JP2968709B2 - Control method of fluidized bed refuse incinerator - Google Patents

Control method of fluidized bed refuse incinerator

Info

Publication number
JP2968709B2
JP2968709B2 JP23374695A JP23374695A JP2968709B2 JP 2968709 B2 JP2968709 B2 JP 2968709B2 JP 23374695 A JP23374695 A JP 23374695A JP 23374695 A JP23374695 A JP 23374695A JP 2968709 B2 JP2968709 B2 JP 2968709B2
Authority
JP
Japan
Prior art keywords
amount
primary air
steam
steam generation
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23374695A
Other languages
Japanese (ja)
Other versions
JPH0979554A (en
Inventor
章 北村
万希志 中山
知幸 前田
信行 友近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23374695A priority Critical patent/JP2968709B2/en
Publication of JPH0979554A publication Critical patent/JPH0979554A/en
Application granted granted Critical
Publication of JP2968709B2 publication Critical patent/JP2968709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,流動床式ごみ焼却
炉の制御方法に係り,詳しくは一次空気の吹込みにより
流動化された砂層内でごみを燃焼させ,その廃熱による
発生蒸気を上記砂層内に循環させて加熱する流動床式ご
み焼却炉の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a fluidized-bed refuse incinerator, and more particularly, to burning refuse in a sand bed fluidized by blowing primary air and generating steam generated by waste heat. The present invention relates to a method for controlling a fluidized-bed refuse incinerator that circulates and heats in the sand layer.

【0002】[0002]

【従来の技術】廃熱ボイラを備えたごみ焼却炉におい
て,蒸気発生量を目標値に安定に制御するには,燃焼現
象をモデルで計算し,予測手段による制御を施す必要が
ある。このため,ストーカ炉を対象として燃焼現象をモ
デル化し,多変数最適制御を行うことを特徴とする燃焼
制御方法が提案されている(特告平3−1575号公
報)。ここでは,内部循環型のエネルギ回収炉におけ
る,ごみの燃焼から内部循環後の蒸気エネルギ回収まで
の系が複雑であり,強い非線形性や,外乱の影響が大き
いことに鑑みて燃焼現象を次系列モデルで表現し,多変
数制御によって蒸気発生量を制御する。
2. Description of the Related Art In a refuse incinerator equipped with a waste heat boiler, in order to stably control the amount of generated steam to a target value, it is necessary to calculate a combustion phenomenon by a model and to perform control by predicting means. For this reason, a combustion control method has been proposed in which a combustion phenomenon is modeled for a stoker furnace and multivariable optimal control is performed (Japanese Patent Publication No. 3-1575). Here, in the internal circulation type energy recovery furnace, the system from the combustion of waste to the recovery of steam energy after internal circulation is complicated, and the combustion phenomena are considered in the next series in view of the strong nonlinearity and the large influence of disturbance. It is expressed by a model, and the amount of steam generated is controlled by multivariable control.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記した
ような従来の燃焼制御方法では,瞬間的な燃焼が特徴で
ある流動床式ごみ焼却炉での流動床式ごみ燃焼炉と廃熱
ボイラによる燃焼から蒸気発生までに見られるむだ時間
に対応できない。また,炉の立ち上げやシャットダウン
時,あるいは,ごみ切れ時のごみ投入量計画変更時にお
ける制御目標値の変化にも十分に対応できない。本発明
は,上記事情に鑑みてなされたものであり,その目的と
するところは,燃焼から蒸気発生までにみられるむだ時
間に対応でき,炉の立ち上げやシャットダウン時,ある
いは,ごみ切れ時のごみ投入量計画変更時における制御
目標値の変化に十分に追従し,蒸気発生量を目標値に安
定に制御することのできる流動床式ごみ焼却炉の制御方
法を提供するものである。
However, in the conventional combustion control method as described above, the instantaneous combustion is characterized by a fluidized-bed refuse incinerator in a fluidized-bed refuse incinerator and a combustion by a waste heat boiler. Inability to cope with the dead time seen before steam generation. Further, it is not possible to sufficiently cope with a change in the control target value when the furnace is started up or shut down, or when the waste input plan is changed when the waste is exhausted. The present invention has been made in view of the above circumstances, and its purpose is to cope with the dead time seen from combustion to generation of steam, when starting up or shutting down a furnace, or when exhausting waste. An object of the present invention is to provide a control method of a fluidized bed refuse incinerator which can sufficiently follow a change of a control target value when a refuse input plan is changed and can stably control a steam generation amount to a target value.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,一次空気の吹込みにより流動化された砂層
内でごみを燃焼させ,その廃熱による発生蒸気を上記砂
層内に循環させて加熱する流動床式ごみ焼却炉の制御方
法において,直前の時点までの一次空気の吹込み量の実
測値を,予め用意された一次空気の吹込み量と蒸気発生
量との関係を表すモデルに代入することにより,現時点
での蒸気発生量を演算し,現時点での蒸気発生量の実測
値に対する上記演算値の誤差と,所望の蒸気発生軌道
と,過去の一次空気の総吹込み量とに基づいて予測制御
手法により,現時点での一次空気の吹込み量を決定して
なることを特徴とする流動床式ごみ焼却炉の制御方法と
して構成されている。さらには,上記モデルを,
In order to achieve the above object, the present invention provides a method for burning waste in a sand layer fluidized by blowing primary air, and circulating steam generated by waste heat in the sand layer. In the control method of a fluidized-bed incinerator, which heats by heating, the measured value of the amount of primary air blown up to the immediately preceding point is expressed as the relationship between the amount of primary air blown and steam generated in advance. By substituting into the model, the current steam generation amount is calculated, and the error of the calculated value with respect to the actual measurement value of the current steam generation amount, the desired steam generation trajectory, and the past primary air total blowing amount Based on the above, a predictive control method is used to determine the amount of primary air blown at the present time, so as to control the fluidized bed incinerator. Furthermore, the above model is

【数3】 ここに, k:時点 y:蒸気発生量 u:一次空気の吹込み量 g:重み係数 N:定数 とした流動床式ごみ焼却炉の制御方法である。(Equation 3) Here, k: time point y: steam generation amount u: primary air blowing amount g: weighting factor N: constant This is a method of controlling a fluidized bed incinerator.

【0005】さらには,上記予測制御手法が,Further, the above-mentioned predictive control method is

【数4】 ここに, k:時点 u:一次空気の吹込み量 yd :所望の蒸気発生量 y:蒸気発生量の実測値 yM :蒸気発生量の演算値 γ,δ:重み係数 N,P:定数 τ:むだ時間 により表わされる流動床式ごみ焼却炉の制御方法であ
る。
(Equation 4) Where: k: time point u: amount of primary air blown y d : desired amount of steam generated y: actual measured value of steam generated y M : calculated value of steam generated γ, δ: weighting factor N, P: constant τ: A control method for a fluidized bed refuse incinerator expressed by dead time.

【0006】[0006]

【発明の実施の形態】およびDETAILED DESCRIPTION OF THE INVENTION AND

【実施例】以下添付図面を参照して,本発明の実施の形
態および実施例につき説明し,本発明の理解に供する。
尚,以下の実施の形態および実施例は,本発明を具体化
した一例であって,本発明の技術的範囲を限定する性格
のものではない。ここに,図1は本発明の実施の形態お
よび実施例に係る流動床式ごみ焼却炉の制御方法の概略
構成を示すブロック図,図2は上記制御方法を適用可能
な流動床式ごみ焼却炉廻りの概略構成を示す模式図,図
3は流動床式ごみ焼却炉の動作手順を示すフロー図,図
4は希望の蒸気発生軌道の設定方法を示す説明図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention.
The following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a block diagram showing a schematic configuration of a control method of a fluidized bed refuse incinerator according to an embodiment and an example of the present invention, and FIG. 2 is a fluidized bed refuse incinerator to which the above control method can be applied. FIG. 3 is a schematic diagram showing a schematic configuration of the surroundings, FIG. 3 is a flowchart showing an operation procedure of a fluidized bed incinerator, and FIG. 4 is an explanatory diagram showing a method for setting a desired steam generation trajectory.

【0007】図1に示すごとく,本実施の形態および実
施例に係る流動床式ごみ焼却炉の制御方法は,一次空気
の吹込みにより流動化された砂層内でごみを燃焼させ,
その廃熱による発生蒸気を上記砂層内に循環させて加熱
する流動床式ごみ焼却炉である実プロセスAの制御方法
であって,直前の時点までの一次空気の吹込み量の実測
値を,予め用意された一次空気の吹込み量と蒸気発生量
との関係を表すモデルMに代入することにより,現時点
での蒸気発生量yM (k)を演算し,現時点での蒸気発
生量の実測値y(k)に対する上記演算値yM (k)の
誤差Δyと,所望の蒸気発生軌道yd (τ+k+L)
と,過去の一次空気の総吹込み量Σu(k−j)とに基
づいて予測制御手法により,現時点での一次空気の吹込
み量u(k)を決定する方法である。以下,この方法を
適用可能な流動床式ごみ焼却炉について,その具体的な
構造を図2を参照して説明する。図2において,ごみは
ホッパ1へ投入され砂層2に落下する。砂層2では,弁
3を操作することによって一次空気4が送り込まれ,砂
が流動すると共に,投入されたごみが砂層2内で燃焼す
る。炉内で発生したガスはフリーボード5から排ガス出
口6を通過し,廃熱ボイラ7に送り込まれる。廃熱ボイ
ラ7では,排ガスの熱エネルギ(熱量)が水蒸気に変換
される。この水蒸気は,さらに砂層2内を循環するパイ
プ8を通過して加熱され,スーパーヒートされた蒸気9
として回収される。その蒸気量は,蒸気量センサ10に
よって計測される。
As shown in FIG. 1, a method for controlling a fluidized-bed refuse incinerator according to the present embodiment and an example involves burning refuse in a sand layer fluidized by blowing primary air.
This is a control method of an actual process A, which is a fluidized-bed incinerator for circulating and heating steam generated by the waste heat in the sand layer. By substituting into a model M representing the relationship between the amount of primary air blown and the amount of generated steam prepared in advance, the current amount of generated steam y M (k) is calculated, and the actual measurement of the amount of currently generated steam is performed. The error Δy of the calculated value y M (k) with respect to the value y (k) and the desired steam generation trajectory y d (τ + k + L)
This is a method of determining the current primary air blowing amount u (k) by a predictive control method based on the past and the total primary air blowing amount Σu (k−j). Hereinafter, a specific structure of a fluidized bed incinerator to which this method can be applied will be described with reference to FIG. In FIG. 2, the refuse is thrown into the hopper 1 and falls into the sand layer 2. In the sand layer 2, the primary air 4 is sent by operating the valve 3, so that the sand flows and the injected dust burns in the sand layer 2. The gas generated in the furnace passes through the exhaust gas outlet 6 from the free board 5 and is sent to the waste heat boiler 7. In the waste heat boiler 7, the heat energy (heat amount) of the exhaust gas is converted into steam. This water vapor is further heated by passing through a pipe 8 circulating in the sand layer 2 and superheated steam 9
Will be collected as The steam amount is measured by the steam amount sensor 10.

【0008】ここでの蒸気発生プロセスは,インパルス
応答モデルとして,一般に次のようなモデルで表現され
る。
The steam generation process here is generally expressed as an impulse response model by the following model.

【数5】 ここに,kはサンプル時点,yは蒸気発生量,uは一次
空気量の操作入力(一次空気の吹込み量に相当),gは
インパルス応答の重み係数,Nは近似の次数を表す定数
である。ここで,予測制御手法による蒸気発生量の制御
方法について,文献(西谷;プロセス制御系の設計,シ
ステムと制御,vol.30,No.1,pp.16〜
25,1986)に基づいて説明する。
(Equation 5) Here, k is the sampling time, y is the amount of generated steam, u is the operation input of the amount of primary air (corresponding to the amount of blowing of primary air), g is the weighting factor of the impulse response, and N is a constant representing the approximate order. is there. Here, a method of controlling the amount of steam generated by the predictive control method is described in the literature (Nishitani; Design of Process Control System, System and Control, vol. 30, No. 1, pp. 16-
25, 1986).

【0009】この予測制御手法においては,上記(1)
式をもとに,現時点をkとしてk+Pの時点(P:定
数)に至るまで,蒸気発生量の目標軌道{yS (k+
L),L=1,…,P}に漸近する希望の蒸気発生量の
軌道(所望の蒸気発生軌道に相当){yd (k+L),
L=1,…,P}を与える。次に,上記(1)式で与え
られる蒸気発生量の軌道{y(k+L|k),L=1,
…,P}ができるだけ希望の蒸気発生量の軌道に一致す
るように,一次空気量の操作入力列{u(k),u(k
+1),…,u(k+P−1)}を決定する。このよう
な問題は,以下に示す最適化問題として定式化される。
In this predictive control method, the above (1)
Based on the equation, the target trajectory {y S (k +
L), L = 1,..., P} orbit of the desired steam generation amount (corresponding to the desired steam generation trajectory) {y d (k + L),
L = 1,..., P}. Next, the trajectory {y (k + L | k) of the steam generation amount given by the above equation (1), L = 1,
, P} match the trajectory of the desired steam generation amount as much as possible so that the operation input sequence {u (k), u (k) of the primary air amount
+1),..., U (k + P-1)}. Such a problem is formulated as an optimization problem described below.

【数6】 上記(2),(3)式のもとに,次式で与えられる評価
関数を最小にする一次空気量の操作入力の列{u
(k),u(k+1),…,u(k+P−1)}を決定
する。
(Equation 6) Based on the above equations (2) and (3), a sequence {u} of operation inputs of the primary air amount that minimizes the evaluation function given by the following equation
(K), u (k + 1),..., U (k + P−1)}.

【0010】[0010]

【数7】 ここに,y(τ+k+L|k),d(τ+k+L|k)
は,サンプル時点kからみたサンプル時点(τ+k+
L)での蒸気発生量の予測値と外乱の予測値とを表す。
また,yM (τ+k+L),yd (τ+k+L)は,サ
ンプル時点(τ+k+L)でのモデルMの出力値と希望
の蒸気発生量の値とを表す。αL ,βL は,それぞれ出
力誤差と入力に対する重み係数である。上記問題は,最
小二乗問題として解かれ,次のように一次空気の操作量
u(k)が導出される。
(Equation 7) Where y (τ + k + L | k), d (τ + k + L | k)
Is the sample time (τ + k +
L) represents the predicted value of the steam generation amount and the predicted value of the disturbance.
Further, y M (τ + k + L) and y d (τ + k + L) represent the output value of the model M and the value of the desired steam generation amount at the sampling time (τ + k + L). α L and β L are weighting factors for the output error and the input, respectively. The above problem is solved as a least squares problem, and the manipulated variable u (k) of the primary air is derived as follows.

【0011】[0011]

【数8】 ここに,γj ,δL は最小二乗解を導出する際に計算さ
れる係数であって,重み係数gi の値で構成される。次
に,図3(及び図2)を参照して流動床式ごみ焼却炉の
制御系統の概要とその動作とをステップS1,S2,…
順に説明する。制御周期毎のオンライン制御に先立ち,
あるいは,オンライン制御中に以下の手順で各パラメー
タの設定計算を行う。 ステップS1:ごみ投入量計画機能処理部11により,
炉の立ち上げやシャットダウン時,あるいは,ごみ切れ
時のごみ投入量計画変更を含めた処理計画を設定する。
(Equation 8) Here, gamma j, [delta] L is a coefficient that is calculated in deriving the least squares solution, that contains the values of the weighting factors g i. Next, referring to FIG. 3 (and FIG. 2), the outline of the control system of the fluidized bed incinerator and the operation thereof will be described in steps S1, S2,.
It will be described in order. Prior to online control for each control cycle,
Alternatively, the setting of each parameter is calculated in the following procedure during online control. Step S1: The waste input planning function processing unit 11
Set up a treatment plan that includes a change in the waste input plan when starting up or shutting down the furnace or when the waste runs out.

【0012】ステップS2:蒸気発生量の目標値の設定
機能処理部12により,上記ごみ投入量計画に応じた蒸
気発生量の目標軌道yS を設定する。 ステップS3:希望の蒸気発生量の設定機能処理部13
により,上記目標軌道yS に対応して希望の蒸気発生量
の軌道yd を設定する。ここで上記ステップS3におけ
る希望の蒸気発生量の軌道{yd (k+L),L=1,
…,P}の設定方法について図4を参照して説明する。
ごみ焼却計画に基づいて,蒸気発生量の目標軌道{yS
(k+L),L=1,…,P}が与えられている。一
方,時点kでの蒸気発生量の実測値y(k)が得られて
いる。時点kから時点(k+P)までは予測されている
ことを考慮し,時点(k+q)で蒸気発生量の実測値y
(k+q)を目標値yS (k+q)に到達させることを
考える。ただし,0<q<Pとする必要がある。
Step S2: Set target value of steam generation amount The target processing unit 12 sets the target trajectory y S of the steam generation amount according to the above-mentioned waste input plan. Step S3: Desired steam generation amount setting function processing unit 13
Accordingly, setting the trajectory y d of the steam generation amount of desired corresponding to the desired trajectory y S. Here, the trajectory {y d (k + L), L = 1, of the desired steam generation amount in the above step S3
, P} will be described with reference to FIG.
Based on the waste incineration plan, the target trajectory of steam generation {y S
(K + L), L = 1,..., P}. On the other hand, the actual measured value y (k) of the steam generation amount at the time point k is obtained. Considering that the prediction is made from the time point k to the time point (k + P), the actual measured value y of the steam generation amount at the time point (k + q)
Consider that (k + q) reaches the target value y S (k + q). However, it is necessary to satisfy 0 <q <P.

【0013】そこで,希望の蒸気発生量の軌道yd とし
て,時点kから時点(k+q)までの間では,蒸気発生
量の実測値y(k)と目標軌道yS (k+q)とを結ん
だ直線L1 とし,時点(k+q)から時点(k+P)ま
での間では,目標軌道yS の一部L2 を用いる。 ステップS4:制御係数の計算機能処理部14により,
上記(1)式の重み係数gi で構成される係数γj ,δ
L を計算する。 ステップS5:一次空気の操作量の計算機能処理部15
により,制御周期毎に一次空気の操作量u(k)を計算
し,その値に応じて一次空気制御用の弁3を操作する。
ここで,上記ステップS5における一次空気の操作量の
計算機能について,その処理手順を図3(及び図1)を
参照してステップS11,S12,…順に詳述すると共
に,上記(5)式の意味についても説明する。
[0013] Therefore, as a track y d of the steam generation amount desired, in the period from time k to time (k + q), connecting the measured value of the steam generation amount y (k) and a target trajectory y S (k + q) a straight line L 1, in the period from time point (k + q) to time (k + P), using a portion of the target trajectory y S L 2. Step S4: The control coefficient calculation function processing unit 14
Coefficients γ j , δ composed of weight coefficients g i in the above equation (1)
Calculate L. Step S5: Primary air manipulated variable calculation function processing unit 15
Thus, the operation amount u (k) of the primary air is calculated for each control cycle, and the primary air control valve 3 is operated according to the calculated value.
Here, the processing procedure of the calculation function of the manipulated variable of the primary air in step S5 will be described in detail in the order of steps S11, S12,... With reference to FIG. 3 (and FIG. 1). The meaning is also explained.

【0014】ステップS11:蒸気量センサ10により
現時点kでの蒸気発生量の実測値y(k)と上記(1)
式で計算されるモデルMの出力値yM (k)との誤差Δ
yを計算する。これにより,時点kでのモデルMの誤差
を推定したことになる。 ステップS12:むだ時間τを考慮した希望の蒸気発生
量の軌道yd (τ+k+L)から得られる蒸気発生量の
値と誤差Δyとの差を求め,制御係数δL を乗じて重ね
合わせることにより,軌道yd (τ+k+L)をk時点
でのモデル化誤差Δyで修正し,P時点先までの将来を
予測した一次空気の操作量u1 を求める。 ステップS13:一方,過去の入力u(k−j)に制御
係数γj を乗じて重ね合わせることにより,過去の入力
情報からみた一次空気の操作量u2 を求める。 ステップS14:操作量u1 と−u2 とを加えることに
より,上記(4)式の評価関数を最小にする意味で最適
な一次空気の操作量u(k)を求める。 ステップS15:上記ステップS11〜S14のループ
を制御周期毎に繰返し,一次空気量を操作することによ
って蒸気発生量を制御する。
Step S11: The actually measured value y (k) of the amount of steam generated at the present time k by the steam amount sensor 10 and the above (1)
Error Δ from output value y M (k) of model M calculated by equation
Calculate y. This means that the error of the model M at the time point k has been estimated. Step S12: The difference between the value of the steam generation amount obtained from the trajectory y d (τ + k + L) of the desired steam generation amount taking the dead time τ into consideration and the error Δy is obtained, and the difference is multiplied by the control coefficient δ L to be superimposed. The trajectory y d (τ + k + L) is corrected by the modeling error Δy at the time point k, and the manipulated variable u 1 of the primary air that predicts the future up to the time point P is obtained. Step S13: On the other hand, by superposing by multiplying the control coefficients gamma j past input u (k-j), obtains the operation amount u 2 of primary air as seen from past input information. Step S14: By adding the operation amount u 1 and -u 2, above (4) determine the optimum primary air of the manipulated variable u (k) in the sense of minimizing the evaluation function of the equation. Step S15: The loop of steps S11 to S14 is repeated for each control cycle, and the amount of generated steam is controlled by manipulating the amount of primary air.

【0015】本制御方法の特徴を以下に示す。 (1)流動床式のごみ焼却炉では,瞬間的な燃焼が特徴
であり,蒸気発生量の制御に対して外乱となっている。
本方法では,上記(2)式で外乱を考慮していることか
ら,外乱に対してロバストになっている。 (2)内部循環型のエネルギ回収炉では,蒸気発生から
砂層内でのエネルギ回収に至るまでの熱流の移動距離が
長いため制御のむだ時間が発生する。本方法では,むだ
時間τを考慮しており,このため安定な蒸気発生量の制
御が達成できる。 (3)本方法では,炉の立ち上げやシャットダウン時,
あるいは,ごみ切れ時には,ごみ投入量計画変更時にと
もない,蒸気発生量の目標値yS を変化させる。投入量
計画の変更は,予定されたスケジュールで行うことか
ら,これに伴ない目標値yS の軌道{yS (k+L),
L=1…,P}を設定することができる。本方法では,
目標値の軌道yS の変化を予め知った上で,希望の蒸気
発生量の軌道{yd (k+L),L=1…,P}を与え
る。このことにより,ごみ投入量計画変更時において
も,安定した蒸気発生量の制御が可能となる。また,軌
道の設定を調整することにより,蒸気発生量の制御の応
答性を調整することができる。すなわち,時点qをq<
Pの範囲で大きく設定すると,制御の安定性が重視され
る。一方時点qをq<Pの範囲で小さく設定すると,制
御の即応性が重視される。蒸気発生量の制御では,制御
の安定性がより重視されることから,時点qを大きく設
定することが有効である。
The features of the control method are as follows. (1) Fluid-bed refuse incinerators are characterized by instantaneous combustion, which is a disturbance to the control of the amount of generated steam.
In this method, since the disturbance is considered in the above equation (2), the method is robust against the disturbance. (2) In the internal circulation type energy recovery furnace, a control dead time is generated due to a long moving distance of the heat flow from generation of steam to recovery of energy in the sand layer. In the present method, the dead time τ is taken into account, so that stable control of the amount of generated steam can be achieved. (3) In this method, when starting up or shutting down the furnace,
Alternatively, when the waste is exhausted, the target value y S of the steam generation amount is changed at the time of changing the waste input plan. Since the change of the input amount plan is performed according to the scheduled schedule, the trajectory of the target value y S {y S (k + L),
L = 1..., P} can be set. In this method,
The trajectory {y d (k + L), L = 1,..., P} of the desired steam generation amount is given after knowing the change in the trajectory y S of the target value in advance. This allows stable control of the amount of generated steam even when the waste input plan is changed. In addition, by adjusting the setting of the trajectory, it is possible to adjust the responsiveness of controlling the amount of generated steam. That is, the time point q is defined as q <
If the value is set large in the range of P, the stability of control is emphasized. On the other hand, when the time point q is set small in the range of q <P, the responsiveness of the control is emphasized. In the control of the amount of generated steam, since the stability of the control is given more importance, it is effective to set the time point q to be large.

【0016】以上のように,本発明のごみ焼却炉の燃焼
制御方法によれば,廃熱ボイラによる発生蒸気を砂層内
部に循環させてエネルギを回収する機能を有するごみ焼
却炉において,砂層部への一次空気の操作量を入力と
し,蒸気発生量を出力とするモデルによって,蒸気発生
量を計算し,実測の蒸気発生量と計算値との誤差量,希
望の蒸気発生軌道,および過去の一次空気の総操作量に
基づいて砂層への一次空気量を予測制御手法により決定
し,その値に応じて一次空気制御用の空気弁開度を操作
する。これにより,燃焼から蒸気発生までにみられるむ
だ時間に対応でき,炉の立ち上げやシャットダウン時,
あるいは,ごみ切れ時のごみ投入量計画変更時における
制御目標値の変化に十分に追従し,蒸気発生量を目標値
に安定に制御することができる。
As described above, according to the combustion control method for a refuse incinerator of the present invention, in a refuse incinerator having a function of recovering energy by circulating steam generated by a waste heat boiler inside a sand layer, The amount of steam generated is calculated using a model that takes the manipulated variable of the primary air as input and the amount of steam generated as output, calculates the error between the measured steam generation and the calculated value, the desired steam generation trajectory, and the past primary The primary air amount to the sand layer is determined by the predictive control method based on the total operation amount of air, and the air valve opening for primary air control is operated according to the value. This makes it possible to cope with the dead time from combustion to steam generation.
Alternatively, it is possible to sufficiently control the change in the control target value when the waste input plan is changed when the waste is exhausted, and to stably control the steam generation amount to the target value.

【0017】[0017]

【発明の効果】本発明に係る流動床式ごみ焼却炉の制御
方法は,上記したように構成されているため,燃焼から
蒸気発生までにみられるむだ時間に対応でき,炉の立ち
上げやシャットダウン時,あるいは,ごみ切れ時のごみ
投入量計画変更時における制御目標値の変化に十分に追
従し,蒸気発生量を目標値に安定に制御することができ
る。
As described above, the control method for a fluidized bed refuse incinerator according to the present invention, which is configured as described above, can cope with the dead time observed from combustion to generation of steam, and can start up and shut down the furnace. It is possible to sufficiently follow the change of the control target value at the time or when the waste input plan is changed when the waste is exhausted, and to stably control the steam generation amount to the target value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態および実施例に係る流動
床式ごみ焼却炉の制御方法の概略構成を示すブロック
図。
FIG. 1 is a block diagram showing a schematic configuration of a control method for a fluidized bed refuse incinerator according to an embodiment and an example of the present invention.

【図2】 上記制御方法を適用可能な流動床式ごみ焼却
炉炉廻りの概略構成を示す模式図。
FIG. 2 is a schematic diagram showing a schematic configuration around a fluidized bed refuse incinerator to which the above control method can be applied.

【図3】 流動床式ごみ焼却炉の動作手順を示すフロー
図。
FIG. 3 is a flowchart showing the operation procedure of a fluidized bed refuse incinerator.

【図4】 希望の蒸気発生軌道の設定方法を示す説明
図。
FIG. 4 is an explanatory view showing a method for setting a desired steam generation trajectory.

【符号の説明】[Explanation of symbols]

A…実プロセス(流動床式ごみ焼却炉に相当) M…モデル u(k)…一次空気の操作量(一次空気の吹込み量に相
当) y(k)…蒸気発生量の実測値 Δy…誤差 yM (k)…蒸気発生量の演算値 yd (τ+k+L)…希望の蒸気発生量の軌道(所望の
蒸気発生軌道に相当) u(k−j)…過去の一次空気の操作量(過去の一次空
気の吹込み量に相当)
A: Actual process (corresponding to a fluidized bed refuse incinerator) M: Model u (k): Operated amount of primary air (corresponding to the blowing amount of primary air) y (k): Actual measured value of steam generation Δy Error y M (k): Calculated value of steam generation amount y d (τ + k + L): trajectory of desired steam generation amount (corresponding to desired trajectory of steam generation) u (k-j): Past operation amount of primary air ( (Equivalent to the amount of primary air blown in the past)

フロントページの続き (72)発明者 前田 知幸 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 友近 信行 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (58)調査した分野(Int.Cl.6,DB名) F23G 5/50 ZAB F23G 5/30 ZAB Continuation of the front page (72) Inventor Tomoyuki Maeda 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Nobuyuki Tomochika 1 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo 5-5-5 Kobe Steel, Ltd. Kobe Research Institute (58) Field surveyed (Int.Cl. 6 , DB name) F23G 5/50 ZAB F23G 5/30 ZAB

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一次空気の吹込みにより流動化された砂
層内でごみを燃焼させ,その廃熱による発生蒸気を上記
砂層内に循環させて加熱する流動床式ごみ焼却炉の制御
方法において,直前の時点までの一次空気の吹込み量の
実測値を,予め用意された一次空気の吹込み量と蒸気発
生量との関係を表すモデルに代入することにより,現時
点での蒸気発生量を演算し,現時点での蒸気発生量の実
測値に対する上記演算値の誤差と,所望の蒸気発生軌道
と,過去の一次空気の総吹込み量とに基づいて予測制御
手法により,現時点での一次空気の吹込み量を決定して
なることを特徴とする流動床式ごみ焼却炉の制御方法。
1. A method of controlling a fluidized bed incinerator in which refuse is burned in a sand layer fluidized by blowing primary air, and steam generated by waste heat is circulated and heated in the sand layer. Calculate the current steam generation amount by substituting the measured value of the primary air blowing amount up to the immediately preceding time point into a model that represents the relationship between the primary air blowing amount and the steam generation amount prepared in advance. However, based on the error of the above calculated value with respect to the actual measurement value of the steam generation amount at the present time, the desired steam generation trajectory, and the total injection amount of the primary air in the past, the predictive control method is used to calculate the current primary air amount. A method for controlling a fluidized-bed refuse incinerator, characterized by determining a blowing amount.
【請求項2】 上記モデルを, 【数1】 ここに, k:時点 y:蒸気発生量 u:一次空気の吹込み量 g:重み係数 N:定数 とした請求項1記載の流動床式ごみ焼却炉の制御方法。2. The above model is expressed by the following equation: The control method for a fluidized bed incinerator according to claim 1, wherein k: time point y: steam generation amount u: primary air blowing amount g: weighting factor N: constant. 【請求項3】 上記予測制御手法が, 【数2】 ここに, k:時点 u:一次空気の吹込み量 yd :所望の蒸気発生量 y:蒸気発生量の実測値 yM :蒸気発生量の演算値 γ,δ:重み係数 N,P:定数 τ:むだ時間 により表わされる請求項1又は2記載の流動床式ごみ焼
却炉の制御方法。
3. The prediction control method according to claim 2, wherein Where: k: time point u: amount of primary air blown y d : desired amount of steam generated y: actual measured value of steam generated y M : calculated value of steam generated γ, δ: weighting factor N, P: constant The control method for a fluidized bed refuse incinerator according to claim 1 or 2, wherein τ is represented by τ: dead time.
JP23374695A 1995-09-12 1995-09-12 Control method of fluidized bed refuse incinerator Expired - Fee Related JP2968709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23374695A JP2968709B2 (en) 1995-09-12 1995-09-12 Control method of fluidized bed refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23374695A JP2968709B2 (en) 1995-09-12 1995-09-12 Control method of fluidized bed refuse incinerator

Publications (2)

Publication Number Publication Date
JPH0979554A JPH0979554A (en) 1997-03-28
JP2968709B2 true JP2968709B2 (en) 1999-11-02

Family

ID=16959935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23374695A Expired - Fee Related JP2968709B2 (en) 1995-09-12 1995-09-12 Control method of fluidized bed refuse incinerator

Country Status (1)

Country Link
JP (1) JP2968709B2 (en)

Also Published As

Publication number Publication date
JPH0979554A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP5683338B2 (en) Temperature control device for circulating fluidized incinerator and temperature control method thereof
JP2007533947A (en) Waste burning process model and control
JP2007240144A (en) Control of waste combustion process
JP4188859B2 (en) Operation control method and operation control apparatus for waste treatment plant equipment
JP3712329B2 (en) Process control unit
JP3333674B2 (en) Method and apparatus for creating plant operation plan
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP2968709B2 (en) Control method of fluidized bed refuse incinerator
JPH079288B2 (en) Fuel supply control method for solid combustion device
JP4201781B2 (en) Incinerator control method and apparatus, and program
JPS62169920A (en) Multi-variable automatic combustion control of incinerator
JPH09303741A (en) Method and device for control of fluidized bed incineration furnace
JPH10318503A (en) Method and system for controlling fluidized bed incinerator
JPH09273732A (en) Control method of combustion in incinerating furnace
JP4156575B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP3115964B2 (en) Incinerator control method
JP4097999B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
Molloy Modelling and predictive control of a drum-type boiler
JPH11325433A (en) Method and apparatus for controlling fluidized bed type incinerator
JP2965142B2 (en) Adaptive and predictive control method and apparatus for combustion furnace
JP2004316960A (en) Automatic combustion control method and device of garbage incineration plant
JPH11182209A (en) Operation control device for plant
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JP3713718B2 (en) Method and apparatus for controlling the air ratio in a fluidized bed furnace
JPH11108327A (en) Garbage incinerator and combustion control method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees