvoltage caused by the movement of electrons and protons in a single cell. Further, the temperature may be raised using other waste heat.

【0029】本発明の装置では従来と異なり、単セルに
対して外部電力を全く加える必要がないという大きな利
点を有する。なお単セルではなく、複数のセルで構成
し、または積層化してもよい。
The device of the present invention has a great advantage that, unlike the conventional device, there is no need to apply external power to a single cell. Instead of a single cell, a plurality of cells may be formed or stacked.

【0030】[0030]

【発明の効果】本発明の電気化学デバイスによれば、外
部電力を消費することなく、たとえば燃料廃ガスなどの
利用価値の低いガスなどから一酸化炭素、メタノールな
どの有用な物質をうることができるという効果を奏す
る。
According to the electrochemical device of the present invention, it is possible to obtain useful substances such as carbon monoxide and methanol from low-use gases such as fuel waste gas without consuming external power. It has the effect of being able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学デバイスの一実施例を示す断
面図である。
FIG. 1 is a cross-sectional view showing one embodiment of the electrochemical device of the present invention.

【図2】本発明の電気化学デバイスの一実施例を示す平
面図である。
FIG. 2 is a plan view showing one embodiment of the electrochemical device of the present invention.

【符号の説明】[Explanation of symbols]

1 電気化学デバイス 3 燃料極 4 電解質マトリックス層 5 酸化剤極 6 単セル 7 燃料極側ガス供給板 8 酸化剤極側ガス供給板 9 仕切り板 10 酸化剤ガス 11 水素を含むガス 12 燃料ガス DESCRIPTION OF SYMBOLS 1 Electrochemical device 3 Fuel electrode 4 Electrolyte matrix layer 5 Oxidant electrode 6 Single cell 7 Fuel electrode side gas supply plate 8 Oxidant electrode side gas supply plate 9 Partition plate 10 Oxidant gas 11 Gas containing hydrogen 12 Fuel gas

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃料極、電解質マトリックス層および酸
化剤極からなる単セルを燃料極側ガス供給板と酸化剤極
側ガス供給板とにより挾持し、前記酸化剤極側ガス供給
板に仕切り板を設けて燃料上流側と燃料下流側とに分
け、燃料上流側の酸化剤極に酸化剤ガスを供給するとと
もに燃料下流側の酸化剤極に水素を含むガスを供給し、
さらに燃料ガスを燃料極に供給して燃料ガスに含まれる
成分を電気化学的に還元することを特徴とする電気化学
デバイス。
A single cell comprising a fuel electrode, an electrolyte matrix layer and an oxidant electrode is sandwiched between a fuel electrode side gas supply plate and an oxidant electrode side gas supply plate, and a partition plate is provided on the oxidant electrode side gas supply plate. Is provided and divided into a fuel upstream side and a fuel downstream side, and an oxidant gas is supplied to the oxidant electrode on the fuel upstream side and a gas containing hydrogen is supplied to the oxidant electrode on the fuel downstream side,
An electrochemical device further comprising supplying a fuel gas to a fuel electrode to electrochemically reduce components contained in the fuel gas.
JP4013602A 1992-01-29 1992-01-29 Electrochemical device Expired - Fee Related JP2975470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4013602A JP2975470B2 (en) 1992-01-29 1992-01-29 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4013602A JP2975470B2 (en) 1992-01-29 1992-01-29 Electrochemical device

Publications (2)

Publication Number Publication Date
JPH05205764A JPH05205764A (en) 1993-08-13
JP2975470B2 true JP2975470B2 (en) 1999-11-10

Family

ID=11837769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4013602A Expired - Fee Related JP2975470B2 (en) 1992-01-29 1992-01-29 Electrochemical device

Country Status (1)

Country Link
JP (1) JP2975470B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083531B2 (en) * 2011-03-18 2017-02-22 国立大学法人長岡技術科学大学 Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
EP3046172B1 (en) * 2013-09-12 2021-06-02 Japan Aerospace Exploration Agency Solid polymer power generation method and system

Also Published As

Publication number Publication date
JPH05205764A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
US6517962B1 (en) Fuel cell anode structures for voltage reversal tolerance
KR100982645B1 (en) Supports for fuel cell catalysts
US6558827B1 (en) High fuel utilization in a fuel cell
US7462575B2 (en) Catalyst powder, catalyst electrode, and electrochemical device
JP2012253039A (en) Use of sacrificial material for slowing down corrosion of catalyst carrier at fuel cell electrode
JP2008311064A (en) Fuel cell system and activation method of fuel cell
Chang et al. Kinetics of oxygen reduction at RuO2-coated titanium electrode in alkaline solution
US7396605B2 (en) Method and system for improving the performance of a fuel cell
JP2000113896A (en) Solid polymer fuel cell and its system
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
US20050233186A1 (en) Liquid-fuel fuel cell, operation monitoring method for monitoring operation thereof, and operation monitoring device
JPS63503421A (en) Aqueous carbonate electrolyte fuel cell
US20190020082A1 (en) Reversible electrochemical system comprising two pem devices in oxidation and reduction electrodes configuration
US11515555B2 (en) Reversible shunts for overcharge protection in polymer electrolyte membrane fuel cells
JP2975470B2 (en) Electrochemical device
JPS59149668A (en) Fuel battery
JP4788151B2 (en) Method and apparatus for returning characteristics of fuel cell
JP2008027647A (en) Fuel electrode for fuel cell, and fuel cell equipped with it
US10439241B2 (en) Methods and processes to recover the voltage loss due to anode contamination
JP4267854B2 (en) Fuel cell electrode material
JPH069143B2 (en) Fuel cell storage method
Chambers et al. Carbonaceous fuel cells
JP7088061B2 (en) Fuel cell system
JPH03194863A (en) Method for stopping fuel cell
JP2013191568A (en) Fuel cell system and activation method of fuel battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees