JP2967106B2 - Electronic component manufacturing method - Google Patents

Electronic component manufacturing method

Info

Publication number
JP2967106B2
JP2967106B2 JP61088269A JP8826986A JP2967106B2 JP 2967106 B2 JP2967106 B2 JP 2967106B2 JP 61088269 A JP61088269 A JP 61088269A JP 8826986 A JP8826986 A JP 8826986A JP 2967106 B2 JP2967106 B2 JP 2967106B2
Authority
JP
Japan
Prior art keywords
electronic component
plating solution
sodium
thiosulfate
gold plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61088269A
Other languages
Japanese (ja)
Other versions
JPS62247081A (en
Inventor
二郎 牛尾
修 宮沢
明 富沢
尚子 松浦
中 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61088269A priority Critical patent/JP2967106B2/en
Priority to CN86106675.8A priority patent/CN1003524B/en
Priority to KR1019860008554A priority patent/KR910006643B1/en
Priority to EP86114143A priority patent/EP0219788B1/en
Priority to DE8686114143T priority patent/DE3663690D1/en
Priority to US07/091,457 priority patent/US4804559A/en
Publication of JPS62247081A publication Critical patent/JPS62247081A/en
Priority to US07/143,959 priority patent/US4880464A/en
Priority to US07/184,061 priority patent/US4963974A/en
Priority to US07/532,656 priority patent/US5202151A/en
Application granted granted Critical
Publication of JP2967106B2 publication Critical patent/JP2967106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、還元型無電解金めっき液によるめっきによ
って、電子部品が製造されるようにした電子部品の製造
方法に関するものである。 〔従来の技術〕 従来の還元型無電解金めっき液は、例えばプレイティ
ング(Plating)第57巻、(1970)、第914頁〜第920頁
に記載されているOkinaka氏によるもの、米国特許第330
0328号に記載されているLuce氏によるもの、あるいは特
公昭56−20353号に記載されているハック氏等によるも
のがある。 〔発明者が解決しようとする問題点〕 上記の従来技術のうち、Okinaka氏の液は多量のシア
ン化物イオンを含み、作業時及び廃液処理時の安全性に
問題があった。またルース(Luce)氏による液とハック
氏等による液は、どちらもシアン化物を含有しない還元
型無電解金めっき液であるが、金源中の金イオンが3価
であるため、Okinaka氏の液に比べると多量の還元剤が
必要であった。そして、ルース(Luce)氏の液は不安定
で、めっき開始後2時間ほどで液中に沈澱が生じて、め
っきが続けられなかった。 本発明の目的は、還元型無電解金めっき液を用いて作
業時および廃液処理時の安全性に問題がなく、しかも金
が厚付けされた状態として電子部品に対しめっき処理が
施され得る電子部品の製造方法を提供することにある。 〔問題点を解決するための手段〕 上記目的は、電子部品を、金源としてのジチオスルフ
ァト金(I)酸塩、還元剤としてのチオ尿素、錯化剤と
してのチオ硫酸塩、安定剤としての亜硫酸塩およびpH調
整剤としての塩酸あるいは水酸化ナトリウムを含む還元
型無電解金めっき液中に浸漬し、上記電子部品に金めっ
きを施すことで達成される。更には、電子部品を、金源
としてのハロゲン化金酸塩及びチオ硫酸塩の混合物、還
元剤としてのチオ尿素、錯化剤としてのチオ硫酸塩、安
定剤としての亜硫酸塩及びpH調整剤としての塩酸あるい
は水酸化ナトリウムを含む還元型無電解金めっき液中に
浸漬し、上記電子部品に金めっきを施すことで達成され
る。 〔作用〕 従来の還元型無電解金めっき液で用いられたシアン化
物イオンは、金イオンと強く結合して、還元剤によって
金イオンが還元されて金の沈澱が生じるのを防いでい
る。チオスルファト金(I)錯体中のチオ硫酸イオン
は、シアン化物イオンより弱く金イオンと結合するもの
の、弱い還元剤を用いればチオスルファト金(I)錯体
を金源として含むめっき液は安定で、長時間使用でき
る。 チオスルファト金(I)錯体は、金を中心原子として
1分子中に少なくとも一つのチオ硫酸イオンを持つ錯体
である。例えばジチオスルファト金(I)酸塩であり、
その分子式はM3〔Au(S2O3〕である。(但し、式中
のMはNa,K等の金属を表わす。)また、この錯体は、ハ
ロゲン化金錯塩とチオ硫酸塩を混合した水溶液中に生成
するので、それを金源として用いることもできる。ここ
でハロゲン化金酸塩は、例えばテトラクロロ金酸塩であ
り、その分子式はMAuCl4である(但し、式中のMはNa、
K等の金属を表わす。)。またチオ硫酸塩は、例えばM2
S2O3で表わされるものである(但し、式中のMはNa,K等
の金属を表わす。)。 本発明の還元型無電解金めっき液には、上述の金源の
他に還元剤が含まれる。さらに、錯化剤、安定剤、ある
いはpH調整剤が含まれるのが有利である。ここで、還元
剤は、金の表面において還元反応性を示すもの、例えば
チオ尿素である。錯化剤は金イオンと結合して錯体を形
成するもの、例えば上述のチオ硫酸塩である。また安定
剤は錯化剤の分解を防ぐために用い、例えば錯化剤とし
てチオ硫酸塩を用いた場合には亜硫酸塩例えば分子式M2
SO3で表わされるものである(但し、式中のMはNa,K等
の金属を表わす。)。さらにpH調整剤は、めっき液の初
期のpHを所望の値とするための添加物であり、例えば塩
酸あるいは水酸化ナトリウムである。さらに好ましくは
pH緩衝効果のある化合物も、pH調整剤としてめっき液に
添加することができる。例えば塩化アンモニウムを添加
する。 以上、本発明の還元型無電解金めっき液の成分につい
て、具体的な化合物名と分子式を示した。次にこれらの
各成分について、分子式中のMがNaである場合を例とし
て以下(a)〜(f)に量的限定とその限定理由を述べ
る。 (a)ジチオスルファト金(I)酸ナトリウムの配合量
は1〜50g/が良く、好ましくは3〜20g/であり、特
に好ましくは5〜13g/である。1g/より少ないとめ
っき反応がほとんど進行せず、50g/より多いと還元型
無電解金めっき液中に金の沈殿が生じる。 (b)テトラクロロ金(III)酸ナトリウムとチオ硫酸
ナトリウムの混合物を金源として用いる場合、テトラク
ロロ金(III)酸ナトリウムの配合量は0.5〜40g/が良
く、好ましくは5〜20g/、特に好ましくは5〜11g/
である。0.5g/より少ないとめっき反応がほとんど進
行せず、40g/より多いと還元型無電解金めっき液中に
金の沈殿が生じる。また、チオ硫酸ナトリウムの配合量
は、0.6〜75g/が良く、好ましくは5〜30g/、特に
好ましくは9〜20g/である。0.6g/より少ないと還
元型無電解金めっき液は金の沈殿を生じやすく、75g/
より多いとイオウの沈殿が生じる。 (c)チオ尿素の配合量は0.1〜75g/が良く、好まし
くは7〜40g/であり、特に好ましくは8〜20g/であ
る。0.1g/より少ないとめっき反応はほとんど進行せ
ず、75g/より多いとめっき反応に特別の効果がない。 (d)錯化剤としてのチオ硫酸ナトリウムの配合量は、
5〜200g/が良く、好ましくは25〜100g/であり、特
に好ましくは25〜50g/である。5g/より少ないと還
元型無電解金めっき液中に金の沈殿が生じやすく、200g
/より多いとイオウの沈殿が生じる。 (e)亜硫酸ナトリウムの配合量は2〜100g/が良
く、好ましくは10〜90g/であり、特に好ましくは20〜
80g/である。2g/より少ないとめっき液中にイオウ
の沈殿が生じやすく、100g/より多いとめっき反応は
ほとんど進行しない。 (f)塩化アンモニウムの配合量は、5〜50g/が良
く、好ましくは20〜50g/であり、特に好ましくは20〜
40g/である。5g/より少ないと、めっき反応開始後
急速にめっき反応は進行しなくなり、50g/より多いと
めっき反応に特別の効果がない。 還元型無電解金めっき液のpH値は3.0〜11.0、好まし
くは4.0〜10.0、特に好ましくは5.0〜9.0である。液温
は60〜90℃、好ましくは65〜85℃、特に好ましくは70〜
80℃である。 〔発明の実施例〕 以下に本発明の実施例を示す。 実施例1. 大きさ2.5cm×2.5cm、厚さ0.3mmの銅板に厚さ2μm
のニッケル皮膜を、次に厚さ1μmの金皮膜をそれぞれ
電気めっきでつけて試料とした。試料を脱脂液で、次に
希塩酸で洗浄後よく水洗する。窒素ブローで乾燥してか
ら試料の重量を秤量した。この試料を、水1あたり以
下に示す還元型無電解金成分のめっき液に2時間浸し
た。液温は60℃で、塩酸によってpHを4.0とした。 (還元型無電解金めっき液の組成) 還元型無電解金めっき液を強制かくはんし、30分毎に
試料を取り出し金膜厚を重量法によって測定した。その
結果を図の曲線1に示した。 金膜厚は2時間で1.2μmに達した。析出した金膜は
無光沢の明黄色で、液中に沈殿は観測されなかった。 実施例2. 上記実施例1と同様に準備した試料を、水1あたり
以下に示す成分の還元型無電解金めっき液に2時間浸し
た。液温は80℃で、塩酸によってpHを5.0とした。 (還元型無電解金めっき液の組成) 還元型無電解金めっき液を強制かくはんし、実施例1
と同様に金膜厚を測定した。その結果を図の曲線2に示
した。金膜厚は2時間で1.3μmに達した。金膜は無光
沢の明黄色で、液中に沈殿は観測されなかった。 実施例3. 上記実施例1と同様に準備した試料を、水1あたり
以下に示す成分の還元型無電解金めっき液に2時間浸し
た。液温は80℃で、塩酸によってpHを5.0とした。 (還元型無電解金めっき液の組成) 還元型無電解金めっき液を強制かくはんし、実施例1
と同様に金膜厚を測定した。その結果を図の曲線3に示
した。金膜厚は2時間で1.7μmに達した。金膜は無光
沢の明黄色で、液中に沈殿は生じなかった。 〔発明の効果〕 以上、述べたように、本発明によれば、シアン化物イ
オンを全く含まず、かつ毒性が低く、しかもシアン化物
イオンを含んだ従来の還元型無電解金めっき液と同程度
の安定性を持つ還元型無電解金めっき液を用いて作業時
および廃液処理時の安全性に問題のない金めっき方法が
得られ、特にセラミック基板などを被めっき物として金
めっき工程に導入される場合には、めっき工程は大幅に
合理化され得、被めっき物は金が厚付けされた電子部品
として容易に製造され得るものとなっている。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electronic component by which an electronic component is manufactured by plating with a reduced electroless gold plating solution. 2. Description of the Related Art A conventional reduction-type electroless gold plating solution is disclosed in, for example, Plating, Vol. 330
No. 0328 and by Hack et al. Described in JP-B-56-20353. [Problems to be Solved by the Inventor] Among the above-mentioned prior arts, Mr. Okinaka's liquid contains a large amount of cyanide ions, and has a problem in safety during work and waste liquid treatment. Both the solution by Luce and the solution by Hack et al. Are reduction-type electroless gold plating solutions that do not contain cyanide, but because gold ions in the gold source are trivalent, Okinaka's A large amount of reducing agent was required as compared with the liquid. Then, the solution of Luce was unstable, and about 2 hours after the start of plating, precipitation occurred in the solution, and plating could not be continued. An object of the present invention is to provide an electronic device that can be subjected to a plating process on an electronic component in a state where gold is thickened without any problem in operation and waste liquid treatment using a reduced electroless gold plating solution. An object of the present invention is to provide a method for manufacturing a component. [Means for Solving the Problems] The object of the present invention is to provide an electronic component comprising dithiosulfatoaurate (I) as a gold source, thiourea as a reducing agent, thiosulfate as a complexing agent, and thiosulfate as a stabilizer. This is achieved by immersing in a reduced electroless gold plating solution containing a sulfite and hydrochloric acid or sodium hydroxide as a pH adjuster, and applying gold plating to the electronic component. Further, the electronic component may be used as a mixture of a halogenated aurate and a thiosulfate as a gold source, thiourea as a reducing agent, thiosulfate as a complexing agent, sulfite as a stabilizer and a pH adjuster. This is achieved by immersing the electronic component in a reduced electroless gold plating solution containing hydrochloric acid or sodium hydroxide. [Function] Cyanide ions used in a conventional reduction-type electroless gold plating solution are strongly bonded to gold ions, and prevent gold ions from being reduced by a reducing agent to cause precipitation of gold. The thiosulfate ion in the thiosulfato gold (I) complex is weaker than the cyanide ion and binds to the gold ion. Can be used. The thiosulfato gold (I) complex is a complex having at least one thiosulfate ion in one molecule with gold as a central atom. For example, dithiosulfatoaurate (I),
Its molecular formula is M 3 [Au (S 2 O 3 ) 2 ]. (However, M in the formula represents a metal such as Na or K.) Further, since this complex is formed in an aqueous solution obtained by mixing a gold halide complex salt and a thiosulfate, it can be used as a gold source. it can. Here, the halogenated gold salt is, for example, tetrachloroaurate, and its molecular formula is MAuCl 4 (where M is Na,
Represents a metal such as K. ). Thiosulfate is, for example, M 2
It is represented by S 2 O 3 (however, M in the formula represents a metal such as Na, K). The reduction type electroless gold plating solution of the present invention contains a reducing agent in addition to the above-mentioned gold source. In addition, it is advantageous to include complexing agents, stabilizers or pH adjusters. Here, the reducing agent is one that exhibits reduction reactivity on the surface of gold, for example, thiourea. The complexing agent is one that forms a complex by bonding with a gold ion, for example, the thiosulfate described above. The stabilizer is used to prevent the decomposition of the complexing agent. For example, when a thiosulfate is used as the complexing agent, a sulfite such as a molecular formula M 2
It is represented by SO 3 (however, M in the formula represents a metal such as Na or K). Further, the pH adjuster is an additive for adjusting the initial pH of the plating solution to a desired value, for example, hydrochloric acid or sodium hydroxide. More preferably
A compound having a pH buffering effect can also be added to the plating solution as a pH adjuster. For example, ammonium chloride is added. The specific compound names and molecular formulas of the components of the reduced electroless gold plating solution of the present invention have been described above. Next, for each of these components, quantitative limitation and reasons for the limitation will be described below in (a) to (f), taking as an example a case where M in the molecular formula is Na. (A) The compounding amount of sodium dithiosulfatogold (I) is preferably 1 to 50 g /, preferably 3 to 20 g /, and particularly preferably 5 to 13 g /. If it is less than 1 g /, the plating reaction hardly proceeds, and if it is more than 50 g /, gold precipitates in the reduced electroless gold plating solution. (B) When a mixture of sodium tetrachloroaurate (III) and sodium thiosulfate is used as a gold source, the amount of sodium tetrachloroaurate (III) is preferably 0.5 to 40 g /, more preferably 5 to 20 g /, Particularly preferably, 5 to 11 g /
It is. If the amount is less than 0.5 g /, the plating reaction hardly proceeds, and if it is more than 40 g /, gold precipitates in the reduced electroless gold plating solution. The amount of sodium thiosulfate is preferably 0.6 to 75 g /, preferably 5 to 30 g /, and particularly preferably 9 to 20 g /. If it is less than 0.6 g /, the reduced electroless gold plating solution is likely to cause gold precipitation,
Higher amounts result in sulfur precipitation. (C) The compounding amount of thiourea is preferably 0.1 to 75 g /, preferably 7 to 40 g /, and particularly preferably 8 to 20 g /. When the amount is less than 0.1 g /, the plating reaction hardly proceeds, and when the amount is more than 75 g /, there is no special effect on the plating reaction. (D) The compounding amount of sodium thiosulfate as a complexing agent is
The amount is preferably 5 to 200 g /, preferably 25 to 100 g /, and particularly preferably 25 to 50 g /. If the amount is less than 5 g / g, gold precipitates easily in the reduced electroless gold plating solution, and 200 g
If more than this, sulfur precipitates. (E) The compounding amount of sodium sulfite is preferably 2 to 100 g /, preferably 10 to 90 g /, and particularly preferably 20 to 90 g /.
80 g /. If the amount is less than 2 g /, the precipitation of sulfur easily occurs in the plating solution, and if it is more than 100 g / day, the plating reaction hardly proceeds. (F) The compounding amount of ammonium chloride is preferably 5 to 50 g /, more preferably 20 to 50 g /, and particularly preferably 20 to 50 g /.
40g /. If the amount is less than 5 g /, the plating reaction does not proceed rapidly after the start of the plating reaction. If the amount is more than 50 g /, there is no special effect on the plating reaction. The pH value of the reduced electroless gold plating solution is 3.0 to 11.0, preferably 4.0 to 10.0, and particularly preferably 5.0 to 9.0. The liquid temperature is 60 to 90 ° C, preferably 65 to 85 ° C, particularly preferably 70 to 90 ° C.
80 ° C. Examples of the Invention Examples of the present invention will be described below. Example 1. A copper plate having a size of 2.5 cm x 2.5 cm and a thickness of 0.3 mm and a thickness of 2 µm
, And then a gold film having a thickness of 1 μm was applied by electroplating to obtain samples. The sample is washed with a degreasing solution, then with dilute hydrochloric acid, and then well with water. After drying with a nitrogen blow, the sample was weighed. This sample was immersed in a plating solution of a reduced electroless gold component shown below per water for 2 hours. The liquid temperature was 60 ° C., and the pH was adjusted to 4.0 with hydrochloric acid. (Composition of reduction type electroless gold plating solution) The reduced electroless gold plating solution was forcibly stirred, a sample was taken out every 30 minutes, and the gold film thickness was measured by a gravimetric method. The result is shown by curve 1 in the figure. The gold film thickness reached 1.2 μm in 2 hours. The deposited gold film was dull and bright yellow, and no precipitation was observed in the liquid. Example 2 A sample prepared in the same manner as in Example 1 was immersed in a reduced electroless gold plating solution having the following components per water for 2 hours. The liquid temperature was 80 ° C., and the pH was adjusted to 5.0 with hydrochloric acid. (Composition of reduction type electroless gold plating solution) Example 1 Forcibly stirring the reduced electroless gold plating solution, Example 1
The gold film thickness was measured in the same manner as described above. The result is shown by curve 2 in the figure. The gold film thickness reached 1.3 μm in 2 hours. The gold film was dull, light yellow, and no precipitation was observed in the solution. Example 3 A sample prepared in the same manner as in Example 1 was immersed in a reduced electroless gold plating solution having the following components per water for 2 hours. The liquid temperature was 80 ° C., and the pH was adjusted to 5.0 with hydrochloric acid. (Composition of reduction type electroless gold plating solution) Example 1 Forcibly stirring the reduced electroless gold plating solution, Example 1
The gold film thickness was measured in the same manner as described above. The result is shown by curve 3 in the figure. The gold film thickness reached 1.7 μm in 2 hours. The gold film was dull, light yellow, and no precipitation occurred in the solution. [Effects of the Invention] As described above, according to the present invention, it contains no cyanide ion at all, has low toxicity, and is comparable to a conventional reduced electroless gold plating solution containing cyanide ion. The use of a reduced electroless gold plating solution with stable stability enables a gold plating method that does not pose a problem in safety during work and waste liquid treatment. In such a case, the plating process can be greatly streamlined, and the object to be plated can be easily manufactured as an electronic part with gold.

【図面の簡単な説明】 図は本発明による電子部品の製造方法によって、電子部
品に金皮膜を析出させたときの金膜厚(μm)とめっき
時間(時間)との関係を示す図である。 1,2,3……実験データ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a relationship between a gold film thickness (μm) and a plating time (hour) when a gold film is deposited on an electronic component by a method for manufacturing an electronic component according to the present invention. . 1,2,3 …… Experimental data

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富沢 明 横浜市戸塚区吉田町292番地 株式会社 日立製作所生産技術研究所内 (72)発明者 松浦 尚子 横浜市戸塚区吉田町292番地 株式会社 日立製作所生産技術研究所内 (72)発明者 横野 中 横浜市戸塚区吉田町292番地 株式会社 日立製作所生産技術研究所内 (56)参考文献 特公 昭62−86171(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C23C 18/44 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Tomizawa 292 Yoshida-cho, Totsuka-ku, Yokohama-shi Inside Hitachi, Ltd. Production Technology Laboratory (72) Inventor Naoko Matsuura 292 Yoshida-cho, Totsuka-ku, Yokohama Hitachi, Ltd. Within the Technical Research Institute (72) Naka Yokono 292, Yoshida-cho, Totsuka-ku, Yokohama-shi Within the Manufacturing Research Laboratory, Hitachi, Ltd. (56) References JP-B-62-86171 (JP, B2) (58) .Cl. 6 , DB name) C23C 18/44

Claims (1)

(57)【特許請求の範囲】 1.電子部品を、金源としてのジチオスルファト金
(I)酸塩、還元剤としてのチオ尿素、錯化剤としての
チオ硫酸塩、安定剤としての亜硫酸塩およびpH調整剤と
しての塩酸あるいは水酸化ナトリウムを含む還元型無電
解金めっき液中に浸漬し、上記電子部品に金めっきを施
すことを特徴とする電子部品の製造方法。 2.上記還元型無電解金めっき液に含まれるジチオスル
ファト金(I)酸塩として、ジチオスルファト金(I)
酸ナトリウムまたはジチオスルファト金(I)酸カリウ
ムを用いることを特徴とする特許請求の範囲第1項記載
の電子部品の製造方法。 3.上記還元型無電解金めっき液として、ジチオスルフ
ァト金(I)酸ナトリウムを1〜50g/l、チオ尿素を0.1
〜75g/l、チオ硫酸塩としてのチオ硫酸ナトリウムを5
〜200g/l、亜硫酸塩としての亜硫酸ナトリウムを2〜10
0g/l及びpH調整剤としての塩化アンモニウムを5〜50g/
l含むめっき液を用いることを特徴とする特許請求の範
囲第2項記載の電子部品の製造方法。 4.電子部品を、金源としてのハロゲン化金酸塩及びチ
オ硫酸塩の混合物、還元剤としてのチオ尿素、錯化剤と
してのチオ硫酸塩、安定剤としての亜硫酸塩及びpH調整
剤としての塩酸あるいは水酸化ナトリウムを含む還元型
無電解金めっき液中に浸漬し、上記電子部品に金めっき
を施すことを特徴とする電子部品の製造方法。 5.上記還元型無電解金めっき液に含まれるハロゲン化
金酸塩として、テトラクロロ金酸塩を用いることを特徴
とする特許請求の範囲第4項記載の電子部品の製造方
法。 6.上記還元型無電解金めっき液のテトラクロロ金酸塩
としてテトラクロロ金(III)酸ナトリウムを、チオ硫
酸塩としてチオ硫酸ナトリウムを用いることを特徴とす
る特許請求の範囲第5項記載の電子部品の製造方法。 7.上記還元型無電解金めっき液として、テトラクロロ
金(III)酸ナトリウムを0.5〜40g/l、チオ硫酸ナトリ
ウムを0.6〜75g/l、チオ尿素を0.1〜75g/l、亜硫酸塩と
しての亜硫酸ナトリウムを2〜100g/l及びpH調整剤とし
ての塩化アンモニウムを5〜50g/l含むめっき液を用い
ることを特徴とする特許請求の範囲第6項記載の電子部
品の製造方法。
(57) [Claims] An electronic component is prepared by using dithiosulfatoaurate (I) as a gold source, thiourea as a reducing agent, thiosulfate as a complexing agent, sulfite as a stabilizer, and hydrochloric acid or sodium hydroxide as a pH adjuster. A method for producing an electronic component, comprising immersing the electronic component in a reduced electroless gold plating solution containing the same and applying gold plating to the electronic component. 2. As the dithiosulfatogold (I) salt contained in the reduced electroless gold plating solution, dithiosulfatogold (I)
2. The method for producing an electronic component according to claim 1, wherein sodium or potassium dithiosulfatoaurate (I) is used. 3. As the reduced electroless gold plating solution, 1 to 50 g / l of sodium dithiosulfatogold (I) and 0.1 to 0.1 g of thiourea were used.
~ 75g / l, 5% sodium thiosulfate as thiosulfate
~ 200 g / l, sodium sulfite as sulfite 2-10
0 g / l and 5 to 50 g / ammonium chloride as a pH adjuster
3. The method for producing an electronic component according to claim 2, wherein a plating solution containing l is used. 4. The electronic component may be a mixture of a halogenated gold salt and a thiosulfate as a gold source, thiourea as a reducing agent, thiosulfate as a complexing agent, sulfite as a stabilizer, and hydrochloric acid as a pH adjuster or A method for manufacturing an electronic component, comprising immersing the electronic component in a reduced electroless gold plating solution containing sodium hydroxide, and applying the gold plating to the electronic component. 5. 5. The method for manufacturing an electronic component according to claim 4, wherein tetrachloroaurate is used as the halogenated goldate contained in the reduced electroless gold plating solution. 6. 6. The electronic component according to claim 5, wherein sodium tetrachloroaurate (III) is used as tetrachloroaurate and sodium thiosulfate is used as thiosulfate in the reduced electroless gold plating solution. Manufacturing method. 7. Examples of the reduced electroless gold plating solution include sodium tetrachloroaurate (III) 0.5 to 40 g / l, sodium thiosulfate 0.6 to 75 g / l, thiourea 0.1 to 75 g / l, and sodium sulfite as sulfite. 7. A method for producing an electronic component according to claim 6, wherein a plating solution containing 2 to 100 g / l of acetic acid and 5 to 50 g / l of ammonium chloride as a pH adjuster is used.
JP61088269A 1985-10-14 1986-04-18 Electronic component manufacturing method Expired - Lifetime JP2967106B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP61088269A JP2967106B2 (en) 1986-04-18 1986-04-18 Electronic component manufacturing method
CN86106675.8A CN1003524B (en) 1985-10-14 1986-10-11 Electroless gold plating solution
EP86114143A EP0219788B1 (en) 1985-10-14 1986-10-13 Electroless gold plating solution
DE8686114143T DE3663690D1 (en) 1985-10-14 1986-10-13 Electroless gold plating solution
KR1019860008554A KR910006643B1 (en) 1985-10-14 1986-10-13 Electroless gold plating solution
US07/091,457 US4804559A (en) 1985-10-14 1987-08-31 Electroless gold plating solution
US07/143,959 US4880464A (en) 1985-10-14 1988-01-14 Electroless gold plating solution
US07/184,061 US4963974A (en) 1985-10-14 1988-04-20 Electronic device plated with gold by means of an electroless gold plating solution
US07/532,656 US5202151A (en) 1985-10-14 1990-06-04 Electroless gold plating solution, method of plating with gold by using the same, and electronic device plated with gold by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61088269A JP2967106B2 (en) 1986-04-18 1986-04-18 Electronic component manufacturing method

Publications (2)

Publication Number Publication Date
JPS62247081A JPS62247081A (en) 1987-10-28
JP2967106B2 true JP2967106B2 (en) 1999-10-25

Family

ID=13938173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61088269A Expired - Lifetime JP2967106B2 (en) 1985-10-14 1986-04-18 Electronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP2967106B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655329B2 (en) * 1988-01-28 1997-09-17 関東化学 株式会社 Electroless plating solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735583B2 (en) * 1985-10-14 1995-04-19 株式会社日立製作所 Electroless gold plating liquid

Also Published As

Publication number Publication date
JPS62247081A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
KR910006643B1 (en) Electroless gold plating solution
US4168214A (en) Gold electroplating bath and method of making the same
US4337091A (en) Electroless gold plating
KR920018241A (en) How to electroless plate tin, lead or tin-lead alloys
JPS5818430B2 (en) Electroless plating bath and plating method
JP3331261B2 (en) Electroless gold plating solution
US5364459A (en) Electroless plating solution
JP2611364B2 (en) Electroless tin plating bath and electroless tin plating method
JP2002180259A (en) Metal deposition acceleration compound in plating liquid and plating liquid containing the same
JPH0293076A (en) Production of fine metal body utilized for electroless plating
JPS5817256B2 (en) Stabilized aqueous acidic gold bath for electroless deposition of gold
JP2967106B2 (en) Electronic component manufacturing method
JPS591668A (en) Improved non-electrolytic gold plating bath and plating process
JPH0657877B2 (en) Improved gold sulfite electroplating bath
TW201114945A (en) Electroless gold plating bath
US4015992A (en) Process for activating a non-conductive substrate and composition therefor
JPS60184683A (en) Metal adhesion
JP3148428B2 (en) Electroless gold plating solution
JPH05148662A (en) Copper electroless plating solution
JP2635026B2 (en) Electroless plating solution
JP3677617B2 (en) Electroless gold plating solution
JP2003013241A (en) Pretreatment solution for electroless nickel plating onto copper or copper alloy and method for electroless nickel plating
JPH0860377A (en) Electroless gold plating solution
JP3697181B2 (en) Electroless gold plating solution
JPH0735583B2 (en) Electroless gold plating liquid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term