JPH09303741A - Method and device for control of fluidized bed incineration furnace - Google Patents

Method and device for control of fluidized bed incineration furnace

Info

Publication number
JPH09303741A
JPH09303741A JP11614496A JP11614496A JPH09303741A JP H09303741 A JPH09303741 A JP H09303741A JP 11614496 A JP11614496 A JP 11614496A JP 11614496 A JP11614496 A JP 11614496A JP H09303741 A JPH09303741 A JP H09303741A
Authority
JP
Japan
Prior art keywords
amount
control
manipulated variable
fluidized bed
controlled variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11614496A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tomochika
信行 友近
Makiyuki Nakayama
万希志 中山
Tomoyuki Maeda
知幸 前田
Akira Kitamura
章 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11614496A priority Critical patent/JPH09303741A/en
Publication of JPH09303741A publication Critical patent/JPH09303741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To correspond with a sudden variation of the operation state of a furnace, and perform a stable control so as to meet a target value by a method wherein a deviation amount which is added to an immediately previous manipulated variable, is determined based on a target locus, a specific equation model, an error being obtained in an error calculation process, and a control amount being obtained in an manipulated variable fixed time controlled variable calculation process. SOLUTION: At an equation model identification unit 3, an equation model to represented the relationship between a manipulated variable and a controlled variable from the present point to a point after a specified period of time, is identified in order for each specified control cycle, using an output from a simulator unit 6. At a manipulated variable determining unit 5, a deviation amount of the manipulated variable at the present point is determined by an estimation control method based on a target locus, an error being obtained by an error calculation unit 2, a controlled variable being obtained at a manipulated variable fixed time controlled variable calculation unit 4, and the equation model which has been identified the equation model identification unit 3. By adding this deviation amount to an immediately previous manipulated variable, the manipulated variable at the present point, is determined. By this method, the controlled variableis more stably controlled so as to meet the target value while taking the non-linear characteristics of the furnace under consideration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,流動床式焼却炉の
制御方法及び装置に係り,詳しくは,少なくとも,1次
空気の吹き込みにより流動化された砂層内でごみ等の可
燃物及び燃料を燃焼させると共に,2次空気の吹き込み
により未燃ガスを燃焼させ,その廃熱による発生蒸気を
上記砂層内に循環させて加熱する流動床式焼却炉の制御
方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling a fluidized bed incinerator, and more particularly, to a combustible material such as dust and fuel in a sand layer fluidized by blowing primary air. The present invention relates to a method and an apparatus for controlling a fluidized bed incinerator in which unburned gas is burned by blowing secondary air and steam generated by waste heat is circulated in the sand layer for heating.

【0002】[0002]

【従来の技術】近年ますます増大するエネルギーの有効
利用の要求に伴い,ごみ発電システム等の流動床炉を用
いた発電システムが増えつつある。これら発電システム
のプラントからより多くのエネルギーを回収するために
は,安定で効率的な操業を行うことが要求され,それを
実現させるための制御システムが必要である。しかし,
特に流動床式焼却炉等の内部循環型のエネルギー回収炉
においては,ごみや燃料を投入し燃焼させてから過熱蒸
気を得る迄の系が複雑であり,無駄時間の存在や外乱の
影響が大きい事が問題点となっている。更に,炉の立ち
上げやシャットダウン時,あるいはごみや燃料投入時に
おける制御目標値の変化に対し,安定に制御することが
課題となっている。このため,内部循環型の流動床式ご
み焼却炉を対象として,予測制御手法を用いて蒸気発生
量の制御を行うことを特徴とする制御方法が提案されて
いる(例えば,特願平7─233746号参照)。この
方法は,図6に示すように,直前の時点までの一次空気
の吹き込み量の実測値を,予め用意された一次空気の吹
き込み量と蒸気発生量との関係を表すモデルMに代入す
ることにより,現時点での蒸気発生量yM (k)を演算
し,現時点での蒸気発生量の実測値y(k)に対する上
記演算値の誤差△yと,目標とする蒸気発生軌道yd (
τ+k+L)と,過去の一次空気の吹き込み量とに基づ
いて予測制御手法により,現時点での一次空気の吹き込
み量を決定するものである。
2. Description of the Related Art With the increasing demand for effective use of energy in recent years, power generation systems using fluidized bed furnaces such as refuse power generation systems are increasing. In order to recover more energy from the plants of these power generation systems, stable and efficient operation is required, and a control system to achieve this is required. However,
In particular, in an internal circulation type energy recovery furnace such as a fluidized bed incinerator, the system from charging and burning dust and fuel to obtaining superheated steam is complicated, and the existence of dead time and the influence of disturbance are large. Things are a problem. Furthermore, stable control is required for changes in the control target value when the furnace is started up or shut down, or when dust or fuel is input. For this reason, a control method has been proposed for controlling the amount of steam generated by using a predictive control method for an internal circulation type fluidized bed waste incinerator (for example, Japanese Patent Application No. 7- 233746). In this method, as shown in FIG. 6, the measured value of the blown-in amount of primary air up to the immediately preceding time point is substituted into a model M that represents the relationship between the blown-in amount of primary air and the steam generation amount. Based on this, the steam generation amount y M (k) at the present time is calculated, and the error Δy of the calculated value with respect to the actually measured value y (k) of the steam generation amount at the present time and the target steam generation trajectory y d (
τ + k + L) and the past blown amount of primary air are used to determine the blown amount of primary air at the present time by a predictive control method.

【0003】ここに,上記モデルMは,Here, the model M is

【数7】 で表され,更に上記予測制御手法は,(Equation 7) And the predictive control method is

【0004】[0004]

【数8】 により表される。(Equation 8) Is represented by

【0005】[0005]

【発明が解決しようとする課題】しかしながら,流動床
式焼却炉は,ストーカ炉に比べて燃焼状態が激しく,炉
も小さいため,炉の運転状態が変化しやすいという特徴
がある。例えば,まとまった量のごみや燃料が急に炉内
に落ちたような場合には,急激な燃焼が起こり,炉の運
転状態が定常状態とは大きく異なってしまう。このよう
な場合,固定された一つのモデルを用いた上記のような
従来の予測制御手法では,炉の運転状態の急激な変化に
十分に対応できない。更に,上記従来の方法では,炉の
持っている非線形特性に対し,十分に対応できないとい
う問題点もあった。本発明は,上記事情に鑑みてなされ
たものであり,その目的とするところは,炉の運転状態
の時々刻々の急激な変化に対して十分に対応でき,炉の
非線形特性を考慮に入れ,より安定的に制御量を目標値
に制御することの出来る流動床式焼却炉の制御方法及び
装置を提供することである。
However, the fluidized bed type incinerator has a feature that the operating state of the furnace is likely to change because the combustion state is more intense and the furnace is smaller than the stoker furnace. For example, when a large amount of dust or fuel suddenly drops into the furnace, rapid combustion occurs, and the operating state of the furnace greatly differs from the steady state. In such a case, the conventional predictive control method as described above using one fixed model cannot sufficiently cope with a sudden change in the operating state of the furnace. Further, the above-mentioned conventional method has a problem that it cannot sufficiently deal with the nonlinear characteristic of the furnace. The present invention has been made in view of the above circumstances, and an object thereof is to be able to sufficiently cope with a sudden change in the operating state of the furnace at any given time, and to take the nonlinear characteristics of the furnace into consideration. It is an object of the present invention to provide a control method and apparatus for a fluidized bed incinerator that can control the controlled variable to a target value more stably.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の方法は,少なくとも,1次空気の吹き込みに
より流動化された砂層内で可燃物及び燃料を燃焼させ,
その廃熱による発生蒸気を上記砂層内に循環させて加熱
する流動床式焼却炉の制御方法において,制御量の目標
値と実測値に基づいて制御量の目標軌道を生成する目標
軌道生成工程と,操作量に対する制御量の挙動をオンラ
インで計算するシミュレータからの出力を用いて,一定
の操作量を加え続けた場合の制御量を計算する操作量不
変時制御量計算工程と,上記シミュレータからの出力を
用いて,現時点から一定時間後までの操作量と制御量の
関係を表す数式モデルを所定の制御周期毎に逐次同定す
る数式モデル同定工程と,現時点での制御量の実測値
と,上記シミュレータからの出力を用いた現時点での制
御量の計算値との誤差を求める誤差計算工程と,上記目
標軌道と,上記数式モデル同定工程で同定された数式モ
デルと,上記誤差計算工程で求めた誤差と,上記操作量
不変時制御量計算工程で求めた制御量とに基づいて,予
測制御手法により現時点における操作量の偏差量を決定
し,直前の操作量に該偏差量を加えることによって現時
点での操作量を決定する操作量決定工程とを具備してな
ることを特徴とする流動床式焼却炉の制御方法として構
成されている。
In order to achieve the above-mentioned object, the method of the present invention comprises at least burning combustible substances and fuel in a sand layer fluidized by blowing primary air,
In a control method of a fluidized bed incinerator in which steam generated by the waste heat is circulated and heated in the sand layer, a target trajectory generation step of generating a target trajectory of the control amount based on a target value of the control amount and an actual measurement value. , The manipulated variable invariant time controlled variable calculation process that calculates the controlled variable when a constant manipulated variable is continuously added using the output from the simulator that calculates the behavior of the controlled variable with respect to the manipulated variable, and the above-mentioned simulator Using the output, a mathematical model identification step of sequentially identifying a mathematical model representing the relationship between the manipulated variable and the controlled variable from the present time for each predetermined control cycle, the measured value of the controlled variable at the present time, and the above An error calculation step for obtaining an error from the calculated value of the controlled variable at the present time using the output from the simulator, the target trajectory, the mathematical model identified in the mathematical model identification step, and the error meter Based on the error obtained in the process and the control amount obtained in the operation amount invariant time control amount calculation process, the deviation amount of the operation amount at the present time is determined by the predictive control method, and the deviation amount is set to the immediately preceding operation amount. The present invention is configured as a control method for a fluidized bed incinerator, characterized by comprising a manipulated variable determining step for determining a manipulated variable at the present time by adding.

【0007】また上記数式モデルは,The above mathematical model is

【数9】 であり,現時点での制御量の目標値と実測値との偏差を
もとに,操作量のステップ入力値を決定し,該ステップ
入力値に対するステップ応答により上記数式モデルの係
数行列Aiを決定することができる。
[Equation 9] The step input value of the manipulated variable is determined based on the deviation between the target value of the controlled variable and the actual measured value at the present time, and the coefficient matrix Ai of the mathematical model is determined by the step response to the step input value. be able to.

【0008】また,上記予測制御手法によって決定され
る現時点における操作量の偏差量は,
Further, the deviation amount of the manipulated variable at the present time determined by the predictive control method is

【数10】 で与えられる評価関数を最小にする解を導出することに
よって得られる,
(Equation 10) Obtained by deriving a solution that minimizes the evaluation function given by

【数11】 により表される。[Equation 11] Is represented by

【0009】また,上記シミュレータは,上記焼却炉内
の複数部位における質量収支モデル,熱量収支モデル,
及び反応モデルによって構成される。また,本発明の装
置は,少なくとも,1次空気の吹き込みにより流動化さ
れた砂層内で可燃物及び燃料を燃焼させ,その廃熱によ
る発生蒸気を上記砂層内に循環させて加熱する流動床式
焼却炉の制御装置において,操作量に対する制御量の挙
動をオンラインで計算するシミュレータ手段と,制御量
の目標値と実測値に基づいて制御量の目標軌道を生成す
る目標軌道生成手段と,上記シミュレータ手段からの出
力を用いて,一定の操作量を加え続けた場合の制御量を
計算する操作量不変時制御量計算手段と,上記シミュレ
ータ手段からの出力を用いて,現時点から一定時間後ま
での操作量と制御量の関係を表す数式モデルを所定の制
御周期毎に逐次同定する数式モデル同定手段と,現時点
での制御量の実測値と,上記シミュレータ手段からの出
力を用いた現時点での制御量の計算値との誤差を求める
誤差計算手段と,上記目標軌道と,上記数式モデル同定
手段で同定された数式モデルと,上記誤差計算手段で求
めた誤差と,上記操作量不変時制御量計算手段で求めた
制御量とに基づいて,予測制御手法により現時点におけ
る操作量の偏差量を決定し,直前の操作量に該偏差量を
加えることによって現時点での操作量を決定する操作量
決定手段とを具備してなることを特徴とする流動床式焼
却炉の制御装置として構成されている。また,上記制御
方法は全て本装置上で実現させることが出来る。
In addition, the simulator includes a mass balance model, a heat balance model at a plurality of parts in the incinerator,
And the reaction model. Further, the device of the present invention is a fluidized bed type in which at least a combustible material and a fuel are combusted in a sand layer fluidized by blowing of primary air, and steam generated by waste heat thereof is circulated in the sand layer to be heated. In an incinerator control device, a simulator means for online calculating the behavior of the controlled variable with respect to the manipulated variable, a target trajectory generation means for generating a controlled trajectory target trajectory based on the controlled variable target value and the measured value, and the above simulator Using the output from the means, the manipulated variable invariant controlled variable calculation means for calculating the controlled variable when the constant manipulated variable is continuously added, and the output from the simulator means, A mathematical model identifying means for sequentially identifying a mathematical model representing the relationship between the manipulated variable and the controlled variable for each predetermined control cycle, an actual measured value of the controlled variable at the present time, and an output from the simulator means. Error calculation means for obtaining an error from the calculated value of the control amount at the present time, the target trajectory, the mathematical model identified by the mathematical model identification means, the error calculated by the error calculation means, Based on the control amount obtained by the control amount constant control amount calculation means, the deviation amount of the operation amount at the present time is determined by the predictive control method, and the operation amount at the present time is obtained by adding the deviation amount to the immediately preceding operation amount. It is configured as a control device for a fluidized bed type incinerator, which is characterized in that it comprises a manipulated variable determining means for determining. Further, all the control methods described above can be realized on this device.

【0010】[0010]

【作用】本発明に係る流動床式焼却炉の制御装置では,
まず,目標軌道生成手段によって制御量の目標値と実測
値に基づいて制御量の目標軌道を生成する。そして,操
作量不変時制御量計算手段によって,操作量に対する制
御量の挙動をオンラインで計算するシミュレータ手段か
らの出力を用いて前時点での操作量を加え続けた場合の
制御量を計算する。次に,数式モデル同定手段におい
て,上記シミュレータ手段からの出力を用いて現時点か
ら一定時間後までの操作量と制御量の関係を表す数式モ
デルを所定の制御周期毎に逐次同定し,更に,誤差計算
手段において,上記シミュレータ手段からの出力を用い
て現時点での制御量の計算値との誤差を求める。操作量
決定手段では,上記目標軌道と,上記数式モデル同定手
段で同定された数式モデルと,上記誤差計算手段で求め
た誤差と,上記操作量不変時制御量計算手段で求めた制
御量とに基づいて,予測制御手法により現時点における
操作量の偏差量を決定し,直前の操作量に該偏差量を加
えることによって現時点での操作量を決定する。そし
て,上記処理を制御周期毎に繰り返し行うことによって
実プロセスの制御を行う。
In the controller of the fluidized bed incinerator according to the present invention,
First, the target trajectory generation means generates the target trajectory of the controlled variable based on the target value of the controlled variable and the actually measured value. Then, the manipulated variable invariant time controlled variable calculation means calculates the controlled variable in the case where the manipulated variable at the previous time is continuously added using the output from the simulator means for online calculating the behavior of the controlled variable with respect to the manipulated variable. Next, in the mathematical model identifying means, the mathematical model representing the relationship between the manipulated variable and the controlled variable from the present time to a certain time after the current time is identified by using the output from the simulator means, for each predetermined control cycle, and the error is further identified. In the calculation means, the error from the calculated value of the controlled variable at the present time is obtained by using the output from the simulator means. In the manipulated variable determining means, the target trajectory, the mathematical model identified by the mathematical model identifying means, the error obtained by the error calculating means, and the control amount obtained by the manipulated variable invariant controlled variable calculating means are obtained. Based on this, the deviation amount of the operation amount at the present time is determined by the predictive control method, and the operation amount at the present time is determined by adding the deviation amount to the immediately preceding operation amount. Then, the actual process is controlled by repeating the above processing for each control cycle.

【0011】[0011]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る流動床式焼却炉の制御装置の概略構成を示すブ
ロック図,図2は上記制御装置を適用可能な流動床式焼
却炉の概略構成を示す模式図,図3は上記流動床式焼却
炉の制御装置の動作手順を示すフロー図,図4は制御値
の目標軌道yd の設定方法の一例を示す図,図5は操作
量不変時制御量予測値y0 ,偏差モデル△ym ,及びス
テップ応答モデルym との関係の一例を示す図,図6は
従来の流動床式ごみ焼却炉の制御方法の概略構成を示す
ブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. 1 is a block diagram showing a schematic configuration of a control apparatus for a fluidized bed incinerator according to an embodiment of the present invention, and FIG. 2 shows a schematic configuration of a fluidized bed incinerator to which the above control apparatus can be applied. FIG. 3 is a schematic diagram, FIG. 3 is a flow chart showing an operation procedure of the control device of the fluidized bed incinerator, FIG. 4 is a diagram showing an example of a method of setting the target trajectory y d of the control value, and FIG. FIG. 6 is a diagram showing an example of the relationship between the quantity prediction value y 0 , the deviation model Δy m , and the step response model y m, and FIG. 6 is a block diagram showing a schematic configuration of a conventional fluidized bed refuse incinerator control method. .

【0012】図1に示す如く,本実施の形態に係る流動
床式焼却炉の制御装置は,1次空気の吹き込みにより流
動化された砂層内でごみ等の可燃物及び燃料を燃焼さ
せ,2次空気の吹き込みにより未燃ガスを燃焼させ,そ
の廃熱による発生蒸気を上記砂層内に循環させて加熱す
る流動床式焼却炉である実プロセスAの制御装置であ
る。目標軌道生成部1では,制御量の目標値yr と実測
値y(k)に基づいて制御量の目標軌道yd を生成す
る。誤差計算部2では,操作量に対する制御量の挙動を
オンラインで計算するシミュレータ部6を用いて現時点
での制御量の計算値y sim (k)を求め,該現時点での
制御量の計算値ysim (k)と現時点での制御量の実測
値y(k)との誤差△y(k)を求める。操作量不変時
制御量計算部4では,上記シミュレータ部6からの出力
を用いて,前時点での操作量を加え続けた場合の制御量
0 を計算する。数式モデル同定部3では,上記シミュ
レータ部6からの出力を用いて,現時点から一定時間後
までの操作量と制御量の関係を表す数式モデル(詳細は
後述する)を所定の制御周期毎に逐次同定する。操作量
決定部5においては,上記目標軌道yd と,上記誤差計
算部2で求めた誤差△y(k)と,上記操作量不変時制
御量計算部4で求めた制御量y0 と,上記数式モデル同
定部3で同定された数式モデルとに基づいて,予測制御
手法(詳細は後述する)により現時点における操作量の
偏差量△u(k)を決定し,直前の操作量u(k─1)
に該偏差量△u(k)を加えることによって現時点での
操作量u(k)を決定する。
As shown in FIG. 1, the flow according to the present embodiment
The control device for the floor incinerator uses the primary air blowing
Burn combustible materials such as dust and fuel in the activated sand layer.
The secondary air is blown in to burn unburned gas,
The steam generated by the waste heat of is circulated in the sand layer for heating.
It is a controller for the actual process A, which is a fluidized bed incinerator.
You. In the target trajectory generation unit 1, the target value y of the controlled variablerAnd actual measurement
Target trajectory y of the controlled variable based on the value y (k)dGenerate
You. In the error calculation unit 2, the behavior of the controlled variable with respect to the manipulated variable
At present, using the simulator section 6 that calculates online
Calculated value y of the controlled variable at sim(K) is calculated, and at the present time
Calculated value y of controlled variablesim(K) and actual measurement of the controlled variable at the present time
An error Δy (k) from the value y (k) is obtained. When the manipulated variable is unchanged
In the control amount calculation unit 4, the output from the simulator unit 6 is output.
The control amount when the operation amount at the previous time is continuously added using
y0Is calculated. In the mathematical model identification unit 3, the simulation
After a certain time from the current time, using the output from the
Mathematical model that represents the relationship between the manipulated variable and the controlled variable up to
(Described later) is sequentially identified for each predetermined control cycle. Manipulated variable
In the determination unit 5, the target trajectory ydAnd the above error meter
The error Δy (k) calculated by the computing unit 2 and the manipulated variable invariant tense
Control amount y calculated by control unit 40And the above mathematical model
Predictive control based on the mathematical model identified by the constant part 3
Method (details will be described later)
The deviation amount Δu (k) is determined, and the immediately preceding manipulated variable u (k-1)
By adding the deviation amount Δu (k) to
The manipulated variable u (k) is determined.

【0013】次に,上記制御装置を適用可能な流動床式
焼却炉について,その具体的な構造を図2を用いて説明
する。図2において,ごみや燃料はホッパ11へ投入さ
れ砂層12に落下する。砂層12へは,弁13,14を
操作することによって一次空気15,16が複数部位に
分けて送り込まれ,それによって砂が流動するととも
に,上記投入されたごみ及び燃料が砂層12内で一次燃
焼し,発生したガスはフリーボード17へ流れてゆく。
フリーボード17へは,弁18を操作することによって
二次空気19が送り込まれ,CO等の未燃ガスを完全燃
焼し,排ガスは排ガス出口20を通過し,廃熱ボイラ2
1に送り込まれる。廃熱ボイラ21では,排ガスの熱エ
ネルギー(熱量)によって飽和蒸気を発生し,該飽和蒸
気は,さらに砂層12内を循環する伝熱管22を通過し
て過熱され,より高温の過熱蒸気となって回収される。
本装置における主な操作量としては,ごみや燃料の投入
量,一次空気量及び二次空気量があり,主な制御量とし
ては,砂層部温度,炉頂部温度,排ガス温度,過熱蒸気
量,過熱蒸気温度がある。
Next, a specific structure of a fluidized bed type incinerator to which the above control device can be applied will be described with reference to FIG. In FIG. 2, dust and fuel are thrown into the hopper 11 and fall into the sand layer 12. By operating valves 13 and 14, primary air 15 and 16 are sent to the sand layer 12 separately in a plurality of parts, whereby the sand flows and the injected dust and fuel are primarily burned in the sand layer 12. Then, the generated gas flows to the freeboard 17.
The secondary air 19 is sent to the freeboard 17 by operating the valve 18, completely burns unburned gas such as CO, the exhaust gas passes through the exhaust gas outlet 20, and the waste heat boiler 2
It is sent to 1. In the waste heat boiler 21, saturated steam is generated by the thermal energy (heat amount) of the exhaust gas, and the saturated steam is further heated by passing through the heat transfer pipe 22 circulating in the sand layer 12 to become higher temperature superheated steam. Be recovered.
The main manipulated variables in this system are the amount of dust and fuel input, the amount of primary air and the amount of secondary air, and the major controlled variables are the temperature of the sand layer, the temperature at the top of the furnace, the temperature of the exhaust gas, the amount of superheated steam, There is superheated steam temperature.

【0014】次に,図3を参照して,流動床式焼却炉の
制御手順(ステップ)の概要とその動作とを順を追って
説明する。 (ステップS1) 制御量の目標値yr を設定する。制
御量が複数ある場合は目標値yr はベクトルとなる。 (ステップS2) 目標値yr にしたがって,上記目標
軌道生成部1において目標軌道yd を設定する。該目標
軌道yd の設定の仕方は,例えば図4に示す方法があ
る。これは,現時点の制御量の実測値y(k)と,目標
値yr (k+i)とを用いて,目標軌道を yd (k+i)=(I−Ci )yr (k+i)+Ci
(k) ここで,I:単位行列(制御量が一つの場合はI=1) C:対角要素に0<cj <1の実数が並ぶ対角行列(制
御量が一つの場合は0<C<1) と定めるものであり,y(k)からyr (k+i)へ一
定割合で近づけていくものである。
Next, referring to FIG. 3, an outline of the control procedure (steps) of the fluidized bed incinerator and its operation will be described step by step. (Step S1) The target value y r of the controlled variable is set. When there are a plurality of controlled variables, the target value y r is a vector. (Step S2) The target trajectory y d is set in the target trajectory generator 1 according to the target value y r . The method of setting the target trajectory y d is, for example, the method shown in FIG. This is a measured value y of the controlled variable at the present time (k), by using the target value y r (k + i), the target trajectory y d (k + i) = (I-C i) y r (k + i) + C i y
(K) where I: identity matrix (I = 1 when the control amount is 1) C: diagonal matrix in which real numbers 0 <c j <1 are arranged in diagonal elements (0 when the control amount is 1 <C <1), which is to approach y r (k + i) from y (k) at a constant rate.

【0015】(ステップS3) 操作量不変時制御量計
算部4で,上記シミュレータ部6を用いて,前時点にお
ける操作量u(k−1)を一定のまま加え続けた場合を
シミュレートし,この時の制御量の値をy0 とする。つ
まり, △u(k)=△u(k+1)=...=△u(k+p−
1)=0 とした場合の制御量のシミュレーション値をy0 (k+
p)とする。ここで,オンラインで稼働させている上記
シミュレータ部6の構成について説明する。上記シミュ
レータ部6は,砂層部12と複数部分に分割されたフリ
ーボード17のそれぞれについて,質量収支モデル,熱
量収支モデル,反応モデルの3つのモデルにより構成さ
れている。質量収支モデルは,物質の出入りを元素レベ
ルで表現し,出入りの差の分が蓄積又は放出されるもの
としてモデル化される。例えば,砂層部12において
は,ごみ及び燃料,一次空気,投入砂などが入り側物質
となり,砂層部12からフリーボード17への排ガスや
ダスト,排出砂などが出側物質となり,その差が蓄積ま
たは放出される。具体的には,例えば,砂層部12にお
ける炭素分と酸素分の質量収支モデルについては以下の
ように定める。
(Step S3) The manipulated variable invariant time controlled variable calculation unit 4 uses the simulator unit 6 to simulate a case where the manipulated variable u (k-1) at the previous time point is kept constant and is added, The value of the control amount at this time is y 0 . That is, Δu (k) = Δu (k + 1) =. . . = Δu (k + p-
1) = 0, the simulation value of the control amount is y 0 (k +
p). Here, the configuration of the simulator section 6 which is operated online will be described. The simulator section 6 is composed of three models of a mass balance model, a heat balance model, and a reaction model for each of the sand layer section 12 and the freeboard 17 divided into a plurality of sections. The mass balance model expresses the inflow and outflow of a substance at the elemental level, and is modeled as the difference between the inflow and outflow accumulated or released. For example, in the sand layer portion 12, dust, fuel, primary air, input sand, etc. are the input side substances, and exhaust gas, dust, discharge sand, etc. from the sand layer portion 12 to the freeboard 17 are output side substances, and the difference is accumulated. Or released. Specifically, for example, the mass balance model of carbon content and oxygen content in the sand layer portion 12 is determined as follows.

【0016】[0016]

【数12】 熱量収支モデルは,熱量の出入りと反応による発生熱を
エンタルピーで表現し,出入りの差の分が蓄積又は放出
されるものとしてモデル化される。例えば,砂層部12
においては,ごみ及び燃料の顕熱,一次空気の顕熱,投
入砂の顕熱などが入熱となり,砂層部12からフリーボ
ード17への排ガスやダストの顕熱,排出砂の顕熱,砂
層部12内を循環する伝熱管22内を通過する蒸気に与
えられる熱量,熱損失などが出熱となり,さらには,一
次燃焼による反応熱が発生熱となり,これらの差が砂層
部12の温度の上げ下げに影響する。具体的には,例え
ば,砂層部12の熱量収支モデルについては以下のよう
に定める。
(Equation 12) The heat balance model expresses the heat generated by the heat input and output and the reaction by enthalpy, and is modeled as the accumulation or release of the difference between the input and output. For example, the sand layer 12
In sensible heat of waste and fuel, sensible heat of primary air, sensible heat of input sand, etc., the sensible heat of exhaust gas and dust from the sand layer part 12 to the freeboard 17, sensible heat of discharged sand, sand layer The amount of heat given to the steam passing through the heat transfer tube 22 circulating in the part 12 and the heat loss are heat output, and the reaction heat due to the primary combustion is the generated heat, and the difference between them is the temperature of the sand layer part 12. Affects raising and lowering. Specifically, for example, the heat balance model of the sand layer portion 12 is defined as follows.

【0017】[0017]

【数13】 反応モデルは,物質の反応速度や反応割合を定義するモ
デルであり,その時の炉内各部の温度,酸素濃度,流動
状態などによって変化する。具体的には,例えば,砂層
部12内の残留炭素について考えると,
(Equation 13) The reaction model is a model that defines the reaction rate and reaction rate of a substance, and changes depending on the temperature, oxygen concentration, flow state, etc. of each part in the furnace at that time. Specifically, for example, considering the residual carbon in the sand layer portion 12,

【0018】[0018]

【数14】 のように反応の種類を設定する。そして,それぞれの反
応の割合 w:x:y:z を,砂層部温度,残留炭素量,一次空気量の関数として
設定する。反応割合は例えば以下のように設定する。 そのまま砂層内に残留する炭素の割合 :w=1−x−y−z 炭素のまま砂層部から出ていく炭素の割合 :x=Cx +αx t+βx c/a+γx a 一酸化炭素となり砂層部から出ていく炭素の割合 :y=Cy +αy t+βy c/a+γy a 二酸化炭素となり砂層部から出ていく炭素の割合 :z=Cz +αz t+βz c/a+γz a ここに, t:砂層部温度 c:砂層内残留炭素量 a:一次空気量 Cx ,Cy ,Cz ,αx ,αy ,αz ,βx ,βy ,β
z ,γx ,γy ,γz:実験により同定された係数
[Equation 14] Set the reaction type as follows. Then, the respective reaction ratios w: x: y: z are set as a function of the sand layer temperature, the residual carbon amount, and the primary air amount. The reaction ratio is set as follows, for example. Percent of carbon remaining intact in the sand layer: ratio of w = 1-x-y- z carbon leaving the left sand layer portion of the carbon: x = C x + α x t + β x c / a + γ x a sand layer becomes carbon monoxide Proportion of carbon coming out of the part: y = C y + α y t + β y c / a + γ y a Proportion of carbon going out of the sand layer part as carbon dioxide: z = C z + α z t + β z c / a + γ z a , T: temperature of sand layer c: amount of residual carbon in sand layer a: amount of primary air C x , C y , C z , α x , α y , α z , β x , β y , β
z , γ x , γ y , γ z : Coefficients identified by experiment

【0019】以上3つのモデルを用いて炉における操作
量に対する制御量の挙動のシミュレートを行うが,その
概略手順を以下に示す。 (1)砂層部について,ごみ投入量,一次空気量,投入
砂などの組成・質量・温度を入力値とする。 (2)上記入力物質と砂層残留物質から,反応モデルと
質量収支モデルによって,砂層から出ていく物質や砂層
内に残留する物質の組成・質量が求まる。 (3)砂層部に入る物資,残留する物質,砂層部から出
ていく物質の組成と質量が求まったので,エンタルピー
計算によりそれぞれの物質の熱量が求まる。また,反応
モデルを基にして,反応熱,水分蒸発熱が求まる。 (4)砂層部の温度,蒸気過熱管の入り側の蒸気温度と
蒸気流量を基にして,蒸気過熱部への吸熱量および過熱
管出側の過熱蒸気温度が求まる。 (5)熱量収支モデルから,次時刻の砂層部温度が求ま
る。 (6)フリーボード部についても同様にして,フリーボ
ード部の温度,排ガスの組成・質量・温度が求まる。 以上の計算を繰り返すことによって,炉における操作量
に対する制御量の挙動がシミュレートできる。
The above three models are used to simulate the behavior of the controlled variable with respect to the manipulated variable in the furnace. The outline procedure is shown below. (1) For the sand layer part, the input values are the amount of dust input, the amount of primary air, the composition, mass, and temperature of the input sand. (2) The composition and mass of the substance leaving the sand layer or the substance remaining in the sand layer can be obtained from the input substance and the sand layer residual substance by the reaction model and the mass balance model. (3) Since the composition and mass of the substances that enter the sand layer, the remaining substances, and the substances that leave the sand layer have been determined, the heat value of each substance can be determined by enthalpy calculation. Also, the heat of reaction and the heat of vaporization of water are obtained based on the reaction model. (4) Based on the temperature of the sand layer, the steam temperature on the inlet side of the steam superheater and the steam flow rate, the amount of heat absorbed by the steam superheater and the superheated steam temperature on the outlet side of the superheater can be determined. (5) The sand layer temperature at the next time can be obtained from the heat balance model. (6) For the freeboard section, the temperature of the freeboard section and the composition / mass / temperature of the exhaust gas can be obtained in the same way. By repeating the above calculation, the behavior of the controlled variable with respect to the manipulated variable in the furnace can be simulated.

【0020】(ステップS4〜S6) 数式モデル同定
部3において,上記シミュレータ部6の出力を用いて,
現時点から一定時間後までの操作量と制御量の関係を表
す数式モデル(ステップ応答モデル)を所定の制御周期
毎に逐次同定する。まず,ステップ応答モデル作成部3
bにおいて,上記シミュレータ部6の出力を用いて,前
時点における操作量u(k−1)に対しステップ状の操
作量の偏差入力を行うことにより,下記の制御量の偏差
モデル△ym を同定する(S5)。つまり下記式の係数
行列Ai を決定する。
(Steps S4 to S6) In the mathematical model identification unit 3, using the output of the simulator unit 6,
A mathematical model (step response model) representing the relationship between the manipulated variable and the controlled variable from the present time to a fixed time later is sequentially identified for each predetermined control cycle. First, the step response model creation unit 3
In b, by using the output of the simulator unit 6 to input the deviation of the step-like operation amount with respect to the operation amount u (k-1) at the previous time point, the following deviation model Δy m of the control amount is obtained. Identify (S5). That is, the coefficient matrix A i of the following equation is determined.

【0021】[0021]

【数15】 それに先立って,上記制御量の偏差モデル△ym を同定
する際の操作量の偏差入力の値を,制御量の目標値と実
測値との偏差をもとにモデル作成用ステップ応答入力作
成部3aにおいて作成する(S4)。これは,操作量の
上げ側と下げ側では制御量の変化の割合が異なるという
炉の非線形特性に着目し,偏差モデル△ym を作成する
際に,この非線形特性を補償しようとするものである。
例えば,一次空気15により伝熱管22廻りの流動状態
を変え,過熱蒸気温度を制御する場合において,過熱蒸
気温度の実測値が目標値より低い場合には,一次空気1
5を増やす方向に偏差入力を入れ,反対に過熱蒸気温度
の実測値が目標値より高い場合には,一次空気15を減
らす方向に偏差入力を入れることによって,偏差モデル
を同定する。また,過熱蒸気温度の実測値と目標値の偏
差の大きさ(絶対値)によって,偏差入力の大きさ(絶
対値)を変えてもよい。上記のような方法により,一次
空気15の量の上げ側と下げ側で異なる過熱蒸気温度の
変化の割合を考慮に入れた偏差モデルを作成することが
できる。また,複数の操作量で複数の制御量を制御する
多入力多出力系については,各制御量とそれに対応する
各目標値との大小関係から,各操作量の偏差入力の符号
と絶対値を参照するテーブルを予め設定しておくことに
よって同様に解決できる。
(Equation 15) Prior to that, the value of the deviation input of the manipulated variable when identifying the deviation model Δy m of the control amount is calculated based on the deviation between the target value of the control amount and the actual measurement value. It is created in 3a (S4). This is to focus on the nonlinear characteristic of the furnace, in which the rate of change in the controlled variable is different on the side of increasing the manipulated variable and on the side of decreasing the manipulated variable, and it is intended to compensate for this nonlinear characteristic when creating the deviation model Δy m. is there.
For example, when the superheated steam temperature is controlled by changing the flow state around the heat transfer tube 22 with the primary air 15, if the measured value of the superheated steam temperature is lower than the target value, the primary air 1
The deviation model is identified by inputting the deviation input in the direction of increasing 5 and conversely, when the measured value of the superheated steam temperature is higher than the target value, by inputting the deviation input in the direction of decreasing the primary air 15. Further, the magnitude (absolute value) of the deviation input may be changed depending on the magnitude (absolute value) of the deviation between the actually measured value of the superheated steam temperature and the target value. By the method as described above, it is possible to create the deviation model in consideration of the rate of change of the superheated steam temperature which differs between the rising side and the falling side of the amount of the primary air 15. In addition, for a multi-input multi-output system that controls multiple controlled variables with multiple manipulated variables, the sign and absolute value of the deviation input for each manipulated variable can be determined from the magnitude relationship between each controlled variable and the corresponding target value. The same problem can be solved by setting the reference table in advance.

【0022】更に,ステップ応答モデル作成部3bにお
いて,上記同定した偏差モデル△y m と,上記ステップ
S3において求めた操作量不変時制御量予測値y0 と,
むだ時間τを考慮して,下記のステップ応答モデルym
を定める(S6)。
Further, the step response model creating section 3b
And the deviation model Δy identified above mAnd the above steps
Predicted value y of manipulated variable invariant control variable obtained in S30When,
Considering the dead time τ, the following step response model ym
Is determined (S6).

【数16】 上記操作量不変時制御量予測値y0 ,偏差モデル△
m ,及びステップ応答モデルym との関係の一例を図
5に示す。 (ステップS7) 次に上記誤差計算部2において,現
時点における制御量の実測値y(k)と上記シミュレー
タ部6の計算値ysim (k)との誤差△y(k)を求め
る。 △y(k)=y(k)−ysim (k)
(Equation 16) The manipulated variable invariant time controlled variable predicted value y 0 , deviation model Δ
y m, and an example of the relationship between the step response model y m shown in FIG. (Step S7) Next, the error calculation unit 2 obtains an error Δy (k) between the actual measured value y (k) of the control amount at the present time and the calculated value y sim (k) of the simulator unit 6. Δy (k) = y (k) −y sim (k)

【0023】(ステップS8〜S11) 上記△y
(k)を外乱によるものと見なし,この外乱が今後も続
くと考えて,制御量の予測値y(τ+k+p)を
(Steps S8-S11) Δy
Considering that (k) is due to disturbance, and assuming that this disturbance will continue in the future, the predicted value y (τ + k + p) of the controlled variable

【数17】 とする(S8)。上記制御量の予測値yが上記目標軌道
d と一致するような制御を行えばよいから,次式で与
えられる評価関数を最小にするような操作量の入力偏差
ベクトル{△u(k),△u(k+1),...,△u
(k+p−1)})を決定する。
[Equation 17] (S8). Since it is sufficient to perform control so that the predicted value y of the control amount matches the target trajectory y d , the input deviation vector {Δu (k) of the operation amount that minimizes the evaluation function given by , Δu (k + 1) ,. . . , △ u
(K + p-1)}) is determined.

【0024】[0024]

【数18】 この問題は最小二乗問題として解かれ,次のように現時
点における操作量の偏差ベクトル△u(k)が導出され
る(S9)。
(Equation 18) This problem is solved as a least squares problem, and the deviation vector Δu (k) of the current manipulated variable is derived as follows (S9).

【0025】[0025]

【数19】 前操作量u(k−1)に対し,上記△u(k)を加算し
(S10)て求めた操作量u(k)を実プロセスAに入
力する。また上記操作量u(k)は,次の制御周期にお
ける上記誤差計算部2への入力操作量となる(S1
1)。以上のステップS8〜ステップS11の処理を上
記操作量決定部5において行う。上記ステップS1から
ステップS11までの処理を,制御周期ごとに繰り返
す。
[Equation 19] The above-mentioned Δu (k) is added to the previous operation amount u (k−1) and the operation amount u (k) obtained by (S10) is input to the actual process A. Further, the operation amount u (k) becomes an input operation amount to the error calculation unit 2 in the next control cycle (S1).
1). The operation amount determination unit 5 performs the above-described steps S8 to S11. The processing from step S1 to step S11 is repeated for each control cycle.

【0026】以上説明した本制御方法及び装置の特徴を
以下に示す。 (1)シミュレータ6を用いてオンラインで実プロセス
Aの将来の挙動を予測し,制御周期ごとにステップ応答
モデル(数値モデル)を作成し直しているため,流動床
式焼却炉の特性が定常状態から大きく外れた場合にも,
評価関数の重み係数行列に反映された所期の制御特性を
安定して実現できる。 (2)現時点での制御量の目標値と実測値との偏差を基
に上記ステップ応答モデルを作成する際の操作量の偏差
入力を決定しているので,操作量の上げ側と下げ側で制
御量の変化特性が異なる炉の非線形特性を考慮に入れた
制御を実現できる。 (3)シミュレータ6によってモデル化できなかった部
分や,流動床式焼却炉に特有の瞬間的な燃焼による外乱
の存在に対しては,実測値とシミュレータ6による計算
値の差をフィードバックして考慮していることから,こ
れらのモデル化誤差や外乱に対してロバストになってい
る。 (4)ごみや燃料の投入から,砂層12内での一次燃
焼,フリーボード17での二次燃焼,ボイラー11での
蒸気発生,更には砂層12内での過熱蒸気化と,数多く
のプロセスを経る内部循環型の流動床式焼却炉におい
て,各プロセスに存在するむだ時間を考慮しながら,最
終的に必要な安定した過熱蒸気量と温度の制御を行うこ
とが出来る。 以上のように,本実施の形態の流動床式焼却炉の制御装
置によれば,炉の状態の時々刻々の変化に対して十分に
対応でき,炉の非線形特性を考慮に入れ,より安定的に
制御量を目標値に制御することができる。
The features of the control method and apparatus described above are as follows. (1) Since the future behavior of the real process A is predicted online using the simulator 6 and the step response model (numerical model) is recreated for each control cycle, the characteristics of the fluidized bed incinerator are in a steady state. Even if it greatly deviates from
The desired control characteristics reflected in the weighting coefficient matrix of the evaluation function can be stably realized. (2) Since the deviation input of the manipulated variable at the time of creating the above step response model is determined based on the deviation between the target value of the controlled variable and the actual measured value at the present time, it is determined whether the manipulated variable is increased or decreased. It is possible to realize control that takes into account the nonlinear characteristics of the furnace in which the change characteristics of the controlled variable are different. (3) For the parts that could not be modeled by the simulator 6 and the presence of disturbances due to the instantaneous combustion peculiar to the fluidized bed incinerator, the difference between the measured value and the calculated value by the simulator 6 is considered as feedback. Therefore, it is robust against these modeling errors and disturbances. (4) From the input of dust and fuel, the primary combustion in the sand layer 12, the secondary combustion in the freeboard 17, the steam generation in the boiler 11, and the superheated vaporization in the sand layer 12 In the internal circulation type fluidized bed incinerator that is passed through, it is possible to control the finally required stable superheated steam amount and temperature while considering the dead time existing in each process. As described above, according to the controller of the fluidized bed incinerator of the present embodiment, it is possible to sufficiently cope with the momentary changes in the state of the furnace, and to consider the nonlinear characteristics of the furnace to make it more stable. In addition, the controlled variable can be controlled to the target value.

【0027】[0027]

【発明の効果】本発明に係る流動床式焼却炉の制御方法
及び装置は,上記したように構成されているため,炉の
運転状態の時々刻々の急激な変化に対して十分に対応で
き,炉の非線形特性を考慮に入れ,より安定的に制御量
を目標値に制御することができる。
Since the control method and apparatus for a fluidized bed incinerator according to the present invention are configured as described above, it is possible to sufficiently cope with a sudden change in the operating state of the furnace. Taking the nonlinear characteristics of the furnace into consideration, the controlled variable can be controlled more stably to the target value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態に係る流動床式焼却炉の
制御装置の概略構成を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a control device for a fluidized bed incinerator according to an embodiment of the present invention.

【図2】 上記制御装置を適用可能な流動床式焼却炉の
概略構成を示す模式図。
FIG. 2 is a schematic diagram showing a schematic configuration of a fluidized bed incinerator to which the above control device can be applied.

【図3】 上記流動床式焼却炉の制御装置の動作手順を
示すフロー図。
FIG. 3 is a flowchart showing an operation procedure of the control device of the fluidized bed incinerator.

【図4】 制御値の目標軌道yd の設定方法の一例を示
す図。
4 is a diagram showing an example of a method of setting the target trajectory y d of the control value.

【図5】 操作量不変時制御量予測値y0 ,偏差モデル
△ym ,及びステップ応答モデルym との関係の一例を
示す図。
FIG. 5 is a diagram showing an example of a relationship between a manipulated variable invariant time controlled variable predicted value y 0 , a deviation model Δy m , and a step response model y m .

【図6】 従来の流動床式ごみ焼却炉の制御方法の概略
構成を示すブロック図。
FIG. 6 is a block diagram showing a schematic configuration of a conventional fluidized bed refuse incinerator control method.

【符号の説明】[Explanation of symbols]

1…目標軌道生成部 2…誤差計算部 2a…現時点の制御量計算部 3…数式モデル同定部 3a…モデル作成用ステップ応答入力作成部 3b…ステップ応答モデル作成部 4…操作量不変時の制御量予測値計算部 5…操作量決定部 A…実プロセス 11…ホッパ 12…砂層部 13…弁 14…弁 15…一次空気 16…一次空気 17…フリーボード 18…弁 19…二次空気 20…排ガス出口 21…廃熱ボイラ 22…伝熱管 1 ... Target trajectory generation unit 2 ... Error calculation unit 2a ... Current control amount calculation unit 3 ... Mathematical model identification unit 3a ... Model creating step response input creating unit 3b ... Step response model creating unit 4 ... Control when operation amount does not change Quantity predictive value calculation unit 5 ... Manipulation amount determination unit A ... Actual process 11 ... Hopper 12 ... Sand layer portion 13 ... Valve 14 ... Valve 15 ... Primary air 16 ... Primary air 17 ... Freeboard 18 ... Valve 19 ... Secondary air 20 ... Exhaust gas outlet 21 ... Waste heat boiler 22 ... Heat transfer tube

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/46 ZAB F23G 5/46 ZABB (72)発明者 北村 章 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location F23G 5/46 ZAB F23G 5/46 ZABB (72) Inventor Akira Kitamura 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo No.5 Kobe Steel Works, Ltd. Kobe Research Institute

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも,1次空気の吹き込みにより
流動化された砂層内で可燃物及び燃料を燃焼させ,その
廃熱による発生蒸気を上記砂層内に循環させて加熱する
流動床式焼却炉の制御方法において,制御量の目標値と
実測値に基づいて制御量の目標軌道を生成する目標軌道
生成工程と,操作量に対する制御量の挙動をオンライン
で計算するシミュレータからの出力を用いて,一定の操
作量を加え続けた場合の制御量を計算する操作量不変時
制御量計算工程と,上記シミュレータからの出力を用い
て,現時点から一定時間後までの操作量と制御量の関係
を表す数式モデルを所定の制御周期毎に逐次同定する数
式モデル同定工程と,現時点での制御量の実測値と,上
記シミュレータからの出力を用いた現時点での制御量の
計算値との誤差を求める誤差計算工程と,上記目標軌道
と,上記数式モデル同定工程で同定された数式モデル
と,上記誤差計算工程で求めた誤差と,上記操作量不変
時制御量計算工程で求めた制御量とに基づいて,予測制
御手法により現時点における操作量の偏差量を決定し,
直前の操作量に該偏差量を加えることによって現時点で
の操作量を決定する操作量決定工程とを具備してなるこ
とを特徴とする流動床式焼却炉の制御方法。
1. A fluidized bed incinerator in which at least a combustible material and a fuel are combusted in a sand layer fluidized by blowing primary air, and steam generated by waste heat of the combustible material and fuel is circulated and heated in the sand layer. In the control method, the target trajectory generation process that generates the target trajectory of the controlled variable based on the target value and the measured value of the controlled variable, and the output from the simulator that calculates the behavior of the controlled variable with respect to the manipulated variable online Using the output from the above-mentioned simulator and the operation amount invariant time control amount calculation step for calculating the control amount when the operation amount is continued to be added, a mathematical expression representing the relationship between the operation amount and the control amount from the present time to a certain time later Mathematical model identification process that sequentially identifies the model for each predetermined control cycle, and obtains the error between the actual measured value of the controlled variable at the present time and the calculated value of the controlled variable at the present time using the output from the simulator. Error calculation process, the target trajectory, the mathematical model identified in the mathematical model identification process, the error calculated in the error calculation process, and the control amount calculated in the operation amount invariant time controlled variable calculation process. Based on, the deviation amount of the current manipulated variable is determined by the predictive control method,
A control method for a fluidized bed incinerator, comprising a step of determining the operation amount at the present time by adding the deviation amount to the immediately preceding operation amount.
【請求項2】 上記シミュレータが,上記焼却炉内の複
数部位における質量収支モデル,熱量収支モデル,及び
反応モデルによって構成されてなる請求項1記載の流動
床式焼却炉の制御方法。
2. The method for controlling a fluidized bed incinerator according to claim 1, wherein the simulator comprises a mass balance model, a heat balance model, and a reaction model at a plurality of parts in the incinerator.
【請求項3】 上記数式モデルを, 【数1】 とした請求項1又は2記載の流動床式焼却炉の制御方
法。
3. The above mathematical model is expressed by the following equation: The method for controlling a fluidized bed incinerator according to claim 1 or 2, wherein
【請求項4】 現時点での制御量の目標値と実測値との
偏差をもとに,操作量のステップ入力値を決定し,該ス
テップ入力値に対するステップ応答により上記数式モデ
ルの係数行列Aiを決定してなる請求項3記載の流動床
式焼却炉の制御方法。
4. The step input value of the manipulated variable is determined based on the deviation between the target value of the controlled variable and the actual measured value at the present time, and the coefficient matrix Ai of the mathematical model is determined by the step response to the step input value. The method for controlling a fluidized bed incinerator according to claim 3, which is determined.
【請求項5】 上記予測制御手法によって決定される現
時点における操作量の偏差量が, 【数2】 で与えられる評価関数を最小にする解を導出することに
よって得られる, 【数3】 により表される請求項1〜4のいずれかに記載の流動床
式焼却炉の制御方法。
5. The deviation amount of the manipulated variable at the present time determined by the predictive control method is expressed by the following equation: Obtained by deriving a solution that minimizes the evaluation function given by, The method for controlling a fluidized bed incinerator according to any one of claims 1 to 4, represented by
【請求項6】 少なくとも,1次空気の吹き込みにより
流動化された砂層内で可燃物及び燃料を燃焼させ,その
廃熱による発生蒸気を上記砂層内に循環させて加熱する
流動床式焼却炉の制御装置において,操作量に対する制
御量の挙動をオンラインで計算するシミュレータ手段
と,制御量の目標値と実測値に基づいて制御量の目標軌
道を生成する目標軌道生成手段と,上記シミュレータ手
段からの出力を用いて,一定の操作量を加え続けた場合
の制御量を計算する操作量不変時制御量計算手段と,上
記シミュレータ手段からの出力を用いて,現時点から一
定時間後までの操作量と制御量の関係を表す数式モデル
を所定の制御周期毎に逐次同定する数式モデル同定手段
と,現時点での制御量の実測値と,上記シミュレータ手
段からの出力を用いた現時点での制御量の計算値との誤
差を求める誤差計算手段と,上記目標軌道と,上記数式
モデル同定手段で同定された数式モデルと,上記誤差計
算手段で求めた誤差と,上記操作量不変時制御量計算手
段で求めた制御量とに基づいて,予測制御手法により現
時点における操作量の偏差量を決定し,直前の操作量に
該偏差量を加えることによって現時点での操作量を決定
する操作量決定手段とを具備してなることを特徴とする
流動床式焼却炉の制御装置。
6. A fluidized bed incinerator in which at least a combustible material and a fuel are combusted in a sand layer fluidized by blowing in primary air, and steam generated by waste heat of the combustible material and fuel is circulated and heated in the sand layer. In the control device, a simulator means for online calculating the behavior of the controlled variable with respect to the manipulated variable, a target trajectory generation means for generating a controlled trajectory of the controlled variable based on the target value and the measured value of the controlled variable, and the simulator means Using the output, the operation amount invariant time control amount calculation means for calculating the control amount when a constant operation amount is continuously added, and the output from the simulator means, The mathematical model identifying means for sequentially identifying the mathematical model expressing the relationship of the controlled variables at every predetermined control cycle, the measured value of the controlled variable at the present time, and the output from the simulator means were used. An error calculating means for obtaining an error from the calculated value of the control amount at the present time, the target trajectory, the mathematical model identified by the mathematical model identifying means, the error calculated by the error calculating means, and the manipulated variable invariant. Based on the control amount calculated by the time control amount calculating means, the deviation amount of the operation amount at the present time is determined by the predictive control method, and the operation amount at the present time is determined by adding the deviation amount to the immediately preceding operation amount. A control device for a fluidized bed incinerator, comprising: an operation amount determining means.
【請求項7】 上記シミュレータ手段が,上記焼却炉内
の複数部位における質量収支モデル,熱量収支モデル,
及び反応モデルによって構成されてなる請求項5記載の
流動床式焼却炉の制御装置。
7. The simulator means comprises a mass balance model, a heat balance model at a plurality of sites in the incinerator,
6. The control device for a fluidized bed incinerator according to claim 5, wherein the control device comprises a reaction model and a reaction model.
【請求項8】 上記数式モデルを, 【数4】 とした請求項6又は7記載の流動床式焼却炉の制御装
置。
8. The mathematical model described above is rewritten as The control device for a fluidized bed incinerator according to claim 6 or 7.
【請求項9】 現時点での制御量の目標値と実測値との
偏差をもとに,操作量のステップ入力値を決定し,該ス
テップ入力値に対するステップ応答により上記数式モデ
ルの係数行列Aiを決定してなる請求項8記載の流動床
式焼却炉の制御装置。
9. A step input value of a manipulated variable is determined based on a deviation between a target value of a controlled variable at present and an actual measured value, and a coefficient matrix Ai of the mathematical model is determined by a step response to the step input value. The control device for a fluidized bed incinerator according to claim 8, which is determined.
【請求項10】 上記予測制御手法によって決定される
現時点における操作量の偏差量が, 【数5】 で与えられる評価関数を最小にする解を導出することに
よって得られる, 【数6】 により表される請求項6〜9のいずれかに記載の流動床
式焼却炉の制御装置。
10. The deviation amount of the manipulated variable at the present time determined by the predictive control method is Which is obtained by deriving a solution that minimizes the evaluation function given by The control device for a fluidized bed incinerator according to any one of claims 6 to 9, which is represented by:
JP11614496A 1996-05-10 1996-05-10 Method and device for control of fluidized bed incineration furnace Pending JPH09303741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11614496A JPH09303741A (en) 1996-05-10 1996-05-10 Method and device for control of fluidized bed incineration furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11614496A JPH09303741A (en) 1996-05-10 1996-05-10 Method and device for control of fluidized bed incineration furnace

Publications (1)

Publication Number Publication Date
JPH09303741A true JPH09303741A (en) 1997-11-28

Family

ID=14679842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11614496A Pending JPH09303741A (en) 1996-05-10 1996-05-10 Method and device for control of fluidized bed incineration furnace

Country Status (1)

Country Link
JP (1) JPH09303741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151355A (en) * 1997-07-28 1999-02-26 Kawasaki Heavy Ind Ltd Method and apparatus for estimating residence amount in furnace in incinerator
JP2009192215A (en) * 2009-06-04 2009-08-27 Kobelco Eco-Solutions Co Ltd Controller for incinerator
CN112387208A (en) * 2020-11-17 2021-02-23 山东新马制药装备有限公司 Medicinal fluidized bed control system based on near infrared and distributed predictive control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151355A (en) * 1997-07-28 1999-02-26 Kawasaki Heavy Ind Ltd Method and apparatus for estimating residence amount in furnace in incinerator
JP2009192215A (en) * 2009-06-04 2009-08-27 Kobelco Eco-Solutions Co Ltd Controller for incinerator
CN112387208A (en) * 2020-11-17 2021-02-23 山东新马制药装备有限公司 Medicinal fluidized bed control system based on near infrared and distributed predictive control
CN112387208B (en) * 2020-11-17 2022-12-09 山东新马制药装备有限公司 Medicinal fluidized bed control system based on near infrared and distributed predictive control

Similar Documents

Publication Publication Date Title
Shi et al. Combustion optimization of ultra supercritical boiler based on artificial intelligence
JP2007533947A (en) Waste burning process model and control
US20070225864A1 (en) Controlling a waste combustion process
JP5074061B2 (en) Control of the waste combustion process
JP3712329B2 (en) Process control unit
CN114610093A (en) Burning furnace air supply control method based on variable period prediction of hot blast stove
JP4188859B2 (en) Operation control method and operation control apparatus for waste treatment plant equipment
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JPH09303741A (en) Method and device for control of fluidized bed incineration furnace
Chong et al. Prediction of gaseous emissions from a chain grate stoker boiler using neural networks of ARX structure
JP2000097422A (en) Waste incinerating plant, apparatus and method for controlling the same, and method for predicting gas composition distribution thereof
Ghaffari et al. An optimization approach based on genetic algorithm for modeling Benson type boiler
CN114186514A (en) Key process parameter analysis method based on multi-software coupling simulation MSWI process
JPH10318503A (en) Method and system for controlling fluidized bed incinerator
Cho et al. Design of dynamic plant model and model-based controller for a heat recovery system with a swirling flow incinerator
Placek et al. Support of biomass boiler control design by modeling
JP4942788B2 (en) Incinerator control device
JP2000028123A (en) Secondary combustion controller for refuse incinerator
JP2968709B2 (en) Control method of fluidized bed refuse incinerator
JP3783418B2 (en) Waste incinerator operation training equipment
JP2965142B2 (en) Adaptive and predictive control method and apparatus for combustion furnace
JPH11325433A (en) Method and apparatus for controlling fluidized bed type incinerator
Neuman et al. Non-linear model of coal fired steam boiler applied to engineering simulator
Molloy Modelling and predictive control of a drum-type boiler
CN118348828A (en) Simulation system and method for fluidized bed sludge incineration