JP2973830B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2973830B2
JP2973830B2 JP6215561A JP21556194A JP2973830B2 JP 2973830 B2 JP2973830 B2 JP 2973830B2 JP 6215561 A JP6215561 A JP 6215561A JP 21556194 A JP21556194 A JP 21556194A JP 2973830 B2 JP2973830 B2 JP 2973830B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
crystalline phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6215561A
Other languages
Japanese (ja)
Other versions
JPH0883606A (en
Inventor
明弘 後藤
正則 吉川
勝憲 西村
守 水本
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6215561A priority Critical patent/JP2973830B2/en
Publication of JPH0883606A publication Critical patent/JPH0883606A/en
Application granted granted Critical
Publication of JP2973830B2 publication Critical patent/JP2973830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、小型で充放電容量の大
きいリチウム二次電池、特に、リチウム金属,リチウム
合金、もしくはリチウムをインターカレートできる炭素
系材料を負極活物質とし、正極,非水電解液を主たる構
成要素とした長寿命高エネルギ密度のリチウム二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having a small size and a large charge / discharge capacity, in particular, a lithium metal, a lithium alloy, or a carbon-based material capable of intercalating lithium as a negative electrode active material. The present invention relates to a long-life, high-energy-density lithium secondary battery having a water electrolyte as a main component.

【0002】[0002]

【従来の技術】従来からリチウムを負極活物質として用
いる高エネルギ密度電池に関する提案は多くなされてい
る。例えば、正極活物質として黒鉛及びフッ素のインタ
ーカレーション化合物,負極活物質としてリチウム金属
をそれぞれ使用した電池が知られている(例えば、米国
特許第35142337号)。さらに、また二酸化マンガンを正
極活物質として用いたリチウム電池が既に市販されてい
る。しかしこれらの電池は一次電池であり充放電ができ
なかった。
2. Description of the Related Art Many proposals have been made on high energy density batteries using lithium as a negative electrode active material. For example, batteries using an intercalation compound of graphite and fluorine as a positive electrode active material and lithium metal as a negative electrode active material are known (for example, US Pat. No. 3,542,337). Further, lithium batteries using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries were primary batteries and could not be charged and discharged.

【0003】リチウムを負極活物質として用いる二次電
池については、正極活物質としてチタン,ジルコニウ
ム,ハフニウム,ニオブ,タンタル,バナジウムの硫化
物,セレン化合物,テルル化合物等を用いた電池、さら
には二酸化マンガンや二酸化コバルト等を用いた電池な
どが提案されている。しかし、これらの電池はその電池
特性および経済性が必ずしも十分であるとはいえなかっ
た。
A secondary battery using lithium as a negative electrode active material is a battery using titanium, zirconium, hafnium, niobium, tantalum, vanadium sulfide, a selenium compound, a tellurium compound, or the like as a positive electrode active material. And batteries using cobalt dioxide or the like have been proposed. However, these batteries have not always been satisfactory in battery characteristics and economy.

【0004】V25を正極活物質として用いることは技
術文献(Extended Abstracts of Electrchem. Soc. Me
eting(Toronto. May11−16,1975,No.2
7))で提案されている。しかし、充放電サイクル特性
が十分とはいえなかった。
The use of V 2 O 5 as a positive electrode active material is disclosed in the technical literature (Extended Abstracts of Electrchem. Soc. Me).
eting (Toronto. May 11-16, 1975, No. 2)
7)). However, the charge / discharge cycle characteristics were not sufficient.

【0005】そこで、V25に20mol% 以下のP25
を添加し溶融後、水中に投入して急冷することによりV
25を完全に非晶質化して、前述の問題を解決すること
が提案されている(特公平4−24828号公報)。前述の提
案はV25の完全非晶質化により充放電サイクル特性の
向上は果たされるが、V25の非晶質化により電池の作
動電位が下がりエネルギ密度の低下を引き起こした。
Therefore, V 2 O 5 contains less than 20 mol% of P 2 O 5
Is added and melted, then put into water and quenched to obtain V
It has been proposed to completely amorphize 2 O 5 to solve the above-mentioned problem (Japanese Patent Publication No. 4-24828). Although proposals foregoing improvement in charge-discharge cycle characteristics complete amorphization of the V 2 O 5 is fulfilled, caused a reduction in the energy density lowers the operating potential of the battery by amorphization of V 2 O 5.

【0006】[0006]

【発明が解決しようとする課題】上記の問題を解決する
ためには、正極活物質が本来持っているエネルギ密度を
低下させることなく、サイクル特性の向上を果たすよう
な正極活物質の利用技術の開発が必要である。
In order to solve the above-mentioned problems, it is necessary to use a positive electrode active material utilizing technique which improves cycle characteristics without lowering the energy density inherent in the positive electrode active material. Development is required.

【0007】[0007]

【課題を解決するための手段】上記の課題は、作動電位
が高くて高エネルギ密度を示す結晶性の良い相と、サイ
クル寿命の長い非晶質相を共存させて正極活物質を作製
することによりエネルギ密度を低下させることなく、サ
イクル特性の向上を果たしうる。
An object of the present invention is to produce a positive electrode active material by coexisting a highly crystalline phase having a high operating potential and a high energy density and an amorphous phase having a long cycle life. Thus, the cycle characteristics can be improved without lowering the energy density.

【0008】[0008]

【作用】本発明は、正極の活物質中にLiV38など
のバナジウムとリチウムの複合酸化物、またはCu22
7 などのバナジウムと第1遷移金属の複合酸化物の非
晶質相と結晶質相が共存するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention, in the active material of positive electrode, a composite oxide of vanadium and lithium such as LiV 3 O 8, or Cu 2 V 2
An amorphous phase and a crystalline phase of a composite oxide of vanadium such as O 7 and a first transition metal coexist.

【0009】本発明では、結晶化抑制物質を添加して非
結晶相と結晶相が共在するようにできる。該結晶化抑制
物質は、TeO2,GeO2,BaO,PbO,P25
Sb25の少なくとも一種以上を0.1mol%から10mo
l% 添加することができる。
In the present invention, an amorphous phase and a crystalline phase can coexist by adding a crystallization inhibitor. The crystallization inhibitor is TeO 2 , GeO 2 , BaO, PbO, P 2 O 5 ,
0.1 mol% to 10 mol of at least one kind of Sb 2 O 5
l% can be added.

【0010】本発明をさらに詳しく説明する。例えば、
25の場合、結晶相は作動電圧が3.0V 以上と高く
高エネルギ密度を示し、非晶質相は結晶構造が柔構造と
なっているため良好なサイクル特性を示す。このように
正極活物質中に結晶相と非晶質相を共存させることによ
り高エネルギ密度で良好なサイクル特性を示すリチウム
二次電池とすることができる。本発明では、このような
正極用活物質としてバナジウムとリチウムあるいはバ
ナジウムと第1遷移金属の複合酸化物、例えばLiV3
8やCu227などを用いるものである。
The present invention will be described in more detail. For example,
In the case of V 2 O 5 , the crystal phase has a high operating voltage of 3.0 V or higher and has a high energy density, and the amorphous phase has a flexible crystal structure and thus has good cycle characteristics. As described above, by allowing the crystalline phase and the amorphous phase to coexist in the positive electrode active material, a lithium secondary battery having high energy density and good cycle characteristics can be obtained. In the present invention, as such a positive electrode active material , a composite oxide of vanadium and lithium , or vanadium and a first transition metal, for example, LiV 3
O 8 or Cu 2 V 2 O 7 is used.

【0011】リチウム二次電池の正極活物質構造を、結
晶質相と非晶質相の2相が共存する様な正極活物質の作
製方法としてはバナジウム系酸化物では、例えば、P2
5に代表される結晶化抑制剤のようなものの添加が有
効である。即ち、この添加により水中投入方式でなくて
も安定して容易に結晶質相と非晶質相の2相が共存する
正極活物質が得られるようになる。このような目的で添
加される化合物はP25のほかにTeO2,GeO2,B
aO,PbO,Sb25等が挙げられる。添加化合物の
種類と量あるいは溶融温度からの急冷速度により非晶質
相と結晶質相の比率は変化するが、これにより正極活物
質としての特性も変化する。即ち、添加量が少ないと結
晶質相が多くなり高容量を示すもののサイクル特性に問
題を残し、多いと非晶質相の比率が高くなりサイクル特
性は改善されるものの容量的に問題を残してしまう。例
えば、P25の場合は0.1から10.0mol% の範囲が
妥当なところである。さらに光学顕微鏡による組織観察
結果から、非晶質相と結晶質相の比率は結晶質相の多い
方が高エネルギ密度で良好なサイクル特性を示す事も判
っている。
A method for producing a positive electrode active material having a positive electrode active material structure of a lithium secondary battery in which two phases, ie, a crystalline phase and an amorphous phase coexist, is exemplified by a vanadium oxide such as P 2
Addition of a crystallization inhibitor represented by O 5 is effective. That is, this addition makes it possible to stably and easily obtain a positive electrode active material in which two phases of a crystalline phase and an amorphous phase coexist without using a water-injection method. Compounds added for this purpose include TeO 2 , GeO 2 , B in addition to P 2 O 5.
aO, PbO, Sb 2 O 5 and the like. The ratio of the amorphous phase to the crystalline phase changes depending on the type and amount of the additive compound or the quenching rate from the melting temperature, and thereby the characteristics as the positive electrode active material also change. In other words, when the amount is small, the crystalline phase increases and shows a high capacity, but the cycle characteristics remain problematic, and when it is large, the ratio of the amorphous phase increases and the cycle characteristics improve, but the capacity remains problematic. I will. For example, in the case of P 2 O 5 , the range of 0.1 to 10.0 mol% is appropriate. Further, from the results of microstructure observation with an optical microscope, it has been found that the ratio of the amorphous phase to the crystalline phase, which is higher in the crystalline phase, exhibits higher energy density and better cycle characteristics.

【0012】本発明は正極活物質にP25を0.1 から
10.0mol%の範囲で添加し溶融後の冷却速度を抑える
ことで結晶質相と非晶質相の2相が共存する様な正極活
物質を得ようとしたものである。前述の理由から本発明
達成のためには正極活物質の溶融温度からの急冷処理技
術が重要となる。一般に高温の溶融体を急速に冷却して
凝固体を得る方法としては、(A)溶融体を噴霧状にし
て冷却材に吹き付け凝固させる手法、(B)溶融体を冷
却材に挟んで凝固させる手法、(C)溶融体を水中へ投
入して凝固させる手法がある。これら三つの方法のうち
で、C法では水分子が結晶質相および非晶質相のいずれ
の構造をも破壊するため、エネルギ密度および寿命を低
下させる。一方、A,B法では上述のような恐れがない
ため本発明の目的は達成される。添加剤を使用しない場
合には冷却速度の極めて速いA法で結晶質相と非晶質相
とが共存した正極を得ることが可能である。例えば、
極活物質を溶射し、その後、熱処理により一部結晶化さ
せることにより本発明の目的は達成できる。結晶化抑制
剤を用いた場合はB法により結晶質相と非晶質相が共存
した正極活物質を多量に得ることができるため、工業的
にも有効である。このようにして作られた正極活物質を
用いたリチウム二次電池では、電池容量は結晶質相の高
容量値を示すとともに充放電サイクル特性は非晶質相が
持つ優れた可逆性により大幅に改善される。
According to the present invention, two phases of a crystalline phase and an amorphous phase coexist by adding P 2 O 5 to the positive electrode active material in the range of 0.1 to 10.0 mol% and suppressing the cooling rate after melting. It is intended to obtain such a positive electrode active material. For the present invention achieve the foregoing reasons quenching techniques from the melting temperature of the positive electrode active material is important. Generally, as a method of rapidly cooling a high-temperature melt to obtain a solidified body, (A) a method of spraying a molten state into a coolant and spraying and solidifying the same, and (B) a method of solidifying the melt by sandwiching the same between the coolants And (C) a method in which the melt is poured into water and solidified. Among these three methods, in the method C, the water molecules destroy both the crystalline phase and the amorphous phase, so that the energy density and the life are reduced. On the other hand, in the methods A and B, the object of the present invention is achieved because there is no such a fear as described above. When no additive is used, it is possible to obtain a positive electrode in which a crystalline phase and an amorphous phase coexist by the method A in which the cooling rate is extremely high. For example, positive
The object of the present invention can be achieved by spraying a polar active material and then partially crystallizing the material by heat treatment. When a crystallization inhibitor is used, a large amount of a positive electrode active material in which a crystalline phase and an amorphous phase coexist can be obtained by the method B, which is industrially effective. In the lithium secondary battery using the positive electrode active material produced in this way, the battery capacity shows a high capacity value of the crystalline phase, and the charge / discharge cycle characteristics are greatly improved by the excellent reversibility of the amorphous phase. Be improved.

【0013】この正極活物質を用いて正極を形成するに
は、結合剤粉末とアセチレンブラックのような導電性付
与粉末を添加混練し、これをステンレス鋼等でできた支
持体上に塗布して正極として用いた。負極はリチウムが
インサートできる材料、例えば、リチウム−炭素系また
はリチウム金属またはリチウム合金等のどれを用いても
本発明の目的は達成される。
To form a positive electrode using this positive electrode active material, a binder powder and a conductivity-imparting powder such as acetylene black are added and kneaded, and the mixture is coated on a support made of stainless steel or the like. Used as positive electrode. The object of the present invention can be achieved by using any material into which lithium can be inserted, such as lithium-carbon or lithium metal or lithium alloy.

【0014】さらに電解質はプロピレンカーボネート、
2−メチルテトラヒドロフラン、ジオキソレン、テトラ
ヒドロフラン、1,2−ジメトキシエタン、エチレンカ
ーボネート、γ−ブチロラクトン、ジメチルスルホキシ
ド、アセトニトリル、ホルムアミド、ジメチルホルムア
ミド、ニトロメタンなどの一種以上の非プロトン性極性
有機溶媒にLiClO4,LiAlCl4,LiBF4
LiPF6,LiAsF6等のリチウム塩などの溶質を溶
解させた有機電解液またはリチウムイオンを伝導体とす
る固体電解質あるいは溶融塩など、一般にリチウムを負
極活物質として用いた電池で使用される既知の電解質を
用いることができる。
Further, the electrolyte is propylene carbonate,
One or more aprotic polar organic solvents such as 2-methyltetrahydrofuran, dioxolen, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane, and the like may be LiClO 4 , LiAlCl. 4 , LiBF 4 ,
LiPF 6 , an organic electrolyte solution in which a solute such as a lithium salt such as LiAsF 6 is dissolved, or a solid electrolyte or a molten salt using lithium ions as a conductor, such as a known electrolyte generally used in a battery using lithium as a negative electrode active material. An electrolyte can be used.

【0015】また電池の構成上必要に応じて微孔性セパ
レータを用いても本発明の効果は損なわれない。なお、
非晶質相と結晶質相とが共存していることの確認方式と
していろいろな手法が可能であるが、確実な手法として
はX線回折法で結晶質相の存在を、示差熱分析により非
晶質相の存在を確認し得るのでこの2手法を用いて共存
していることを確認できる。また、簡便な方法としては
正極用活物質の光学顕微鏡あるいは透過型電子顕微鏡に
よる組織観察からも容易に確認できる。
The effect of the present invention is not impaired even if a microporous separator is used as required in the structure of the battery. In addition,
Various methods are available for confirming that the amorphous phase and the crystalline phase coexist, but as a reliable method, the presence of the crystalline phase is determined by X-ray diffraction, and the presence of the crystalline phase is determined by differential thermal analysis. Since the presence of the crystalline phase can be confirmed, it can be confirmed that the two phases coexist using these two techniques. In addition, as a simple method, it can be easily confirmed by observing the structure of the positive electrode active material with an optical microscope or a transmission electron microscope.

【0016】[0016]

【実施例】以下に本発明を比較例及び実施例により詳細
に説明する。なお、以下の比較例及び実施例では、評価
セルの作製および測定は総てアルゴン雰囲気中で行っ
た。
The present invention will be described below in detail with reference to comparative examples and examples. In the following comparative examples and examples , all of the production and measurement of the evaluation cell were performed in an argon atmosphere.

【0017】(比較例)表1は本比較例で作製したV2
5正極活物質と結晶化抑制用に添加したP25の量、
およびこの正極活物質を用いて作られたリチウム二次電
池評価セルの特性を示す。
(Comparative Example) Table 1 shows V 2 produced in this comparative example.
O 5 positive electrode active material and the amount of P 2 O 5 added for crystallization suppression,
And the characteristics of a lithium secondary battery evaluation cell made using this positive electrode active material.

【0018】[0018]

【表1】 [Table 1]

【0019】結晶質相と非晶質相が共存した正極の作製
はまず、V25粉末にV25の結晶化抑制物質としての
25を20.0,10.0,5.0,3.0,1.0,0.
1mol% と6通りに変化させて添加混合し1000℃で
溶融、2時間保持した後、常温の黒鉛ブロックの上に流
して急冷凝固させた。これらの凝固体の表面を研磨し光
学顕微鏡により組織観察を行い2相が共存している組織
の有無を調査した。その結果、P25の添加量が0.1
〜10.0mol% の範囲では2相が共存する事が認めら
れた。次にこれら凝固体をアルゴン雰囲気下で粉砕しX
線回折法により回折像により結晶質相はV25からなる
事を確認した。また、熱分析手法により非晶質相の存在
も確認された。評価セルの作製は、得られた正極用活物
質粉末に結合剤粉末としてEPDM(エチレン−プロピ
レン−ジエン共重合体の略称)を4.0wt%,導電性
付与粉末としてアセチレンブラック粉末を9.0wt%
を添加、キシレンを用いて混練し正極用ペーストとして
準備した。次にこれをSUS304製のエキスパンドメ
タル上に塗布し、室温で真空中5.0 時間保持乾燥後、
正極とした。
[0019] Preparation of positive electrode crystalline phase and an amorphous phase coexist first, the P 2 O 5 as crystallization inhibitors of V 2 O 5 to V 2 O 5 powder 20.0,10.0, 5.0, 3.0, 1.0, 0.
The mixture was added and mixed at 1 mol% in 6 ways, melted at 1000 ° C., kept for 2 hours, and then poured on a graphite block at room temperature for rapid solidification. The surface of these solidified bodies was polished, and the structure was observed with an optical microscope to examine the presence or absence of a structure in which two phases coexist. As a result, the amount of P 2 O 5 added was 0.1.
It was recognized that the two phases coexist in the range of mol10.0 mol%. Next, these coagulates were pulverized in an argon atmosphere to
It was confirmed from a diffraction image by a line diffraction method that the crystalline phase was composed of V 2 O 5 . In addition, the presence of an amorphous phase was confirmed by a thermal analysis method. The evaluation cell was prepared by adding 4.0 wt% of EPDM (abbreviation of ethylene-propylene-diene copolymer) as a binder powder and 9.0 wt% of acetylene black powder as a conductivity-imparting powder to the obtained positive electrode active material powder. %
Was added and kneaded using xylene to prepare a positive electrode paste. Next, this was coated on an expanded metal made of SUS304, and dried in a vacuum at room temperature for 5.0 hours.
The positive electrode was used.

【0020】電極の寸法形状は1.5×2.0×0.03c
m の角形板状であり正極は1枚である。本実施例で用い
た負極活物質はLi−Pb−La合金であり、その組成
は原子比で3.5:1.0:0.03 である。これを粉砕
し45μm以下に分級し、正極と同様アセチレンブラッ
ク粉末とEPDMを添加し電極を作製した。使用負極枚
数は2枚であり、これを用いて正極を挟む形で評価セル
を組み立てた。セル容器はアルミニウムのラミネートフ
ィルムを用いて作製した。セパレータにはポリプロピレ
ン製の不織布と微細孔性フィルムを重ねて使用した。電
解液には1.0M濃度のLiPF6 のプロピレン カー
ボネート(PC)と1,2−ジメトキシエタン(DM
E)の混合溶媒溶液を用いた。
The dimensions of the electrodes are 1.5 × 2.0 × 0.03c.
m and a single positive electrode. The negative electrode active material used in this example is a Li-Pb-La alloy, and its composition is 3.5: 1.0: 0.03 in atomic ratio. This was pulverized and classified to 45 μm or less, and acetylene black powder and EPDM were added similarly to the positive electrode to prepare an electrode. The number of negative electrodes used was two, and an evaluation cell was assembled using the two negative electrodes so as to sandwich the positive electrode. The cell container was manufactured using an aluminum laminate film. A nonwoven fabric made of polypropylene and a microporous film were used as a separator. The electrolyte solution was a 1.0 M concentration of LiPF 6 propylene carbonate (PC) and 1,2-dimethoxyethane (DM).
The mixed solvent solution of E) was used.

【0021】充放電サイクル試験は定電流試験とし、電
流密度は1.0mA/cm2 で放電スタート、試験時の充
放電終止電圧は3.5Vと1.5Vとした。本発明の電池
の電池特性評価項目は、電池の作動電圧と電流値の積を
放電時間で積分して得られる1サイクル分の放電エネル
ギ値を活物質1.0kg 当りに換算したエネルギ密度と
し、10サイクル分の平均値よりサイクル初期のエネル
ギ密度を求めた。また正極活物質のエネルギ密度が40
0Wh/kg以下になったときのサイクル数をもってサイ
クル寿命の指標とした。
The charge / discharge cycle test was a constant current test. Discharge was started at a current density of 1.0 mA / cm 2 , and charge / discharge end voltages during the test were 3.5 V and 1.5 V. The battery characteristics evaluation item of the battery of the present invention is defined as an energy density obtained by integrating the product of the operating voltage and the current value of the battery by the discharge time, and the discharge energy value for one cycle obtained by integrating the product with respect to 1.0 kg of the active material. The energy density at the beginning of the cycle was determined from the average value for 10 cycles. The energy density of the positive electrode active material is 40
The number of cycles when it became 0 Wh / kg or less was used as an index of cycle life.

【0022】表1のNo.6のP25の添加量が20.0m
ol%のものではエネルギ密度が400Wh/kg以下になる
までのサイクル回数は302回であり、サイクル寿命に
優れているが、試験初期のエネルギ密度は510Wh/
kgと少ない。これは先にも記したようにX線回折測定で
はっきりとしたV25の回折線が認められないほどに非
晶質化が進行しているためと考えられる。一方、P25
の添加量が0.1 〜10.0mol%の範囲では前記の通り
結晶質相と非晶質相の2相が共存しており、これらの評
価セルの400Wh/kgに達するまでの充放電サイクル
数はいずれの試料も300回前後と良好であり、しかも
充放電サイクル試験初期のエネルギ密度が700Wh/
kg前後と高い値を示す。以上の事から、正極活物質中に
非晶質相と結晶質相とを共存させることにより、結晶質
体の高容量であるという特徴と、非晶質体のサイクル特
性に優れているという特徴の両方を兼ね備えた正極活物
質が得られる。
The amount of P 2 O 5 of No. 6 in Table 1 was 20.0 m.
ol%, the number of cycles until the energy density becomes 400 Wh / kg or less is 302 times, and the cycle life is excellent, but the energy density at the initial stage of the test is 510 Wh / kg.
kg and small. This is considered to be due to the fact that amorphization has progressed to such an extent that no clear diffraction line of V 2 O 5 is observed in the X-ray diffraction measurement as described above. On the other hand, P 2 O 5
In the range of 0.1 to 10.0 mol%, the two phases of the crystalline phase and the amorphous phase coexist as described above, and the charge / discharge cycle until these evaluation cells reach 400 Wh / kg. The number of samples was as good as about 300 times, and the energy density at the initial stage of the charge / discharge cycle test was 700 Wh /
It shows a high value of around kg. From the above, by coexisting the amorphous phase and the crystalline phase in the positive electrode active material, the characteristic that the crystalline material has a high capacity and the characteristic that the amorphous material has excellent cycle characteristics Thus, a positive electrode active material having both of the above is obtained.

【0023】(実施例)表2に本実施例で作製したL
iV38正極活物質と結晶化抑制用に添加したP25
量、およびこの正極活物質を用いて作られたリチウム二
次電池評価セルの特性を示した。
(Embodiment 1 ) Table 2 shows the Ls produced in this embodiment.
The amount of iV 3 O 8 positive electrode active material and the amount of P 2 O 5 added for suppressing crystallization, and the characteristics of a lithium secondary battery evaluation cell made using this positive electrode active material were shown.

【0024】[0024]

【表2】 [Table 2]

【0025】結晶質相と非晶質相が共存した正極の作製
法は比較例と同様である。得られた凝固体の組織観察も
比較例と同様である。その結果P25の添加量が0.1
〜10.0mol%の範囲では2相が共存している組織を呈
していた。さらに結晶質相はLiV38からなる事を確
認した。また、熱分析手法により非晶質相の存在も確認
された。評価セルの作製法や作製電池の特性評価などは
比較例と同様である。
The method for producing a positive electrode in which a crystalline phase and an amorphous phase coexist is the same as in the comparative example . Observation of the structure of the obtained solidified body
It is the same as the comparative example . As a result, the amount of P 2 O 5 added was 0.1.
In the range of 10.0 mol%, a structure in which two phases coexist was exhibited. Further, it was confirmed that the crystalline phase was composed of LiV 3 O 8 . In addition, the presence of an amorphous phase was confirmed by a thermal analysis method. How to make the evaluation cell and the evaluation of the characteristics of the manufactured battery
It is the same as the comparative example .

【0026】表2のNo.6の正極活物質より作られた評
価セル試験においてエネルギ密度が400Wh/kg以
下になるまでのサイクル回数は350回であり、サイク
ル寿命に優れているが、試験初期のエネルギ密度は42
0Wh/kgと少ない。一方、P25の添加量が0.1
〜10.0mol% の範囲では、前記の通り結晶質相と非
晶質相が共存する。この充放電サイクル試験結果はいず
れの試料も300回以上と良好な値を示し、しかも充放
電サイクル試験初期のエネルギ密度が700Wh/kg
前後と高い値を示す。実施例1で得られた特性は初期エ
ネルギ密度は比較例と同等であるが、サイクル寿命は比
較例に比べて優れていることが表1と表2を比較するこ
とによりわかる。
In the evaluation cell test made of the positive electrode active material of No. 6 in Table 2, the number of cycles until the energy density becomes 400 Wh / kg or less is 350 times, and the cycle life is excellent. Has an energy density of 42
It is as small as 0 Wh / kg. On the other hand, when the added amount of P 2 O 5 is 0.1
As described above, the crystalline phase and the amorphous phase coexist in the range of mol10.0 mol%. The charge / discharge cycle test results show that all the samples show good values of 300 times or more, and the energy density at the initial stage of the charge / discharge cycle test is 700 Wh / kg.
It shows high values before and after. The characteristics obtained in Example 1
The energy density is the same as the comparative example, but the cycle life is
Compare Tables 1 and 2 with the fact that it is superior to the comparative example.
It can be understood by:

【0027】(実施例)表3に本実施例で作製したC
227 正極活物質と結晶化抑制用に添加したP25
の量、およびこの正極活物質を用いて作られたリチウム
二次電池評価セルの特性を示した。
(Example 2 ) Table 3 shows that C prepared in this example was used.
u 2 V 2 O 7 Positive electrode active material and P 2 O 5 added for crystallization suppression
And the characteristics of a lithium secondary battery evaluation cell made using this positive electrode active material.

【0028】[0028]

【表3】 [Table 3]

【0029】結晶質相と非晶質相が共存した正極の作製
法は比較例と同様に、Cu227粉末に結晶化抑制物
質としてのP25を20.0,10.0,5.0,3.0,
1.0,0.1mol%と6通りに変化させて添加混合して
調製した。得られた凝固体の組織観察、X線回折、およ
び熱分析によりP25の添加量が0.1〜10.0mol%
の範囲では2相が共存した組織であること、結晶質相は
Cu227 からなること、さらに非晶質相が存在して
いることを確認した。評価セルの作製法や特性評価法な
どは比較例と同様である。
As in the comparative example , a positive electrode having both a crystalline phase and an amorphous phase was prepared by adding P 2 O 5 as a crystallization inhibiting substance to Cu 2 V 2 O 7 powder at 20.0 and 10. 0, 5.0, 3.0,
It was prepared by adding and mixing 1.0 and 0.1 mol% in 6 ways. According to the structure observation, X-ray diffraction, and thermal analysis of the obtained solidified body, the added amount of P 2 O 5 was 0.1 to 10.0 mol%.
In the range, it was confirmed that the two phases coexisted, that the crystalline phase was composed of Cu 2 V 2 O 7, and that an amorphous phase was present. The method for producing the evaluation cell and the method for evaluating the characteristics are the same as those in the comparative example .

【0030】表3から、No.6を正極活物質にして作ら
れた評価セルの試験においてエネルギ密度が400Wh
/kg以下になるまでのサイクル回数は250回であり、
サイクル寿命に優れているが、試験初期のエネルギ密度
は540Wh/kgと少ない。一方、P25の添加量が
0.1〜10.0mol% の範囲では、前記の通り結晶質相
と非晶質相の2相が共存する。この充放電サイクル試験
結果はいずれの試料も200回前後と、結晶相だけの結
果の50回に比較して良好な値を示し、しかも充放電サ
イクル試験初期のエネルギ密度が820Wh/kg以上と
高い値を示した。
As shown in Table 3, in the test of the evaluation cell made using No. 6 as the positive electrode active material, the energy density was 400 Wh.
/ Kg or less is 250 cycles,
Although excellent in cycle life, the initial energy density of the test is as low as 540 Wh / kg. On the other hand, when the added amount of P 2 O 5 is in the range of 0.1 to 10.0 mol%, two phases, a crystalline phase and an amorphous phase, coexist as described above. The results of this charge / discharge cycle test were about 200 times for all the samples, and a good value as compared with 50 times of the result of only the crystal phase, and the energy density at the initial stage of the charge / discharge cycle test was as high as 820 Wh / kg or more. The value was shown.

【0031】実施例2で得られた特性はサイクル寿命は
比較例と同等以下であるが、初期エネルギ密度が優れて
いることが表1と表3を比較することによりわかる。
The characteristics obtained in Example 2 are as follows.
Less than or equal to Comparative Example, but excellent in initial energy density
It can be seen by comparing Table 1 and Table 3.

【0032】[0032]

【0033】[0033]

【0034】[0034]

【0035】[0035]

【発明の効果】本発明の電池によれば充放電容量の大き
い高エネルギ密度でサイクル寿命の長い優れたリチウム
二次電池を構成することができる。
According to the battery of the present invention, an excellent lithium secondary battery having a large charge / discharge capacity, a high energy density and a long cycle life can be constituted.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水本 守 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平1−128355(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 4/48 - 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mamoru Mizumoto 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. No. 1 Hitachi, Ltd. Hitachi Research Laboratory (56) References JP-A-1-128355 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02 H01M 4/48 -4/58 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム金属、リチウム合金、もしくはリ
チウムをインターカレートできる炭素系材料からなる負
極と正極、及び非水電解液を主たる構成要素とし、前記
正極の活物質中にバナジウムとリチウムの複合酸化物の
非晶質相と結晶質相が共存することを特徴とするリチウ
ム二次電池。
1. A negative electrode and a positive electrode comprising lithium metal, a lithium alloy, or a carbon-based material capable of intercalating lithium, and a nonaqueous electrolyte as main constituents, and a composite of vanadium and lithium in an active material of the positive electrode. A lithium secondary battery characterized in that an amorphous phase and a crystalline phase of an oxide coexist.
【請求項2】リチウム金属、リチウム合金、もしくはリ
チウムをインターカレートできる炭素系材料からなる負
極と正極、及び非水電解液を主たる構成要素とし、前記
正極の活物質中にバナジウムと第1遷移金属の複合酸化
物の非晶質相と結晶質相が共存することを特徴とする
チウム二次電池。
2. A lithium metal, a lithium alloy, or a lithium alloy.
A carbon-based material that can intercalate titanium
The main components of the electrode and the positive electrode, and a non-aqueous electrolyte,
Complex oxidation of vanadium and first transition metal in active material of positive electrode
A lithium secondary battery , wherein an amorphous phase and a crystalline phase of a material coexist .
JP6215561A 1994-09-09 1994-09-09 Lithium secondary battery Expired - Fee Related JP2973830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215561A JP2973830B2 (en) 1994-09-09 1994-09-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215561A JP2973830B2 (en) 1994-09-09 1994-09-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0883606A JPH0883606A (en) 1996-03-26
JP2973830B2 true JP2973830B2 (en) 1999-11-08

Family

ID=16674472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215561A Expired - Fee Related JP2973830B2 (en) 1994-09-09 1994-09-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2973830B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270904A2 (en) 2009-07-02 2011-01-05 Hitachi Powdered Metals Co., Ltd. Electroconductive material and positive electrode material for lithium ion secondary battery using the same
CN102386407A (en) * 2011-11-02 2012-03-21 中南大学 Method for preparing anode material lithium vanadium phosphate by adopting quenching
KR20130004491A (en) 2010-03-31 2013-01-10 가부시키가이샤 히타치세이사쿠쇼 Positive electrode active material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423168B2 (en) * 1996-11-20 2003-07-07 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP5324731B2 (en) * 2001-07-31 2013-10-23 三井造船株式会社 Method for producing secondary battery positive electrode material and secondary battery
EP2081242A4 (en) * 2006-11-10 2011-11-30 Fuji Heavy Ind Ltd Electrode material, electrode material manufacturing method and nonaqueous lithium secondary battery
JP2011029151A (en) * 2009-07-02 2011-02-10 Fuji Heavy Ind Ltd Electrode material and lithium ion secondary battery
JP2012134082A (en) * 2010-12-24 2012-07-12 Hitachi Ltd Cathode active material for secondary battery and magnesium secondary battery using the same
KR20130018435A (en) * 2011-07-19 2013-02-22 가부시키가이샤 히타치세이사쿠쇼 Ionic rechargeable battery electrode, method for manufacturing thereof, and lithium and magnesium ion rechargeable batteries
EP4333091A3 (en) * 2022-08-31 2024-03-20 LG Energy Solution, Ltd. Negative electrode including lithium-lanthanum alloy and lithium ion secondary battery including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128355A (en) * 1987-11-11 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous solvent cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270904A2 (en) 2009-07-02 2011-01-05 Hitachi Powdered Metals Co., Ltd. Electroconductive material and positive electrode material for lithium ion secondary battery using the same
JP2011014373A (en) * 2009-07-02 2011-01-20 Hitachi Powdered Metals Co Ltd Conductive material and positive electrode material for lithium ion secondary battery using the same
US8337723B2 (en) 2009-07-02 2012-12-25 Hitachi Powdered Metals Co., Ltd. Electroconductive material and positive electrode material for lithium ion secondary battery using the same
KR20130004491A (en) 2010-03-31 2013-01-10 가부시키가이샤 히타치세이사쿠쇼 Positive electrode active material
KR101711525B1 (en) 2010-03-31 2017-03-02 가부시키가이샤 히타치세이사쿠쇼 Positive electrode active material
CN102386407A (en) * 2011-11-02 2012-03-21 中南大学 Method for preparing anode material lithium vanadium phosphate by adopting quenching

Also Published As

Publication number Publication date
JPH0883606A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
CN102077405B (en) Non-aqueous electrolyte for a high-voltage lithium battery
JP4151060B2 (en) Non-aqueous secondary battery
JP4727784B2 (en) Lithium secondary battery
JP4948025B2 (en) Non-aqueous secondary battery
JP4804686B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP4149815B2 (en) Nonionic surfactant-containing electrolyte and lithium ion battery using the same
JPH0997627A (en) Nonaqueous electrolyte and lithium secondary battery
JPH10302770A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
JP2973830B2 (en) Lithium secondary battery
JP2000106211A (en) Electrolytic solution for lithium secondary battery and lithium battery using the solution
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH0878052A (en) Lithium secondary battery
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4086444B2 (en) Lithium secondary battery
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JPH087886A (en) Nonaquoeus electrolytic secondary battery and manufacture thereof
KR20050062395A (en) Non-aqueous electrolytic secondary battery
JP2021525449A (en) Positive electrode active material for lithium secondary batteries and lithium secondary batteries
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP3825571B2 (en) Non-aqueous electrolyte battery
JPH1154150A (en) Secondary battery having nonaqueous solvent electrolyte
JP2000058043A (en) Lithium secondary battery
KR100312689B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees