JP2965913B2 - Three-dimensional tooth surface modification is helical or helical gear - Google Patents

Three-dimensional tooth surface modification is helical or helical gear

Info

Publication number
JP2965913B2
JP2965913B2 JP24610596A JP24610596A JP2965913B2 JP 2965913 B2 JP2965913 B2 JP 2965913B2 JP 24610596 A JP24610596 A JP 24610596A JP 24610596 A JP24610596 A JP 24610596A JP 2965913 B2 JP2965913 B2 JP 2965913B2
Authority
JP
Japan
Prior art keywords
tooth
tooth surface
meshing
contact line
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24610596A
Other languages
Japanese (ja)
Other versions
JPH1089442A (en
Inventor
善正 酒井
昌文 杉本
貢 山下
充 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP24610596A priority Critical patent/JP2965913B2/en
Publication of JPH1089442A publication Critical patent/JPH1089442A/en
Application granted granted Critical
Publication of JP2965913B2 publication Critical patent/JP2965913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この出願に係る発明は、はすば歯
車及びやまば歯車において噛合い時に生じる振動及び騒
音を低減させることができる3次元歯面修整はすば/や
まば歯車に関し、更に詳しくは、高負荷を伝達する歯幅
の長いはすば/やまば歯車において歯の噛合い時の同時
接触線総長さが概念上変化しないようにして振動及び騒
音を低減させた3次元歯面修整はすば/やまば歯車に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional flank-reshaping helical gear and a helical gear which can reduce vibration and noise generated when meshing with a helical gear and a helical gear. More specifically, in a helical / helical gear having a long tooth width for transmitting a high load, a three-dimensional tooth whose vibration and noise are reduced by not changing conceptually the total contact line length at the time of meshing of the teeth. Surface modification is related to helical and helical gears.

【0002】[0002]

【従来の技術】従来より、一般的な歯車の振動発生原因
としては、歯車の噛合い進行に伴って噛合う歯群のばね
剛さが変動すること、及び歯面に加工誤差が存在するこ
とに起因することが知られている。
2. Description of the Related Art Conventionally, vibrations of a gear are generally caused by the fact that the spring stiffness of a meshing tooth group fluctuates as the gear meshes, and that a machining error exists on the tooth surface. It is known to be caused by

【0003】この歯群のばね剛さの変動は、図5の説明
図に示すように、駆動歯車G1 から被動歯車G2 の歯面
に荷重Wがかかると歯が弾性変形し、その撓みδ分だけ
歯車の回転角が想像線のように遅れることになり、これ
は図6の説明図に示すように、駆動歯車G1 全体が荷重
Wの方向と平行に撓みδ分だけ想像線のように被動歯車
2 側に移動したと言える。
[0003] variation of the spring stiffness of the teeth, as shown in the illustration of FIG. 5, the tooth when a load W is applied is elastically deformed from the drive gear G 1 to the tooth surface of the driven gear G 2, deflection thereof will be only δ min rotation angle of the gear is delayed as the imaginary line, which as shown in the illustration of FIG. 6, the drive gear G 1 whole imaginary line only parallel to the deflection δ min and direction of the load W It said to have moved to the driven gear G 2 side as.

【0004】この荷重Wをはすば歯車において考える
と、図7の説明図に示すように、その荷重分布Uは噛合
い始めから徐々に増加して中央部で最大となった後、徐
々に減少するように作用することとなる。
Considering the load W in a helical gear, as shown in an explanatory diagram of FIG. 7, the load distribution U gradually increases from the start of meshing, reaches a maximum at a central portion, and then gradually increases. It will work to decrease.

【0005】一方、ここで入力荷重が一定でかつ歯面に
加工誤差がないと仮定したとしても、歯車は歯幅方向の
両端部は一方が解放しているために弱く中央部は強いた
め、荷重のかかる歯の噛合い位置によって歯の局部剛性
が異なり、この異なりによって局部剛性の差を生じてい
る。また、歯先側が弱くて歯元側が強いという剛性の違
いによっても同様のことが言える。そのため、歯元側か
ら噛合い始めて歯先側で噛合い終る駆動側や歯先側から
噛合い始めて歯元側で噛合い終る被動側のはすば/やま
ば歯車においては、上記荷重分布では歯幅方向両端にお
いて同様の荷重であったとしても噛合い始めと噛合い終
りにおいて剛性変化を生じてしまう。
[0005] On the other hand, even if it is assumed that the input load is constant and there is no machining error in the tooth surface, the gear is weak because both ends in the tooth width direction are open at one end and strong at the central portion. The local rigidity of the tooth differs depending on the meshing position of the tooth to which the load is applied, and this difference causes a difference in the local rigidity. The same can be said for the difference in rigidity between the weak tip and the strong root. Therefore, in the drive side helical gear and the helical gear that start meshing from the dedendum side and end meshing on the dedendum side and on the driven side starting meshing from the dedendum side and ending with the dedendum side, the above load distribution Even if the same load is applied to both ends in the tooth width direction, the rigidity changes at the start and end of the engagement.

【0006】このような剛性変化をバネに仮定して説明
すると、上記図6に示すように、駆動歯車G1 と被動歯
車G2 との間の動力をバネkによって伝達していると仮
定し、上記噛合い位置による局部剛性の異なりは、図7
のバネkの太さで示すように、噛合いの進行時には両端
部が弱く、中央部が強いバネ定数の異なったバネkによ
って支持しながら動力を伝達していると言える。従
て、噛合いの進行と共に伝達するバネ定数が変化するた
めに振動や騒音を発生させることとなる。
Assuming that such a change in rigidity is assumed by a spring, as shown in FIG. 6, it is assumed that the power between the driving gear G1 and the driven gear G2 is transmitted by a spring k. The difference in local stiffness depending on the engagement position is shown in FIG.
As shown by the thickness of the spring k, the time progress of the engagement weak both end portions, that said central portion is transmitting power while supporting by different spring k strong spring constant. Supporting Tsu <br/> Te, the spring constant to transmit with the progress of engagement is possible to generate vibration and noise to change.

【0007】また、図8の斜視図に示すように、噛合い
の進行に伴って同時接触線長さの和(以下、「同時接触
線総長さ」という。)も変化している。すなわち、斜め
の接触線Lは、噛合い進行方向Vに沿って噛合い始めか
ら徐々に接触線Lが長くなって中央部で完全接触線Lo
となり、噛合い終りにかけて徐々に接触線Lが短くなっ
て噛合いを終わるため、各接触線Lの長さ変化によって
分担荷重自体が噛合い進行に伴って変化し、しかも同時
に接触している接触線Lの総長さも増減しながら噛合う
こととなる。
Further, as shown in the perspective view of FIG. 8, the sum of the simultaneous contact line lengths (hereinafter, referred to as the “total simultaneous contact line length”) changes with the progress of the meshing. In other words, the oblique contact line L is such that the contact line L gradually increases from the start of meshing along the meshing traveling direction V, and the complete contact line Lo
Since the contact line L gradually becomes shorter toward the end of the meshing and the meshing ends, the shared load itself changes with the progress of the meshing due to the change in the length of each contacting line L. The lines L mesh with each other while increasing and decreasing the total length.

【0008】このような同時接触線総長さの変化をバネ
に仮定して説明すると、図示しないが、噛合いの進行に
伴ってバネkの本数が常に変動(増減)しながら動力を
伝達していると言える。
A description will be given assuming that such a change in the total length of the contact lines is assumed to be a spring. Although not shown, power is transmitted while the number of springs k constantly fluctuates (increases or decreases) with the progress of meshing. It can be said that there is.

【0009】よって、被動歯車G2 は動力伝達時にこれ
らの影響を受けて複雑な不等速回転や荷重変化を受ける
こととなり、振動や騒音を発生させることとなる。
[0009] Thus, the driven gear G 2 is will be subject to complicated non-uniform rotary and load changes under these effects at the time of power transmission, and to generate vibration and noise.

【0010】[0010]

【発明が解決しようとする課題】ところで、図9に示す
歯の側面図に示すように、はすば/やまば歯車における
噛合いの進行に伴う同時接触線総長さ時間的変化は、
歯筋方向SをピッチPsの整数n倍にするか、もしくは
歯たけ方向噛合い長さRをピッチPrの整数k倍にす
る、すなわち、正面噛合い率か、重なり噛合い率のいず
れかが整数となるようにすることにより、概念上無にで
きることが一般的に知られている。しかし、様々な使用
条件のはすば/やまば歯車において全てこのような整数
ピッチに設計・製作することは不可能である。
By the way, as shown in the side view of the tooth shown in FIG. 9, the temporal change of the total length of the simultaneous contact line with the progress of the meshing of the helical gear and the helical gear is as follows.
The tooth trace direction S is set to an integer n times the pitch Ps, or the meshing length R in the gear setting direction is set to an integer k times the pitch Pr, that is, either the frontal meshing rate or the overlapping meshing rate is increased. It is generally known that by making it an integer, the concept can be nullified. However, it is impossible to design and manufacture all helical and helical gears having various use conditions at such an integer pitch.

【0011】ここで、従来の2次元的な歯面修整(歯形
修整やエンド・リリーフ等の歯筋修整あるいはそれらの
組合せ)により実際の歯当たりにおける正面噛合い率
か、重なり噛合い率のいずれかが整数となるようにする
ことが考えられるが、この場合でも、同時接触線総長さ
を変化しないようにはできるが、上述したように噛合い
位置による歯の局部剛性は歯面上の位置によって異な
り、しかも、図10のはすば歯車を示す正面図のよう
に、歯幅端部における歯11の形状不完全部11aにお
ける局部剛性の弱さは解決できないため、上述したよう
に噛合いの進行に伴い接触線上の荷重分布が周期的に変
動する。従って、噛合っている各歯11のたわみ量δ
(図5)は噛合いの進行に伴って変動し、駆動歯車に対
する被動歯車G2 の遅れも変動して振動や騒音が発生し
てしまう。
Here, by conventional two-dimensional tooth surface modification (tooth shape modification such as tooth profile modification and end relief or a combination thereof) , the frontal meshing ratio in actual tooth contact is obtained.
Alternatively, it is conceivable to make any one of the overlapping meshing ratios an integer.In this case, the total length of the simultaneous contact lines can be kept unchanged. The local stiffness differs depending on the position on the tooth surface. Further, as shown in the front view of the helical gear in FIG. 10, the weakness of the local stiffness at the incompletely shaped portion 11a of the tooth 11 at the tooth width end cannot be solved. Therefore, as described above, the load distribution on the contact line periodically fluctuates as the meshing progresses. Therefore, the amount of deflection δ of each meshing tooth 11
(Figure 5) varies with the progress of engagement delay be varied vibration and noise of driven gear G 2 is generated to the drive gear.

【0012】よって、正面噛合い率か、重なり噛合い率
のいずれかを整数とすることだけを念頭に置いた歯面修
整では十分な振動及び騒音の低減を図ることができず、
歯の局所剛性が接触線上の荷重分布に及ぼす影響をも考
慮した歯面修整を行うことが必要となる。しかも、ヘル
ツ応力等の歯面強度にも配慮が必要である。
Therefore, the front engagement ratio or the overlap engagement ratio
Tooth modification with only one of the integers in mind cannot provide sufficient vibration and noise reduction,
It is necessary to modify the tooth surface in consideration of the effect of the local stiffness of the tooth on the load distribution on the contact line. In addition, it is necessary to consider tooth surface strength such as Hertz stress.

【0013】一方、歯面には常に加工誤差が存在し、理
論的に正しいインボリュート歯面形状から噛合い点がず
れることにより、その分だけ被動歯車が不等速回転をし
て振動が生じる。また、歯面強度や噛合い始めの衝撃緩
和等を考慮して決定する設計指示としての歯面修整形状
(加工目標形状)によっても、歯当たり範囲(歯面上の
接触範囲)及び接触線上の荷重分布が変化し、そのため
に駆動・被動歯車一対としての全ばね剛さが変化して振
動が発生する。
On the other hand, there is always a processing error in the tooth surface, and the meshing point deviates from the theoretically correct involute tooth surface shape, so that the driven gear rotates unequally to generate vibration. In addition, depending on the tooth surface modification shape (processing target shape) as a design instruction which is determined in consideration of the tooth surface strength and the mitigation of the impact at the start of meshing, the tooth contact area (contact area on the tooth surface) and the contact line The load distribution changes, and as a result, the total spring stiffness of the driving / driven gear pair changes, and vibration occurs.

【0014】ここで、上記加工誤差が歯車振動に及ぼす
影響については精度向上により対応するものとしても、
実際の歯車の低振動設計において問題となるのは、歯形
修整や歯筋修整等の歯面修整によって決まる歯面修整形
状の決定において一般解としての最適設計手法が確立さ
れていないことにある。すなわち、モジュール,歯数,
歯幅等の基本諸元や歯面修整の形状,範囲,絶対値はそ
れぞれが独立にではなく、互いに複雑に関連しながら上
述の同時接触線総長さ及び接触線上の荷重分布の時間変
化に影響を与えているため、基本諸元における各々の要
因が歯車振動に及ぼす影響については定性的に解明され
てはいるが、この基本諸元を決定した後の歯面修整設計
では歯面全体の修整形状,範囲,絶対値を定量的に決定
することによる低振動化に対する最適設計手法が確立さ
れていないのである。
Here, the influence of the machining error on gear vibration can be dealt with by improving accuracy.
A problem in actual low-vibration design of gears is that an optimal design method as a general solution has not been established in determining a tooth surface modification shape determined by tooth surface modification such as tooth profile modification and tooth trace modification. That is, module, number of teeth,
The basic specifications such as tooth width and the shape, range and absolute value of tooth surface modification are not independent of each other, but affect the above-mentioned simultaneous contact line total length and the time change of the load distribution on the contact line in a complicated manner. The effect of each factor in the basic specifications on gear vibration has been qualitatively elucidated, but after the basic specifications were determined, the tooth surface modification design required the entire tooth surface to be modified. An optimal design method for reducing vibration by quantitatively determining the shape, range, and absolute value has not been established.

【0015】従って、従来は、それらを歯面強度等を考
慮しながら経験的に決めるか、あるいは歯車起振力の指
標値を求めるためのシュミレーション・プログラムでの
図11(a) の歯形修整,(b) の歯筋修整,(c) の歯形修
整と歯筋修整との組合せによる2次元的な歯面修整等、
歯面修整仕様の仮定を変更しながらの繰り返し計算を基
本諸元及び歯車運転条件ごとに行う繁雑なトライ&エラ
ーで決定する必要があった。
Therefore, conventionally, they have been determined empirically in consideration of the tooth surface strength or the like, or the tooth profile modification shown in FIG. (b) Tooth muscle modification, (c) Two-dimensional tooth surface modification by combining tooth shape modification and tooth muscle modification, etc.
The repetitive calculation while changing the assumption of the tooth surface modification specification had to be determined by complicated trial and error performed for each basic specification and gear operating condition.

【0016】このように、歯面修整仕様をまず仮定して
シュミレーション・プログラムにより歯車起振力の指標
値を求め、その結果を見て歯面修整仕様を変更し再計算
を行うという、トライ&エラーの繁雑な検討を行う作業
は非常に時間と労力を要する作業となる。
As described above, the tooth surface modification specification is first assumed, the index value of the gear vibrating force is obtained by a simulation program, and the tooth surface modification specification is changed based on the result, and the recalculation is performed. The task of performing a complicated review of errors is a task that requires a lot of time and effort.

【0017】しかも、採用した歯面修整仕様が本質的な
最適設計であるとは限らない場合もある。これは、有限
の歯幅を持つはすば/やまば歯車の歯幅端部における歯
の形状の不完全部を主とする局所剛性変化及び同じく同
時接触線の不完全長さ部の接触線長さ変化が駆動・被動
歯車一対としての全ばね剛さの変動に必ず参画してくる
ことが要因となっており、このために当該部における歯
形修整,歯筋修整という二元解析が要求されるという複
雑さが低振動設計を困難なものにしているのである。
Moreover, the employed tooth surface modification specification may not always be an essential optimum design. This is due to the local stiffness change mainly due to the imperfect part of the tooth shape at the end of the tooth width of the helical / helical gear having a finite tooth width and the contact line of the imperfect length part of the simultaneous contact line as well. This is because the change in length always participates in the change in the total spring stiffness as a pair of driving and driven gears, which requires a two-dimensional analysis of tooth shape modification and tooth trace modification in the relevant part. The complexity of making low vibration design difficult.

【0018】従って、振動や騒音を極力減少させる必要
がある、例えば、潜水調査船や海洋観測船、あるいは低
騒音機器等における高負荷を伝達する歯幅の長いはすば
/やまば歯車においては、振動及び騒音を効果的に低減
させることが切望されている。
Therefore, it is necessary to reduce vibration and noise as much as possible. For example, in a helical gear / a helical gear having a long tooth width for transmitting a high load in a submersible research vessel, an ocean observation vessel, a low noise equipment, or the like. There is a strong desire to effectively reduce vibration, noise and noise.

【0019】なお、歯幅の短い小型はすば歯車において
は、例えば、特開昭63−180766号公報記載の発
明のように、互いに噛合う一対の歯車の歯当たり部が噛
合い進行方向に沿って長く延びるよう、歯筋方向位置に
よって圧力角を漸次変化させるという歯面修整による低
振動・低騒音歯車が発明されているが、この発明は、上
述の2次元歯面修整設計における問題点のうち、どのよ
うな修整範囲,絶対値が与えられた基本諸元において最
適であるかという問題を根本的に解決できるものではな
い。
In the case of a small helical gear having a short tooth width, for example, as in the invention described in Japanese Patent Application Laid-Open No. 63-180766, the tooth contact portions of a pair of gears meshing with each other are shifted in the meshing direction. A low-vibration / low-noise gear has been invented by tooth surface modification in which the pressure angle is gradually changed depending on the position of the tooth traces so as to extend long along the tooth trace. However, this invention has a problem in the above-described two-dimensional tooth surface modification design. Of these, it is not possible to fundamentally solve the problem of what modification range and absolute value are optimal in given basic specifications.

【0020】[0020]

【課題を解決するための手段】そこで、上記課題を解決
するために、この出願に係る発明は、高負荷を伝達する
歯幅の長いはすば/やまば歯車の歯面に歯幅方向接触線
ピッチの整数倍の幅の完全接触線領域を残し、この完全
接触線領域以外の歯面で噛合い時に接触が起こらない3
次元的なバイアス歯面修整を施している。これにより同
時接触線総長さを噛合いの進行に対して概念上不変と
し、かつ接触線上の荷重分布も噛合いの進行に対してほ
ぼ不変として、噛合い時の振動や騒音を低減させてい
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the invention according to the present application provides a helical / helical gear having a long tooth width for transmitting a high load. A complete contact line area having a width of an integral multiple of the line pitch is left, and no contact occurs when meshing with tooth surfaces other than the complete contact line area.
A dimensional bias tooth surface modification is applied. As a result, the total length of the simultaneous contact lines is conceptually invariant with respect to the progress of meshing, and the load distribution on the contact lines is also substantially unchanged with respect to the progress of meshing, thereby reducing vibration and noise during meshing. .

【0021】[0021]

【発明の実施の形態】この出願に係る発明は、インボリ
ュート曲線を歯形とする基準歯面を有して高負荷を伝達
する歯幅の長いはすば/やまば歯車の歯面に歯幅方向接
触線ピッチの整数倍の幅の完全接触線領域を残し、この
完全接触線領域以外の歯面で噛合い時に接触が起こらな
い3次元的なバイアス歯面修整を施している。このよう
に、歯幅方向接触線ピッチの整数倍の幅の完全接触線領
域を残し、これ以外の歯面を噛合い時に接触が起こらな
い3次元的なバイアス歯面修整を施したので、概念上、
常に完全接触線領域のみの一定した同時接触線総長さに
よって動力を伝達することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to this application has a reference flank having an involute curve as a tooth profile, and has a long helical / cylindrical helical gear having a long tooth width for transmitting a high load. A three-dimensional bias tooth surface modification is performed such that a complete contact line region having a width that is an integral multiple of the contact line pitch is left, and contact does not occur at the time of meshing with tooth surfaces other than the complete contact line region. As described above, a three-dimensional bias tooth surface modification is performed so that a complete contact line area having a width of an integral multiple of the tooth width direction contact line pitch is left and no contact occurs when other tooth surfaces are meshed. Up,
Power can always be transmitted by a constant total contact line length only in the complete contact line region.

【0022】また、歯面修整領域の噛合い始め部から完
全接触線領域までを連続する曲面で形成し、この完全接
触線領域から歯面修整領域の噛合い終り部までを連続す
る曲面で形成し、この両曲面を歯筋方向位置により歯形
形状が異なる3次元的なバイアス歯面修整によって形成
すれば、噛合い始めと噛合い終りに大きな衝撃を生じる
ことなくスムーズに噛合って動力を伝達をすることがで
きる。
Further, a continuous curved surface is formed from the meshing start portion of the tooth surface modification region to the complete contact line region, and a continuous curved surface is formed from the complete contact line region to the meshing end portion of the tooth surface modification region. However, if these two curved surfaces are formed by three-dimensional bias tooth surface modification in which the tooth profile differs depending on the position in the tooth trace direction, power can be transmitted by smoothly meshing without generating a large impact at the start and end of meshing. Can be.

【0023】さらに、バイアス歯面修整を施した歯面法
線方向における最大修整量を、少なくとも歯車噛合い時
の撓み量とほぼ同一に設定すれば、噛合い時の歯の撓み
によっても衝撃を生じることはない。
Further, by setting the maximum amount of modification in the normal direction of the tooth surface to which the bias tooth surface modification has been performed to be at least substantially the same as the amount of deflection at the time of gear engagement, an impact can be caused even by the deflection of the teeth at the time of engagement. Will not occur.

【0024】また、バイアス歯面修整を施した歯面法線
方向における修整を、互いに噛合う一対の駆動・被動歯
車の間の相対的な修整量として作用面上で表したとき、
その等高線が接触線の傾きとほぼ平行となる歯面修整形
状で施せば、噛合いの進行に伴って接触線はその等高線
とほぼ平行な直角方向に移動して衝撃を緩和することが
できる。
When the correction in the normal direction of the tooth surface with the bias tooth surface modified is expressed on a working surface as a relative modification amount between a pair of driving and driven gears meshing with each other,
If the contour line is formed in a tooth surface modified shape that is substantially parallel to the inclination of the contact line, the contact line moves in a direction substantially perpendicular to the contour line as the meshing progresses, so that the impact can be reduced.

【0025】さらに、完全接触線領域の噛合い始め接触
線の歯端側開始点と噛合い終り接触線の歯端側終了点と
を、歯幅方向の両端から内側に形成すれば、歯幅方向端
部における局所剛性の影響をほぼ無くすことができる。
Furthermore, if the start point of the tooth end side of the contact line at the start of meshing of the complete contact line area and the end point of the tooth end of the contact line at the end of meshing are formed inward from both ends in the tooth width direction, the tooth width is increased. The effect of local rigidity at the end in the direction can be almost eliminated.

【0026】また、実重なり噛合い率を少なくとも2以
上の整数にすれば、歯幅の長いはすば/やまば歯車にお
いて同時接触線総長さの変化なしに複数の歯で確実に動
力を伝達できる。
When the actual overlapping mesh ratio is set to an integer of at least 2 or more, power can be reliably transmitted by a plurality of teeth without changing the total length of the simultaneous contact line in a helical or helical gear having a long tooth width. it can.

【0027】しかも、正面噛合い率を少なくとも2以上
にすれば、更に確実に動力を伝達できる。
Further, when the front meshing ratio is at least 2 or more, power can be transmitted more reliably.

【0028】[0028]

【実施例】以下、この出願に係る発明の一実施例を、は
すば歯車を例にした図面に基づいて説明する。図1(a)
はこの出願の第1実施例に係るはすば歯車の歯を示す斜
視図であり、(b) は(a) のA−A断面図である。図2は
図1の歯面を平面展開して作用面の完全接触線領域を残
した3次元歯面修整領域を示す説明図であり、図3は同
様に他の3次元歯面修整領域を示す説明図である。これ
らの図面では駆動側の歯車を例にしているため、歯元側
から噛合い始めて歯先側で噛合い終る場合を例示してい
る。なお、被動側の歯車の場合、歯先側から噛合い始め
て歯元側で噛合い終る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings using a helical gear as an example. Fig. 1 (a)
1 is a perspective view showing the teeth of a helical gear according to a first embodiment of the present application, and (b) is a cross-sectional view taken along the line AA of (a). FIG. 2 is an explanatory diagram showing a three-dimensional tooth surface modification region in which the tooth surface of FIG. 1 is developed in a plane to leave a complete contact line region of the working surface. FIG. 3 similarly shows another three-dimensional tooth surface modification region. FIG. In these drawings, the gears on the driving side are taken as an example, and therefore, the case where the meshing starts from the tooth root side and ends with the tooth tip side is illustrated. In the case of a driven gear, meshing starts at the tooth tip side and ends at the tooth root side.

【0029】図示するように、この実施例ではインボリ
ュート曲線を歯形とする基準歯面を有したはすば歯車の
歯1を、歯筋方向Sの接触線ピッチPsが整数倍(この
例では3倍)となる幅の完全接触線領域Fを残して、こ
の完全接触線領域Fの噛合い始め接触線Lsから仮想上
の噛合い始め部2まで連続した曲面で歯筋方向Sの位置
により歯形形状が異なって噛合いの接触が起こらない修
整量Tの3次元的なバイアス歯面修整を施すとともに、
この完全接触線領域Fの噛合い終り接触線Leから仮想
上の噛合い終り部3までにも連続した曲面で歯筋方向S
の位置により歯形形状が異なって噛合いの接触が起こら
ない修整量Tの3次元的なバイアス歯面修整を施してい
る。よって、歯面は噛合い始め側の歯面修整領域Esと
完全接触線領域Fと噛合い終り側の歯面修整領域Esと
に形成されている。この実施例では、完全接触線L0
4本の整数となる実重なり噛合い率3を例示している。
As shown in the figure, in this embodiment, the tooth 1 of the helical gear having a reference flank having an involute curve as a tooth profile has an integral multiple of the contact line pitch Ps in the tooth trace direction S (3 in this example). Double), and the tooth profile is determined by the position in the tooth trace direction S on a curved surface that continues from the contact line Ls at the start of meshing of the complete contact line region F to the virtual meshing start portion 2 while leaving the complete contact line region F having a width of In addition to performing a three-dimensional bias tooth surface modification of a modification amount T that does not cause meshing contact due to a different shape,
The tooth trace direction S is a continuous curved surface extending from the engagement end contact line Le of the complete contact line region F to the virtual engagement end portion 3.
The three-dimensional bias tooth surface modification of the modification amount T that does not cause meshing contact due to different tooth shapes depending on the position is performed. Therefore, the tooth surface is formed in the tooth surface modification region Es on the meshing start side, the complete contact line region F, and the tooth surface modification region Es on the meshing end side. In this embodiment illustrates the actual overlap meshing ratio 3 full contact line L 0 is the four integers.

【0030】従って、仮想上の噛合い始め部2の歯面修
整領域Esから噛合い始め接触線Lsまでの曲面では歯
の噛合い接触が起こらずに噛合い始め接触線Lsにおい
て始めて噛合いが始まることとなり、また、完全接触線
領域Fの噛合い終り接触線Leにおいて噛合いが終り、
仮想上の噛合い終り部3への歯面修整領域Eeにおいて
も歯の噛合い接触が起こらずに仮想上の噛合い終り部3
まで達することとなる。
Therefore, on the curved surface from the tooth surface modification region Es of the virtual meshing start portion 2 to the meshing contact line Ls, the meshing starts at the meshing contact line Ls without the meshing contact of the teeth. And the meshing ends at the contact line Le at the end of meshing of the complete contact line region F,
Even in the tooth surface modification region Ee to the virtual meshing end portion 3, the meshing contact of the teeth does not occur and the virtual meshing end portion 3 is formed.
Will be reached.

【0031】このバイアス修整の仮想上の噛合い始め部
2および仮想上の噛合い終り部3における歯面法線方向
における修整量Tは、この実施例では、(b) にも示すよ
うに、少なくとも歯車噛合い時の撓み量(上述したδで
あり、例えば10μm程度)となるように設定されてお
り、この噛合い始め部2からインボリュート曲面に連な
るような曲面でバイアス修整が施されている。この修整
量Tは、歯車噛合い時の撓み量以上であれば、噛合い始
めの衝撃回避が可能である。
In this embodiment, the correction amount T in the normal direction of the tooth surface at the virtual meshing start portion 2 and the virtual meshing end portion 3 in this bias correction is, as shown in FIG. It is set so as to be at least the amount of deflection at the time of gear engagement (the above-mentioned δ, for example, about 10 μm), and bias correction is performed on a curved surface that continues from the engagement start portion 2 to the involute curved surface. . If this modification amount T is equal to or more than the amount of deflection at the time of gear engagement, it is possible to avoid the impact at the start of engagement.

【0032】なお、この実施例では、一例として噛合い
始め部の修整量Tと噛合い終りの修整量Tとを同一にし
ているが、上述したように、噛合い始めと噛合い終りと
では撓み量が異なるので、噛合い始めの修整量Tを噛合
い終りの修整量Tよりも多少大きくしておけば、歯の噛
合い進行における歯幅方向の撓み量をほぼ同一条件とす
ることができる。
In this embodiment, as an example, the modified amount T at the start of meshing and the modified amount T at the end of meshing are the same. Since the amount of deflection is different, if the amount of modification T at the start of meshing is set to be slightly larger than the amount of modification T at the end of meshing, the amount of deflection in the tooth width direction in the progress of meshing of teeth can be made substantially the same. it can.

【0033】このように完全接触線領域Fと歯面修整領
域Es,Eeとを曲面によって接続することにより、完
全接触線領域Fの噛合い始めと噛合い終りとを滑らかに
進行させることができ、多少の製作誤差を生じても振動
や騒音を生じさせることなく噛合わせることができる。
By connecting the complete contact line region F and the tooth surface modification regions Es and Ee with curved surfaces as described above, the start and end of the engagement of the complete contact line region F can be smoothly advanced. Even if a slight manufacturing error occurs, the meshing can be performed without generating vibration or noise.

【0034】このような3次元歯面修整を図2の平面展
開した作用面で説明すると、接触線の傾きαによって平
行四辺形状となる完全接触線領域Fから、仮想上の噛合
い始め部2と仮想上の噛合い終り部3とに向けて3次元
歯面修整領域Es,Eeが形成されており、仮想上の噛
合い始め部2と仮想上の噛合い終り部3とにおいて同一
の修整量Tを削り取るように修整されている。
The three-dimensional tooth surface modification will be described with reference to the plane of operation of FIG. 2. From the complete contact line region F which becomes a parallelogram due to the inclination α of the contact line, the imaginary meshing start portion 2 is formed. A three-dimensional tooth surface modification region Es, Ee is formed toward the virtual meshing end portion 3 and the virtual meshing end portion 3. It has been modified to remove the quantity T.

【0035】以上のように構成された第1実施例におけ
るはすば歯車によれば、仮想上の噛合い始め部2から完
全接触線領域Fまでの3次元歯面修整領域Esと、完全
接触線領域Fから仮想上の噛合い終り部3までの3次元
歯面修整領域Eeとに施した3次元的なバイアス修整に
より、噛合い時に駆動歯車G1 と被動歯車G2 とがこれ
らの3次元歯面修整領域Es,Eeでは接触せずに完全
接触線領域Fのみで接触して動力を伝達するため、同時
接触線総長さを噛合いの進行に対してほぼ不変とし、か
つ、歯幅端部における歯の形状不完全部の影響を受けず
に接触線上の荷重分布も噛合いの進行に対してほぼ不変
となる。従って、互いに噛合う時に歯に作用する荷重の
変化が殆ど無くなって、動力を伝達する噛合う歯1は常
に完全接触線領域Fのみによって連続的に噛合うととも
に、完全接触船領域F内でのいずれの位置においても常
に一定の負荷を受けながら動力を伝達し、歯1の弾性変
形や同時接触線総長さの変化に起因する振動や騒音を低
減させて、はすば歯車の低振動・低騒音を実現すること
ができる。
According to the helical gear of the first embodiment configured as described above, the three-dimensional tooth surface modification region Es from the virtual meshing start portion 2 to the complete contact line region F comes into complete contact. the 3-dimensional bias modification subjected to the three-dimensional tooth surface modification area Ee from the line region F to the end portion 3 of engagement on the virtual, meshing drive gear G 1 when the driven gear G 2 and 3 of In order to transmit power by contacting only in the complete contact line region F without contacting in the three-dimensional tooth surface modification regions Es and Ee, the total length of the simultaneous contact lines is made substantially invariant with the progress of meshing, and the tooth width is changed. The load distribution on the contact line is almost invariant to the progress of the meshing without being affected by the incomplete shape of the teeth at the end. Accordingly, there is almost no change in the load acting on the teeth when meshing with each other, and the meshing teeth 1 for transmitting power always mesh continuously only with the complete contact line region F, and the teeth 1 in the complete contact ship region F In any position, power is transmitted while always receiving a constant load to reduce vibration and noise caused by the elastic deformation of the teeth 1 and the change in the total length of the simultaneous contact line, thereby reducing the vibration and noise of the helical gear. Noise can be realized.

【0036】また、上記第1実施例では3次元歯面修整
領域Es,Eeと完全接触線領域Fとを滑らな曲線で連
続するように構成しているが、図3の第2実施例に示す
他の平面展開した作用面の説明図のように、3次元歯面
修整領域Es,Eeを完全接触線領域Fの噛合い始め接
触線Lsと噛合い終り接触線Leにおいて段差を設けて
完全に削り取ったとしても、完全接触線領域Fにおいて
のみ噛合うように構成することができるため、この場合
でも常に完全接触線領域Fのみによって一定の動力伝達
を行うことができるので、歯1の弾性変形や同時接触線
総長さの変化に起因するはすば歯車の振動や騒音を低減
させることができる。ただし、この例では、アライメン
ト誤差等がある場合には接触線Lsから始まる噛合いに
衝撃を伴う可能性がある。なお、この第2実施例では、
3次元歯面修整領域Es,Ee共に同一の修整量Tによ
って削り取った例を示している。この例でも、上述した
第1実施例と同様に仮想上の噛合い始めの修整量Tを多
少大きくしてもよい。
In the first embodiment, the three-dimensional tooth surface modification regions Es and Ee and the complete contact line region F are configured to be continuous with a smooth curve. However, in the second embodiment shown in FIG. As shown in the explanatory view of the other developed working surface, the three-dimensional tooth flank modified areas Es and Ee are completely formed by providing a step at the contact line Ls at the start of engagement with the contact line Ls at the end of the complete contact line area F. Even if it is cut off, it can be configured to engage only in the complete contact line region F, so that even in this case, constant power transmission can always be performed only by the complete contact line region F, Vibration and noise of the helical gear caused by deformation and change in the total length of the simultaneous contact line can be reduced. However, in this example, if there is an alignment error or the like, the engagement starting from the contact line Ls may have an impact. In the second embodiment,
An example is shown in which the three-dimensional tooth flank modified regions Es and Ee are both shaved off by the same modified amount T. Also in this example, similarly to the above-described first embodiment, the virtual correction amount T at the start of meshing may be slightly increased.

【0037】ところで、上記第1実施例におけるバイア
ス修整の歯面修整形状(バイアス・リリーフ)として、
図4の基準歯面を展開した作用面を示す説明図のよう
に、互いに噛合う一対の駆動・被動歯車の間の相対的な
歯面法線方向の修整量として作用面H上で表したとき、
その等高線mが接触線L(図8)の傾きαとほぼ平行と
なるように形成すれば、歯の噛合いによる接触線Lの移
動に伴ってスムーズに噛合いを進行させることができ、
このようにすれば、高負荷時やアライメント・エラーに
よる噛合い始めの衝撃緩和のためのソフト・ランディン
グをも考慮した3次元歯面修整はすば/やまば歯車を構
成することができる。なお、図4では噛合い終りの歯面
修整領域Eeにも同様の処理を施しているが、噛合い始
め側の歯面修整領域Esのみにこのような処理を施した
としても、噛合い始めでは有効に作用する。
By the way, as the tooth surface modification shape (bias relief) of the bias modification in the first embodiment,
As shown in the explanatory view of the working surface in which the reference tooth surface of FIG. 4 is developed, it is expressed on the working surface H as the relative amount of modification in the normal direction of the tooth surface between a pair of driving and driven gears meshing with each other. When
If the contour line m is formed so as to be substantially parallel to the inclination α of the contact line L (FIG. 8), the meshing can be smoothly advanced with the movement of the contact line L due to the meshing of the teeth.
In this way, a three-dimensional tooth surface modification helical gear or a helical gear can be configured in consideration of soft landing for reducing impact at the beginning of meshing due to a high load or an alignment error. In FIG. 4, the same processing is performed on the tooth surface modification area Ee at the end of meshing. However, even if such processing is performed only on the tooth surface modification area Es on the meshing start side, the meshing starts. Works effectively.

【0038】また、このように歯車の噛合い状態の進行
に伴って接触線を作用面上の歯面法線方向修正量の等高
線とほぼ平行で直角方向に移動して正規の噛合いへとス
ムーズに移るようにしておけば、噛合い始めあるいは終
りの位置が多少ずれたとしても噛合い時の振動や騒音を
極力減少させることができる。
Further, as the meshing state of the gears progresses, the contact line is moved in a direction substantially parallel to and perpendicular to the contour line of the correction amount of the normal direction of the tooth surface on the working surface, so that normal meshing is achieved. If the movement is smooth, the vibration and noise at the time of meshing can be reduced as much as possible even if the position at the beginning or end of meshing is slightly shifted.

【0039】一方、上記第1,第2実施例では、完全接
触線領域Fの噛合い始め接触線Lsの歯先側開始点Fs
(歯端側開始点)と噛合い終り接触線Leの歯元側終了
点Fe(歯端側終了点)とを、歯1の両端から適宜内側
に形成している。従って、荷重が大きい場合には歯幅方
向の端部における局所剛性変化の影響を受ける場合があ
る。
On the other hand, in the first and second embodiments, the start point Fs on the tip side of the contact line Ls at which the complete contact line region F starts to mesh.
The (tooth end side start point) and the dedendum side end point Fe (tooth end side end point) of the meshing end contact line Le are appropriately formed inside from both ends of the tooth 1. Therefore, when the load is large, the end portion in the tooth width direction may be affected by a change in local rigidity.

【0040】そこで、このような場合、上記歯先側開始
点Fsと歯元側終了点Feとを、歯幅方向の両端から歯
たけrの3倍以上内側に形成すれば、歯端における局所
剛性変化を受けることなく歯の撓み変化をほぼ一定にで
きるので、歯端における局所剛性変化の影響を受けずに
動力を伝達することができる。
Therefore, in such a case, if the tip start side Fs and the root end point Fe are formed at least three times inside the tooth height r from both ends in the tooth width direction, the local point at the tooth end can be obtained. Since the change in the bending of the teeth can be made substantially constant without receiving the change in the rigidity, the power can be transmitted without being affected by the change in the local rigidity at the tooth end.

【0041】なお、この出願に係る発明において3次元
歯面修整を施す場合、低振動を可能とする実際の歯当た
りでは、当たりの歯筋方向幅が整数の重なり噛合い率に
相当することが重要であり、その実重なり噛合い率が少
なくとも2以上の整数となることが望ましい。この場
合、正面噛合い率については必ずしも整数である必要は
ないが、2以上あることが望ましい。
[0041] In the case of applying the three-dimensional tooth surface modification in the invention according to this application, the actual tooth contact that enables low vibration, that tooth trace direction width per corresponds to an integer of overlapping meshing rate It is important that the actual overlap meshing ratio be an integer of at least 2 or more. In this case, the front meshing ratio is not necessarily required to be an integer, but is desirably 2 or more.

【0042】しかも、この出願に係るはすば/やまば歯
車は、3次元歯面修整加工法を用いて従来の設計段階に
おける二元解析による複雑さを一元解析化することによ
り、低振動設計の最適設計を容易ならしめ、かつ、その
実現に対し解析誤差の影響を極小化せしめ、より高精度
で実際の振動レベルを低減することを可能とすることが
できる。
Further, the helical gear and the helical gear according to this application are designed to have a low vibration design by using a three-dimensional tooth surface modification processing method to unitarily analyze the complexity of a conventional two-dimensional analysis at the design stage. In this case, the optimum design can be easily performed, and the effect of the analysis error on the realization thereof can be minimized, so that the actual vibration level can be reduced with higher accuracy.

【0043】以上のように、この出願に係る発明は、は
すば/やまば歯車における同時接触線総長さを噛合いの
進行に対して概念上不変とし、かつ接触線上の荷重分布
も噛合いの進行に対してほぼ不変として駆動・被動歯車
一対としての全ばね剛さの時間変動分を極小化するよう
に、歯形形状が歯筋方向位置により異なる3次元的な歯
面修整を施したはすば/やまば歯車を提供し、はすば/
やまば歯車の低振動設計における一つの解決策を提供す
ることができる。
As described above, according to the invention of this application, the total length of the simultaneous contact line of the helical gear and the helical gear is conceptually invariant with the progress of meshing, and the load distribution on the contact line is also meshed. In order to minimize the time variation of the total spring stiffness of the pair of driving and driven gears, which is almost invariable to the progress of the tooth, the tooth shape is modified three-dimensionally depending on the position in the tooth trace direction. Provide helical gear and helical gear,
One solution in low vibration design of bevel gears can be provided.

【0044】なお、この出願に係る発明が対象とするイ
ンボリュート曲線を歯形とする基準歯面で高負荷を伝達
する歯幅の長いはすば/やまば歯車としては、例えば、
重なり噛合い率が少なくとも2以上のはすば/やまば歯
車であり、このようなはすば/やまば歯車として、例え
ば、舶用や産業機械等の大型・大容量の増減速装置で、
特に、低振動・低騒音が要求されるはすば/やまば歯車
においてこの出願に係る発明は効果的である。
As the helical / helical gear having a long tooth width for transmitting a high load on a reference tooth surface having an involute curve as a tooth profile to which the present invention is applied, for example,
It is a helical gear or a helical gear having an overlapping meshing ratio of at least 2 or more. As such a helical gear or a helical gear, for example, in a large-capacity and large-capacity gearbox such as a marine or industrial machine,
In particular, the invention according to this application is effective for helical gears and helical gears that require low vibration and low noise.

【0045】また、上記実施例では、はすば歯車を例に
説明したが、やまば歯車においても同様の作用効果を奏
することができ、この出願に係る発明は歯面に対して接
触線が傾いた歯車において同様の作用効果を奏すること
ができる。
In the above embodiment, a helical gear has been described as an example. However, a similar effect can be obtained with a helical gear, and the invention according to this application has a contact line with a tooth surface. Similar functions and effects can be obtained with a tilted gear.

【0046】[0046]

【発明の効果】この出願に係る発明は、以上説明したよ
うに構成しているので、以下に記載するような効果を奏
する。
The invention according to the present application is configured as described above, and has the following effects.

【0047】請求項1〜7に係る3次元歯面修整はすば
/やまば歯車によれば、同時接触線総長さが噛合いの進
行に対して概念上不変となり、かつ接触線上の荷重分布
も噛合いの進行に対してほぼ不変となるような3次元的
なバイアス歯面修整が施されているため、駆動・被動歯
車一対としての全ばね剛さの時間変動が低減されてはす
ば/やまば歯車の振動・騒音を大幅に低減せることが可
能となる。
According to the three-dimensional helical and helical gears according to the first to seventh aspects, the total length of the simultaneous contact line is conceptually invariant with the progress of the meshing, and the load distribution on the contact line. Since the three-dimensional bias tooth surface modification is made substantially invariant to the progress of the meshing, the time variation of the total spring stiffness of the pair of driving and driven gears is reduced. / It is possible to greatly reduce the vibration and noise of the bevel gear.

【0048】また、3次元歯面修整領域が明解であるた
め、従来のトライ&エラーによる繁雑な歯面修整検討作
業から解放され、さらには、一元解析による設計技術を
可能として高精度で実際の振動レベルを低減させること
が可能となり、作業時間や労力の大幅な低減が可能とな
る。
Further, since the three-dimensional tooth surface modification area is clear, it is free from the complicated examination work of tooth surface modification due to the conventional trial and error. The vibration level can be reduced, and the working time and labor can be significantly reduced.

【0049】特に、請求項2によれば、3次元的なバイ
アス歯面修整を施した歯面修整領域から完全接触線領域
のインボリュート曲面へとスムーズな噛合いの進行が行
われるので、噛合い始めと噛合い終りに振動や騒音を生
じることなくスムーズな動力の伝達が可能となる。
In particular, according to the second aspect, the smooth meshing proceeds from the three-dimensionally biased tooth surface-modified tooth surface modified region to the involute curved surface of the complete contact line region. Power can be smoothly transmitted without generating vibration or noise at the beginning and end of the engagement.

【0050】特に、請求項3によれば、少なくとも歯車
噛合い時の撓み量とほぼ同一に設定した修整量により、
歯の撓みによっても衝撃による振動や騒音を生じること
がないはすば/やまば歯車を構成することが可能とな
る。
In particular, according to the third aspect, at least the amount of deformation set to be substantially the same as the amount of deflection at the time of gear engagement,
It is possible to configure a helical gear / a helical gear that does not generate vibration or noise due to impact even when the teeth are bent.

【0051】特に、請求項4によれば、3次元歯面修整
の等高線が接触線の傾きとほぼ平行となる歯面修整形状
であるため、完全接触線領域における噛合い始めと終り
によりスムーズに噛合うことができ、振動・騒音の低減
をより確実に可能とする。
In particular, according to the fourth aspect, since the contour line of the three-dimensional tooth surface modification has a tooth surface modification shape that is substantially parallel to the inclination of the contact line, the meshing start and end in the complete contact line region can be more smoothly performed. The meshing can be performed, and the reduction of vibration and noise can be more reliably achieved.

【0052】特に、請求項5によれば、歯幅方向の両端
ら内側に完全接触線領域の噛合い始め接触線の歯先側
と噛合い終り接触線の歯元側とを形成したので、歯端に
おける局所剛性の影響をほぼ無くして常に安定した動力
の伝達ができるはすば/やまば歯車を構成することが可
能となる。
[0052] In particular, according to claim 5, the tooth root side of the tooth tip side and meshing end line of contact meshing start line of contact completely contact line region across <br/> or al the side of the tooth width direction Because of this, it is possible to form a helical gear or a helical gear that can always transmit power stably with almost no influence of local rigidity at the tooth end.

【0053】特に、請求項6によれば、実重なり噛合い
率を少なくとも2以上の整数とした歯幅の長いはすば/
やまば歯車において、複数の歯で確実に動力を伝達する
ことが可能となる。
In particular, according to the sixth aspect, the helical / shear having a long tooth width with the actual overlap meshing ratio being an integer of at least 2 or more.
In a bevel gear, power can be transmitted reliably by a plurality of teeth.

【0054】特に、請求項7によれば、上記請求項6の
効果に加え正面噛合い率も少なくとも2以上としたの
で、更に確実に複数の歯で動力を伝達できる。
In particular, according to the seventh aspect, in addition to the effect of the sixth aspect, since the front meshing ratio is at least two or more, power can be transmitted more reliably by a plurality of teeth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この出願に係る発明の第1実施例を示すはすば
歯車の歯の図面であり、(a) は斜視図で、(b) は(a) の
A−A断面図である。
FIG. 1 is a drawing of a helical gear tooth showing a first embodiment of the invention according to the present application, (a) is a perspective view, and (b) is a cross-sectional view along AA of (a). .

【図2】図1の歯面を平面展開して作用面の完全接触線
領域を残した3次元歯面修整領域を示す説明図である。
FIG. 2 is an explanatory view showing a three-dimensional tooth surface modification region in which the tooth surface of FIG. 1 is developed in a plane to leave a complete contact line region of an operation surface.

【図3】図1の歯面を平面展開して作用面の完全接触線
領域を残した他の3次元歯面修整領域を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing another three-dimensional tooth surface modification region in which the tooth surface of FIG. 1 is developed in a plane to leave a complete contact line region of the working surface.

【図4】図1の歯の基準歯面を展開した作用面を示す説
明図である。
FIG. 4 is an explanatory view showing an operation surface obtained by developing a reference tooth surface of the tooth of FIG. 1;

【図5】従来の歯車の噛合い状態を示す説明図である。FIG. 5 is an explanatory diagram showing a meshing state of a conventional gear.

【図6】図5の歯車の噛合い状態の作用を示す説明図で
ある。
FIG. 6 is an explanatory view showing the operation of the gears shown in FIG. 5 in a meshing state.

【図7】従来のはすば歯車における局所剛性を示す説明
図である。
FIG. 7 is an explanatory diagram showing local rigidity in a conventional helical gear.

【図8】従来のはすば/やまば歯車における接触線を示
す斜視図である。
FIG. 8 is a perspective view showing a contact line in a conventional helical / helical gear.

【図9】従来のはすば歯車における歯の側面図である。FIG. 9 is a side view of a tooth of a conventional helical gear.

【図10】従来のはすば歯車を示す側面図である。FIG. 10 is a side view showing a conventional helical gear.

【図11】従来の歯面修整を示す図面であり、(a) が歯
形修整,(b) が歯筋修整,(c) が歯形修整と歯筋修整と
の組合せを示す斜視図である。
11A and 11B are drawings showing a conventional tooth surface modification, in which FIG. 11A is a perspective view showing a combination of tooth shape modification, FIG. 11B is a diagram showing tooth muscle modification, and FIG.

【符号の説明】[Explanation of symbols]

1…歯 2…噛合い始め部 3…噛合い終り部 T…修整量 r…歯たけ S…歯筋方向 L…接触線 Ls…噛合い始め接触線 Le…噛合い終り接触線 F…完全接触線領域 Fs…歯先側開始点(歯端側開始点) Fe…歯元側終了点(歯端側終了点) Es…歯面修整領域 Ee…歯面修整領域 V…噛合い進行方向 …歯たけ方向噛合い長さ H…作用面 m…等高線 Ps…歯筋方向ピッチ Pr…歯たけ方向ピッチ α…接触線の傾き δ…撓み量DESCRIPTION OF SYMBOLS 1 ... Teeth 2 ... Mesh start part 3 ... Mesh end part T ... Modification amount r ... Tooth setting S ... Tooth trace direction L ... Contact line Ls ... Mesh start contact line Le ... Mesh end contact line F ... Complete contact Line area Fs: Start point on the tooth tip side (start point on the tooth end) Fe: End point on the root side (end point on the tooth end) Es: Tooth surface modification area Ee: Tooth surface modification area V: Meshing progress direction R : Toothing direction engagement length H: Working surface m: Contour line Ps: Tooth trace direction pitch Pr: Toothing direction pitch α: Contact line inclination δ: Deflection amount

フロントページの続き (72)発明者 尾花 充 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 (56)参考文献 特開 平3−28565(JP,A) 特開 平8−285048(JP,A) 特開 平9−53702(JP,A) (58)調査した分野(Int.Cl.6,DB名) F16H 55/08 Continuation of the front page (72) Inventor Mitsuru Obana 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd. Kobe Plant (56) References JP-A-3-28565 (JP, A) Hei 8-285048 (JP, A) JP-A-9-53702 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F16H 55/08

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 インボリュート曲線を歯形とする基準歯
面を有して高負荷を伝達する歯幅の長いはすば/やまば
歯車において、 前記歯車の歯面に歯幅方向接触線ピッチの整数倍の幅の
完全接触線領域を残し、該完全接触線領域以外の歯面で
噛合い時に接触が起こらない3次元的なバイアス歯面修
整を施したことを特徴とする3次元歯面修整はすば/や
まば歯車。
1. A helical or helical gear having a long tooth width for transmitting a high load having a reference tooth surface having an involute curve as a tooth profile, wherein an integer of a contact line pitch in a tooth width direction is provided on a tooth surface of the gear. A three-dimensional tooth flank modification characterized by applying a three-dimensional bias tooth flank modification that leaves a double contact width complete contact line area and does not cause contact at the time of meshing on a tooth surface other than the complete contact line area. Sub gear / Evan gear.
【請求項2】 歯面修整領域の噛合い始め部から完全接
触線領域までを連続する曲面で形成し、該完全接触線領
域から歯面修整領域の噛合い終り部までを連続する曲面
で形成し、該両曲面を歯筋方向位置により歯形形状が異
なる3次元的なバイアス歯面修整によって形成したこと
を特徴とする請求項1記載の3次元歯面修整はすば/や
まば歯車。
2. A continuous curved surface is formed from the meshing start portion of the tooth surface modification region to the complete contact line region, and a continuous curved surface is formed from the complete contact line region to the meshing end portion of the tooth surface modification region. 3. The helical and / or helical gear according to claim 1, wherein the two curved surfaces are formed by three-dimensional bias tooth surface modification in which the tooth profile varies depending on the position in the tooth trace direction.
【請求項3】 バイアス歯面修整を施した歯面法線方向
における最大修整量を、少なくとも歯車噛合い時の撓み
量とほぼ同一に設定したことを特徴とする請求項1又は
請求項2記載の3次元歯面修整はすば/やまば歯車。
3. The method according to claim 1, wherein the maximum modification amount in the normal direction of the tooth surface on which the bias tooth surface modification is performed is set to be at least substantially equal to the amount of deflection at the time of gear engagement. The three-dimensional tooth surface modification is a helical / yamabaya gear.
【請求項4】 バイアス歯面修整を施した歯面法線方向
における修整を、互いに噛合う一対の駆動・被動歯車の
間の相対的な修整量として作用面上で表したとき、その
等高線が接触線の傾きとほぼ平行となる歯面修整形状で
施したことを特徴とする請求項1〜3のいずれか1項に
記載の3次元歯面修整はすば/やまば歯車。
4. When the correction in the normal direction of the tooth surface subjected to bias tooth surface modification is expressed on a working surface as a relative modification amount between a pair of driving and driven gears meshing with each other, the contour line is The three-dimensional tooth surface modified helical and / or helical gear according to any one of claims 1 to 3, wherein the tooth surface is modified in a tooth surface modified shape substantially parallel to the inclination of the contact line.
【請求項5】 完全接触線領域の噛合い始め接触線の歯
端側開始点と噛合い終り接触線の歯端側終了点とを、歯
幅方向の両端から内側に形成したことを特徴とする請求
項1〜4のいずれか1項に記載の3次元歯面修整はすば
/やまば歯車。
5. The method according to claim 5, wherein the start point of the contact line on the tooth end side of the contact line and the end point of the contact line on the tooth end side of the complete contact line region are formed inside from both ends in the tooth width direction. The three-dimensional tooth surface modification helical or helical gear according to any one of claims 1 to 4.
【請求項6】 実重なり噛合い率を少なくとも2以上の
整数にしたことを特徴とする請求項1〜5のいずれか1
項に記載の3次元歯面修整はすば/やまば歯車。
6. The method according to claim 1, wherein the actual overlapping mesh ratio is an integer of at least 2 or more.
The three-dimensional tooth surface modification described in the paragraph is a helical gear / a helical gear.
【請求項7】 正面噛合い率を少なくとも2以上にした
ことを特徴とする請求項6記載の3次元歯面修整はすば
/やまば歯車。
7. The three-dimensional tooth surface modification helical and / or helical gear according to claim 6, wherein the front meshing ratio is at least two or more.
JP24610596A 1996-09-18 1996-09-18 Three-dimensional tooth surface modification is helical or helical gear Expired - Fee Related JP2965913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24610596A JP2965913B2 (en) 1996-09-18 1996-09-18 Three-dimensional tooth surface modification is helical or helical gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24610596A JP2965913B2 (en) 1996-09-18 1996-09-18 Three-dimensional tooth surface modification is helical or helical gear

Publications (2)

Publication Number Publication Date
JPH1089442A JPH1089442A (en) 1998-04-07
JP2965913B2 true JP2965913B2 (en) 1999-10-18

Family

ID=17143564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24610596A Expired - Fee Related JP2965913B2 (en) 1996-09-18 1996-09-18 Three-dimensional tooth surface modification is helical or helical gear

Country Status (1)

Country Link
JP (1) JP2965913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036464B2 (en) 2013-08-02 2018-07-31 Toyo Denki Seizo Kabushiki Kaisha Railway vehicle gear device of parallel cardan drive system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335503B1 (en) * 2000-05-26 2002-01-01 Dana Corporation Method for manufacturing forging die for making net formed gears with predetermined tooth contact area
KR20020039709A (en) * 2000-11-22 2002-05-30 이계안 Teeth structure of pinion gear
JP4495009B2 (en) * 2005-02-28 2010-06-30 三菱重工業株式会社 Transmission gear and its manufacturing method
WO2007013373A1 (en) * 2005-07-28 2007-02-01 Musashi Seimitsu Kogyo Kabushiki Kaisha Method of designing gear using cad system, and gear
JP5678780B2 (en) * 2011-04-01 2015-03-04 トヨタ自動車株式会社 Vehicle meshing gear device
JP5607803B1 (en) * 2013-09-17 2014-10-15 有限会社Dac Trapezoidal gear
JP6448423B2 (en) 2014-12-05 2019-01-09 株式会社エンプラス Plastic helical gear
WO2016088577A1 (en) * 2014-12-05 2016-06-09 株式会社エンプラス Resin helical gear
JP6560578B2 (en) 2015-09-29 2019-08-14 株式会社エンプラス Plastic helical gear
JP6682228B2 (en) * 2015-10-05 2020-04-15 株式会社エンプラス Resin helical gear
JP6624904B2 (en) * 2015-11-26 2019-12-25 株式会社エンプラス Resin helical gear
JP2020019096A (en) * 2018-08-01 2020-02-06 株式会社不二越 Gear processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036464B2 (en) 2013-08-02 2018-07-31 Toyo Denki Seizo Kabushiki Kaisha Railway vehicle gear device of parallel cardan drive system

Also Published As

Publication number Publication date
JPH1089442A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP2965913B2 (en) Three-dimensional tooth surface modification is helical or helical gear
US8100028B2 (en) Cornu&#39;s spiral tooth gear
US8225691B2 (en) Conical involute gear and gear pair
US8201471B2 (en) Gears and gearing apparatus
JP3540815B2 (en) Phase correction of gear teeth by crowning
JP4919497B2 (en) Resin gear
KR100634061B1 (en) Method of finishing gears, and gear
US20110162473A1 (en) Hypoid gear design method and hypoid gear
EP3306132B1 (en) Strain wave gearing device with compound meshing that involves congruity of tooth surfaces
JP4737839B2 (en) Gear and gear device
JP4495009B2 (en) Transmission gear and its manufacturing method
US6112611A (en) Gear with modified tooth surface and gear tooth surface modification method
JP2768912B2 (en) Three-dimensional tooth surface modification structure for helical and helical gears
JP7166277B2 (en) Method for machining gears to produce hybrid sinusoidal-parabolic motion error, gears produced thereby, and machine for carrying out the method
JPH1194052A (en) Gear
JP5273460B2 (en) Steering mechanism design method
JP3127757B2 (en) Gears and gear cutting tools
JPH10331957A (en) Pair of gears and tooth face shape setting method
JP5496982B2 (en) Gear coupling and manufacturing method thereof
JP2000220725A (en) Helical concave conical gear and manufacture thereof
JP7136337B2 (en) Differential gear mechanism and its design method
JP6963481B2 (en) Gear structure and manufacturing method of gear structure
WO2016088577A1 (en) Resin helical gear
Radzevich Technological methods for noise/vibration reduction in driveline/transmission of trucks and all-wheel-drive vehicles
KR100224512B1 (en) Wave gear drive

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees