JPH05205764A - Electrochemical device - Google Patents

Electrochemical device

Info

Publication number
JPH05205764A
JPH05205764A JP4013602A JP1360292A JPH05205764A JP H05205764 A JPH05205764 A JP H05205764A JP 4013602 A JP4013602 A JP 4013602A JP 1360292 A JP1360292 A JP 1360292A JP H05205764 A JPH05205764 A JP H05205764A
Authority
JP
Japan
Prior art keywords
fuel
potential
gas
electrode
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4013602A
Other languages
Japanese (ja)
Other versions
JP2975470B2 (en
Inventor
Kenro Mitsuta
憲朗 光田
Toshiaki Murahashi
俊明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4013602A priority Critical patent/JP2975470B2/en
Publication of JPH05205764A publication Critical patent/JPH05205764A/en
Application granted granted Critical
Publication of JP2975470B2 publication Critical patent/JP2975470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide electrochemical reducing reaction without using external electric power by shifting an electrochemical potential of gas containing hydrogen to be supplied to an oxidant electrode located downstream of fuel, in the direction in which acidity is stronger than that in the upper stream side so as to make the potential of the fuel electrode on the lower stream side lower than the potential of reversible hydrogen electrode. CONSTITUTION:An electrochemical device 1 comprises a fuel electrode 3, electrolyte matrix layer 4, a fuel electrode 6 composed of an oxidant electrode 5 a gas supply plate 7 on the fuel electrode side, a gas supply plate 8 on the oxidant electrode side, a partitioning plate 9, oxidant gas 10, hydrogen containing gas 11, and fuel gas 12. Owing to the above-mentioned constitution, electrochemical potential generated along the flow of the fuel gas is so set as being illustrated in the figure 2. That is, cathode potential 13 which is the potential of an oxidant electrode, anode potential 14 which is the potential of the fuel electrode, and RHE potential 15 which is the potential of a reversible hydrogen electrode are generated. This constitution synthesizes fuel exhaust gas useful as fuel gas such as carbon monoxide and methanol, without using external electric power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的還元反応を
行なうための電気化学デバイスに関する。
FIELD OF THE INVENTION The present invention relates to an electrochemical device for carrying out an electrochemical reduction reaction.

【0002】[0002]

【従来の技術】電気化学的還元反応は、ある物質に対し
て電極から電子を、溶液側からプロトンなどのイオンを
与えて還元反応を行なうもので、代表的なものとしては
炭酸ガスから一酸化炭素、ギ酸、メタノールなどへの還
元反応があげられる。
2. Description of the Related Art An electrochemical reduction reaction is one in which electrons are given to a substance from an electrode and ions such as protons are given from a solution side to carry out a reduction reaction. The reduction reaction to carbon, formic acid, methanol, etc. can be mentioned.

【0003】最近地球の温暖化現象に対する対策とし
て、炭酸ガスの効率的な電気化学的還元方法の必要性が
クローズアップされている。電気化学的還元方法の従来
例として、たとえば平成3年10月12日および13日に名古
屋工大で行なわれた講演の「1991年電気化学秋季大会講
演要旨集、平成3年9月28日、(社)電気化学協会、19
0〜197頁」には14件もの炭酸ガスの電気化学的還元方法
に関する研究論文が掲載されている。これらの論文の大
部分は、主として効率よく電気化学的還元を行なうため
の触媒に関するものである。
Recently, the need for an efficient electrochemical reduction method of carbon dioxide has been highlighted as a countermeasure against the global warming phenomenon. As a conventional example of the electrochemical reduction method, for example, "Abstracts of the 1991 Electrochemical Fall Meeting," which was given at the Nagoya Institute of Technology on October 12 and 13, 1991, September 28, 1991, ( Japan Electrochemical Society, 19
On pages 0 to 197, there are as many as 14 research papers on the electrochemical reduction of carbon dioxide. Most of these papers are mainly about catalysts for efficient electrochemical reduction.

【0004】[0004]

【発明が解決しようとする課題】しかし、いずれの従来
例においても、電気化学的に還元反応を行なう際に必ず
電圧をかけて電流を流す必要がある。すなわち、前記方
法は、電力という最も質のよいエネルギーを消費して初
めて炭酸ガスの電気化学的還元を行なえる方法である。
したがって前記従来法では、エネルギー問題の解決と地
球環境問題の解決を両立させることができない。
However, in any of the conventional examples, it is necessary to always apply a voltage and flow a current when performing the electrochemical reduction reaction. That is, the above method is a method in which the carbon dioxide gas can be electrochemically reduced only after consuming the highest quality energy of electric power.
Therefore, the conventional method cannot achieve both the solution of the energy problem and the solution of the global environment problem.

【0005】本発明は前記のような問題点を解消するた
めになされたもので、電力を消費せずに電気化学的還元
反応を行なうことのできる電気化学デバイスを提供する
ことを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide an electrochemical device capable of performing an electrochemical reduction reaction without consuming electric power.

【0006】[0006]

【課題を解決するための手段】本発明者らは、先に独自
に開発した評価装置である12極参照電極付単セルを用
い、通常の燃料電池の電極ではおこりえないと考えられ
ていたカーボンの腐食反応や白金の溶出反応が、実際の
燃料電池ではおこることおよびその原因について世界で
初めて明らかにした(ジャーナル オブ アプライド
エレクトロケミストリー(Journal of Applied Electroc
hemistry) 、21(1991)、p524〜530参照)。すなわちそ
の内容は、燃料電池の電解液の電気化学的電位と相関関
係を有する酸性度がpH−5以下の超強酸からプロトン
欠乏部ではpH0程度の強酸まで変化し、これにより0.
3V以上の電気化学的電位のずれが生じ、このためプロ
トン欠乏部の空気極電位が1V(vs.可逆水素電極電
位(以下、RHE電位という))をこえて貴な電位(R
HE電位に対してプラス側の電位)になり白金の溶出や
カーボンの腐食反応がおこるというものである。
Means for Solving the Problems The inventors of the present invention considered that an evaluation device originally developed originally uses a single cell with a 12-electrode reference electrode, and an electrode of a normal fuel cell cannot be used. For the first time in the world, it was clarified that carbon corrosion reactions and platinum elution reactions occur in actual fuel cells and their causes (Journal of Applied
Electrochemistry (Journal of Applied Electroc
hemistry), 21 (1991), p.524-530). That is, the content changes from a super strong acid having an acidity of pH -5 or less, which has a correlation with the electrochemical potential of the electrolyte of the fuel cell, to a strong acid having a pH of about 0 in the proton deficient portion, and thereby the acidity of 0.
A shift of the electrochemical potential of 3 V or more occurs, so that the air electrode potential of the proton-deficient portion exceeds 1 V (vs. reversible hydrogen electrode potential (hereinafter referred to as RHE potential)), and a noble potential (R
It becomes a positive potential with respect to the HE potential) and platinum elution and carbon corrosion reaction occur.

【0007】さらに1991年4月に開催された電気化学協
会第58回大会の要旨集No.1G18、平成3年3月22
日、(社)電気化学協会、p166に記載されているよう
に、本発明者らは、80℃の低温においても燃料電池の空
気極電位がRHE電位に対して1.6Vをこえ、カーボン
の著しい腐食がおこる例を報告している。このときのセ
ル電圧は0.9V程度であり、前記現象は、セル電圧をは
るかにこえる貴な電位をセル面内の電解液の酸性度を変
化させることで実現できることを示しており、前記事項
は本発明者らが前記報告において初めて明らかにしたも
のである。
[0007] Furthermore, the summary of the 58th convention of the Electrochemical Society held in April 1991, No. 1G18, March 22, 1991
As described in Japan Electrochemical Society, p166, the present inventors have found that even at a low temperature of 80 ° C., the air electrode potential of the fuel cell exceeds 1.6 V with respect to the RHE potential, and the carbon content is remarkable. An example of corrosion is reported. The cell voltage at this time is about 0.9 V, and it is shown that the above phenomenon can be realized by changing the acidity of the electrolytic solution in the cell surface, which is a noble potential far exceeding the cell voltage. This was the first time that the present inventors made clear in the above report.

【0008】本発明者らは、逆にプロトン過剰部を発生
させることでアノード電位をRHE電位よりもマイナス
側(卑な電位)にできることおよび前記方法が本発明の
目的である電力を消費せずに電気化学的還元反応を行な
う装置に応用できることを見出し、本発明を完成するに
至った。
On the contrary, the present inventors have found that the anode potential can be made to be on the negative side (base potential) of the RHE potential by generating a proton excess portion, and the above method does not consume the electric power which is the object of the present invention. In addition, they have found that they can be applied to a device for performing an electrochemical reduction reaction, and have completed the present invention.

【0009】すなわち、本発明は、燃料極、電解質マト
リックス層および酸化剤極からなる単セルを燃料極側ガ
ス供給板と酸化剤極側ガス供給板とにより挾持し、前記
酸化剤極側ガス供給板に仕切り板を設けて燃料上流側と
燃料下流側とに分け、燃料上流側の酸化剤極に酸化剤ガ
スを供給するとともに燃料下流側の酸化剤極に水素を含
むガスを供給し、さらに燃料ガスを燃料極に供給して燃
料ガスに含まれる成分を電気化学的に還元することを特
徴とする電気化学デバイスに関する。
That is, according to the present invention, a single cell composed of a fuel electrode, an electrolyte matrix layer and an oxidant electrode is sandwiched between a fuel electrode side gas supply plate and an oxidant electrode side gas supply plate to supply the oxidant electrode side gas. A partition plate is provided on the plate to divide it into a fuel upstream side and a fuel downstream side, and an oxidant gas is supplied to the oxidant electrode on the fuel upstream side and a gas containing hydrogen is supplied to the oxidant electrode on the fuel downstream side. The present invention relates to an electrochemical device characterized by supplying a fuel gas to a fuel electrode to electrochemically reduce components contained in the fuel gas.

【0010】[0010]

【作用】本発明の電気化学デバイスにおける燃料下流側
の酸化剤極に供給される水素を含むガスは燃料下流側の
電気化学的電位を燃料上流側よりも酸性度の強い方向に
シフトさせ、その結果燃料下流側の燃料極の電位はRH
E電位よりも卑な電位(マイナスの電位)となるため、
燃料ガスに含まれる成分は外部電力を消費することなく
電気化学的に還元される。
The gas containing hydrogen supplied to the oxidant electrode on the downstream side of the fuel in the electrochemical device of the present invention shifts the electrochemical potential on the downstream side of the fuel to a direction where the acidity is stronger than that on the upstream side of the fuel, As a result, the potential of the fuel electrode on the downstream side of the fuel is RH.
Since it becomes a base potential (negative potential) than the E potential,
The components contained in the fuel gas are electrochemically reduced without consuming external electric power.

【0011】[0011]

【実施例】以下、本発明の電気化学デバイスの一実施例
を図1および2に基づいて説明する。
EXAMPLE An example of the electrochemical device of the present invention will be described below with reference to FIGS.

【0012】図1において、1は本発明の電気化学デバ
イスの一実施例を示す断面図であり、2はその断面方向
での電気化学的電位をRHE電位を基準に示したもので
ある。1で示される電気化学デバイスの断面図におい
て、3は燃料極、4は電解質マトリックス層、5は酸化
剤極、6は燃料極3、電解質マトリックス層4および酸
化剤極5からなる単セル、7は燃料極側ガス供給板、8
は酸化剤極側ガス供給板、9は仕切り板、10は酸化剤ガ
ス、11は水素を含むガス、12は燃料ガスであり、図中、
燃料ガスの流れを矢印で示している。さらに2で示され
る電気化学的電位を示す図において、13はカソード電位
(酸化剤極の電位)、14はアノード電位(燃料極電
位)、15はRHE電位を示す。
In FIG. 1, reference numeral 1 is a cross-sectional view showing an embodiment of the electrochemical device of the present invention, and 2 is an electrochemical potential in the cross-sectional direction with reference to the RHE potential. In the cross-sectional view of the electrochemical device indicated by 1, 3 is a fuel electrode, 4 is an electrolyte matrix layer, 5 is an oxidant electrode, 6 is a fuel electrode 3, a single cell composed of an electrolyte matrix layer 4 and an oxidant electrode 5, 7 Is a gas supply plate on the fuel electrode side, 8
Is a gas supply plate on the oxidant electrode side, 9 is a partition plate, 10 is an oxidant gas, 11 is a gas containing hydrogen, and 12 is a fuel gas.
The flow of fuel gas is indicated by arrows. Furthermore, in the figure showing the electrochemical potential indicated by 2, 13 is the cathode potential (potential of the oxidizer electrode), 14 is the anode potential (fuel electrode potential), and 15 is the RHE potential.

【0013】また、図2は図1に示す電気化学デバイス
にガス供給のためのマニホールドが取付けられたものを
示す平面図であり、16は酸化剤ガスの入口、17は酸化剤
ガスの出口、18は水素を含むガスの入口、19は水素を含
むガスの出口、20は燃料ガスの入口、21は燃料ガスの出
口、22は酸化剤ガス入口側マニホールド、23は酸化剤ガ
ス出口側マニホールド、24は燃料ガス入口側マニホール
ド、25は燃料ガス出口側マニホールドである。図2の実
線矢印は酸化剤ガスおよび水素を含むガスの流れを、一
点鎖線の矢印は燃料ガスの流れを示している。
FIG. 2 is a plan view showing the electrochemical device shown in FIG. 1 to which a manifold for gas supply is attached. 16 is an oxidant gas inlet, 17 is an oxidant gas outlet, 18 is a gas inlet containing hydrogen, 19 is a gas outlet containing hydrogen, 20 is a fuel gas inlet, 21 is a fuel gas outlet, 22 is an oxidant gas inlet side manifold, 23 is an oxidant gas outlet side manifold, 24 is a fuel gas inlet side manifold, and 25 is a fuel gas outlet side manifold. The solid line arrow in FIG. 2 indicates the flow of gas containing oxidant gas and hydrogen, and the one-dot chain line arrow indicates the flow of fuel gas.

【0014】前記図2に示される電気化学デバイスをリ
ン酸型燃料電池単セルの部品を用いて作製した。
The electrochemical device shown in FIG. 2 was prepared by using a phosphoric acid fuel cell unit cell component.

【0015】本実施例では電極の有効面積は100cm2(10c
m×10cm)でカーボンからなる厚さ約200μmの基材に白
金を有する触媒が塗布されている。電解質マトリックス
層の厚さは約100μmであり、リン酸を含浸したシリコ
ンカーバイドの微粒子で構成されている。仕切り板は電
極の有効長さ10cmに対して下流側から約3cmの位置に設
けた。燃料極側ガス供給板、酸化剤極側ガス供給板およ
び仕切り板には緻密なカーボン材を用い、反応ガス流路
溝を1.5mmピッチで設けた。
In this embodiment, the effective area of the electrode is 100 cm 2 (10 c
A catalyst containing platinum is applied to a base material of carbon (m × 10 cm) and having a thickness of about 200 μm. The electrolyte matrix layer has a thickness of about 100 μm, and is composed of fine particles of silicon carbide impregnated with phosphoric acid. The partition plate was provided at a position about 3 cm from the downstream side with respect to the effective length of the electrode of 10 cm. A dense carbon material was used for the fuel electrode side gas supply plate, the oxidizer electrode side gas supply plate, and the partition plate, and reaction gas flow channel grooves were provided at a pitch of 1.5 mm.

【0016】なお、その際、単セル6の周囲に12個の可
逆水素電極(RHE)を備えたものを用い、各RHEと
カソード(酸化剤極)およびアノード(燃料極)との間
の電位をタケダ理研工業(株)製のトレンドロガーを用
いて測定した。
At this time, the unit cell 6 having 12 reversible hydrogen electrodes (RHE) around it is used, and the potential between each RHE and the cathode (oxidant electrode) and the anode (fuel electrode) is used. Was measured using a trend logger manufactured by Takeda Riken Kogyo.

【0017】まず酸化剤ガス10として空気を毎分100c
cの流量でガス供給板8に供給し、燃料ガス12として二
酸化炭素を20%(体積%、以下同様)含む水素混合ガス
(CO220%、H280%)を毎分50ccの流量でガス供給
板7に供給し、仕切り板9を隔てて燃料下流側のガス供
給板側8には純水素(H2100%)を毎分50ccの流量で
供給した。このとき温度はヒーターを用いて160℃に保
ち、負荷は一切かけない状態とした。このときセル電圧
(カソードとアノード間の電圧)は0.8V程度であった
が、燃料下流側ではアノード電位がRHE電位に対して
−0.5Vにまで達していた。RHE電位に対して−0.5V
というのは白金電極を用いたばあい、よほどの大電流を
流さない限り、なかなか実現できない卑な電位であり、
外部電流を流して水などの電気分解をしたばあいでも前
記のような電位を達成するのは難しい。
First, air is used as the oxidant gas 10 at 100 c / min.
The hydrogen mixed gas (CO 2 20%, H 2 80%) containing 20% (volume%, the same below) of carbon dioxide as the fuel gas 12 is supplied to the gas supply plate 8 at a flow rate of 50 c / min. The gas was supplied to the gas supply plate 7, and pure hydrogen (H 2 100%) was supplied to the gas supply plate side 8 on the fuel downstream side across the partition plate 9 at a flow rate of 50 cc / min. At this time, the temperature was maintained at 160 ° C. by using a heater and no load was applied. At this time, the cell voltage (voltage between the cathode and the anode) was about 0.8 V, but on the fuel downstream side, the anode potential reached −0.5 V with respect to the RHE potential. -0.5V to RHE potential
Because when using a platinum electrode, it is a base potential that is difficult to achieve unless a large current is applied.
It is difficult to achieve the above potential even when an electric current is applied to electrolyze water or the like.

【0018】これは、白金触媒上での水素の酸化還元反
応がほとんど過電圧を生じずにおこるためであり、水な
どの電気分解のばあい、通常−0.5Vまで電圧を下げる
と大量の水素が発生してしまう。このことが白金電極で
は電気化学的還元による生成物が100%水素に限られて
しまう原因になっている。
This is because the oxidation-reduction reaction of hydrogen on the platinum catalyst occurs with almost no overvoltage, and in the case of electrolysis of water or the like, a large amount of hydrogen is usually generated when the voltage is lowered to -0.5V. Will occur. This is the reason why the products of electrochemical reduction are limited to 100% hydrogen at platinum electrodes.

【0019】ところが本発明者らはガス検知管やガスク
ロマトグラフィーを用いて燃料ガス出口側のガス組成を
調べたところ、1〜2%の一酸化炭素が生成物として含
まれることを確認した。この一酸化炭素は燃料ガス中の
二酸化炭素から反応式(1)に示される電気化学的反応に
より生成したものであり、その理由は燃料下流部のアノ
ードが−0.5Vという低い電位を有するためであると考
えられる。
However, when the present inventors examined the gas composition on the fuel gas outlet side using a gas detector tube and gas chromatography, they confirmed that 1 to 2% of carbon monoxide was contained as a product. This carbon monoxide is generated from the carbon dioxide in the fuel gas by the electrochemical reaction shown in the reaction formula (1), because the anode in the downstream portion of the fuel has a low potential of -0.5V. It is believed that there is.

【0020】 CO2(g)+2H++2e-=CO(g)+H2O (1) E°=−0.103V(vs.SHE) このことから、白金以外の適当な触媒あるいは白金と他
の合金触媒を図1や図2に示される電気化学デバイスに
用いれば、次式のギ酸の生成やメタノールなどの合成が
可能であることが明らかである。
CO 2 (g) + 2H + + 2e = CO (g) + H 2 O (1) E ° = −0.103V (vs.SHE) From this, a suitable catalyst other than platinum or platinum and other alloys It is apparent that if the catalyst is used in the electrochemical device shown in FIGS. 1 and 2, it is possible to produce formic acid of the following formula and to synthesize methanol and the like.

【0021】 CO2(g)+2H++2e-=HCOOH(aq) (2) E°=−0.199V(vs.SHE) したがって、本発明により、燃料ガスとしてたとえば燃
焼廃ガスなどから一酸化炭素やメタノールなどの有用な
物質を外部電力を消費することなく合成することができ
る。
CO 2 (g) + 2H + + 2e = HCOOH (aq) (2) E ° = −0.199V (vs.SHE) Therefore, according to the present invention, carbon monoxide or A useful substance such as methanol can be synthesized without consuming external electric power.

【0022】前記燃料ガスとしては、二酸化炭素を含む
ガスの他、たとえば二酸化チッ素(NO2)、一酸化チ
ッ素(NO)などの無機物や、たとえばホルムアルデヒ
ド、アセトアルデヒドなどの有機物を含むガスがあげら
れ、前記燃料ガスが利用価値の少ない燃焼廃ガスなどで
あるばあいが経済的に有利であり、とくに好ましい。
Examples of the fuel gas include gases containing carbon dioxide, inorganic substances such as nitrogen dioxide (NO 2 ) and nitrogen monoxide (NO), and gases containing organic substances such as formaldehyde and acetaldehyde. However, it is economically advantageous and particularly preferable when the fuel gas is a combustion waste gas or the like having a low utility value.

【0023】また、前記燃料ガスより生成される有用な
化合物としては、前記一酸化炭素、ギ酸、メタノールの
他、たとえば、酢酸、エタノール、アンモニアなどがあ
げられる。
Examples of useful compounds produced from the fuel gas include carbon monoxide, formic acid and methanol, as well as acetic acid, ethanol and ammonia.

【0024】このときに必要なエネルギーは、下記の燃
料電池反応により与えられる。
The energy required at this time is given by the following fuel cell reaction.

【0025】H2+1/2O2→H2O (3) なお、本実施例では、水素を含むガスとして純水素を用
いたが、他のガスで希釈された希薄な水素を含むガスで
も充分効果がある。また酸化剤ガスとして空気の代わり
に酸素を含む廃ガスを用いてもよい。
H 2 + 1 / 2O 2 → H 2 O (3) Although pure hydrogen was used as the gas containing hydrogen in this example, a gas containing diluted hydrogen diluted with another gas is also sufficient. effective. A waste gas containing oxygen may be used as the oxidant gas instead of air.

【0026】さらに、本実施例では、単セルとしてリン
酸型燃料電池の部品を用いた例を示したが、たとえば固
体高分子電解質型燃料電池、硫酸型燃料電池、溶融炭酸
塩型燃料電池などの燃料電池やその部品などを用いて本
発明の電気化学デバイス構成してもよい。ただし、この
ばあい面積に比べて単セルの厚さが薄く、電解質の酸性
度の変化がプロトンの移動によって解消されにくいとい
う条件が満たされる必要がある。
Further, in this embodiment, an example in which a phosphoric acid fuel cell component is used as a single cell is shown, but for example, a solid polymer electrolyte fuel cell, a sulfuric acid fuel cell, a molten carbonate fuel cell, etc. The electrochemical device of the present invention may be constructed by using the fuel cell, its component, or the like. However, in this case, it is necessary to satisfy the condition that the thickness of the unit cell is smaller than the area and the change in the acidity of the electrolyte is difficult to be eliminated by the movement of protons.

【0027】温度については、還元する物質と使用する
触媒、電解質の種類などで最適値を選択すればよく、必
ずしもヒーターによる加温は必要ではない。
Regarding the temperature, an optimum value may be selected depending on the substance to be reduced, the catalyst used, the type of electrolyte, etc., and heating by a heater is not always necessary.

【0028】すなわち、多くのばあい単セルでの電子や
プロトンの移動に伴う過電圧による発熱で賄うことがで
きるからである。また、他の廃熱を利用して昇温しても
よい。
That is, in many cases, it can be covered by heat generation due to overvoltage accompanying movement of electrons and protons in a single cell. Further, the temperature may be raised by using other waste heat.

【0029】本発明の装置では従来と異なり、単セルに
対して外部電力を全く加える必要がないという大きな利
点を有する。なお単セルではなく、複数のセルで構成
し、または積層化してもよい。
Unlike the prior art, the device of the present invention has the great advantage that no external power need be applied to the single cell. Instead of a single cell, a plurality of cells may be formed or stacked.

【0030】[0030]

【発明の効果】本発明の電気化学デバイスによれば、外
部電力を消費することなく、たとえば燃料廃ガスなどの
利用価値の低いガスなどから一酸化炭素、メタノールな
どの有用な物質をうることができるという効果を奏す
る。
According to the electrochemical device of the present invention, useful substances such as carbon monoxide and methanol can be obtained from a gas having a low utility value such as fuel waste gas without consuming external electric power. It has the effect of being able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気化学デバイスの一実施例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of an electrochemical device of the present invention.

【図2】本発明の電気化学デバイスの一実施例を示す平
面図である。
FIG. 2 is a plan view showing an example of the electrochemical device of the present invention.

【符号の説明】[Explanation of symbols]

1 電気化学デバイス 3 燃料極 4 電解質マトリックス層 5 酸化剤極 6 単セル 7 燃料極側ガス供給板 8 酸化剤極側ガス供給板 9 仕切り板 10 酸化剤ガス 11 水素を含むガス 12 燃料ガス 1 Electrochemical Device 3 Fuel Electrode 4 Electrolyte Matrix Layer 5 Oxidizer Electrode 6 Single Cell 7 Fuel Electrode Side Gas Supply Plate 8 Oxidizer Electrode Side Gas Supply Plate 9 Partition Plate 10 Oxidizer Gas 11 Gas Containing Hydrogen 12 Fuel Gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料極、電解質マトリックス層および酸
化剤極からなる単セルを燃料極側ガス供給板と酸化剤極
側ガス供給板とにより挾持し、前記酸化剤極側ガス供給
板に仕切り板を設けて燃料上流側と燃料下流側とに分
け、燃料上流側の酸化剤極に酸化剤ガスを供給するとと
もに燃料下流側の酸化剤極に水素を含むガスを供給し、
さらに燃料ガスを燃料極に供給して燃料ガスに含まれる
成分を電気化学的に還元することを特徴とする電気化学
デバイス。
1. A single cell composed of a fuel electrode, an electrolyte matrix layer and an oxidant electrode is sandwiched between a fuel electrode side gas supply plate and an oxidant electrode side gas supply plate, and a partition plate is provided on the oxidant electrode side gas supply plate. Is divided into the fuel upstream side and the fuel downstream side, and the oxidant gas is supplied to the oxidant electrode on the fuel upstream side and the gas containing hydrogen is supplied to the oxidant electrode on the fuel downstream side,
Further, the electrochemical device is characterized in that the fuel gas is supplied to the fuel electrode to electrochemically reduce the components contained in the fuel gas.
JP4013602A 1992-01-29 1992-01-29 Electrochemical device Expired - Fee Related JP2975470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4013602A JP2975470B2 (en) 1992-01-29 1992-01-29 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4013602A JP2975470B2 (en) 1992-01-29 1992-01-29 Electrochemical device

Publications (2)

Publication Number Publication Date
JPH05205764A true JPH05205764A (en) 1993-08-13
JP2975470B2 JP2975470B2 (en) 1999-11-10

Family

ID=11837769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4013602A Expired - Fee Related JP2975470B2 (en) 1992-01-29 1992-01-29 Electrochemical device

Country Status (1)

Country Link
JP (1) JP2975470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128148A1 (en) * 2011-03-18 2012-09-27 国立大学法人長岡技術科学大学 System for reducing and fixing carbon dioxide, method for reducing and fixing carbon dioxide, and method for producing useful carbon resource
WO2015037625A1 (en) * 2013-09-12 2015-03-19 独立行政法人宇宙航空研究開発機構 Solid polymer power generation or electrolysis method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128148A1 (en) * 2011-03-18 2012-09-27 国立大学法人長岡技術科学大学 System for reducing and fixing carbon dioxide, method for reducing and fixing carbon dioxide, and method for producing useful carbon resource
JP6083531B2 (en) * 2011-03-18 2017-02-22 国立大学法人長岡技術科学大学 Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
WO2015037625A1 (en) * 2013-09-12 2015-03-19 独立行政法人宇宙航空研究開発機構 Solid polymer power generation or electrolysis method and system
US9954239B2 (en) 2013-09-12 2018-04-24 Japan Aerospace Exploration Agency Solid polymer power generation or electrolysis method and system

Also Published As

Publication number Publication date
JP2975470B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
Kinoshita Electrochemical oxygen technology
EP0090358B1 (en) Fuel cell
US6855453B2 (en) Fuel cell having a corrosion resistant and protected cathode catalyst layer
US20070163889A1 (en) Method and apparatus for producing hydrogen
US6896792B2 (en) Method and device for improved catalytic activity in the purification of fluids
WO2008128341A1 (en) Direct fuel redox fuel cells
US20060183007A1 (en) Method of operating fuel cell
US20050064259A1 (en) Hydrogen diffusion electrode for protonic ceramic fuel cell
US6733909B2 (en) Fuel cell power plant with electrochemical enhanced carbon monoxide removal
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
CN1841822B (en) Catalyst for fuel electrode of solid polymer fuel cell
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
Kiros et al. Electrode R&D, stack design and performance ofbiomass-based alkaline fuel cell module
JPH0831320B2 (en) Fuel cell device for oxygen-containing fuel gas
JPS63503421A (en) Aqueous carbonate electrolyte fuel cell
CA2561634A1 (en) Fuel cell
Kunimatsu et al. Study of performance improvement in a direct methanol fuel cell
JP2006151781A (en) Method for producing hydrogen and hydrogen-producing apparatus used therefor
JPH05205764A (en) Electrochemical device
US5028498A (en) Fuel cell anode
JPH1029804A (en) Carbon monoxide concentration-reducing device and method thereof
JP2006302578A (en) Operation method of fuel cell and fuel cell system
Chambers et al. Carbonaceous fuel cells
JPH03194863A (en) Method for stopping fuel cell
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees