JP4737839B2 - Gear and gear device - Google Patents

Gear and gear device Download PDF

Info

Publication number
JP4737839B2
JP4737839B2 JP2001010360A JP2001010360A JP4737839B2 JP 4737839 B2 JP4737839 B2 JP 4737839B2 JP 2001010360 A JP2001010360 A JP 2001010360A JP 2001010360 A JP2001010360 A JP 2001010360A JP 4737839 B2 JP4737839 B2 JP 4737839B2
Authority
JP
Japan
Prior art keywords
tooth
teeth
gear
pair
meshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001010360A
Other languages
Japanese (ja)
Other versions
JP2001271912A (en
Inventor
徹 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2001010360A priority Critical patent/JP4737839B2/en
Publication of JP2001271912A publication Critical patent/JP2001271912A/en
Application granted granted Critical
Publication of JP4737839B2 publication Critical patent/JP4737839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複写機,プリンター,ファクシミリ,カメラ,VTR,電気洗濯機,自動車用部品等の動力伝達機構に広く使用される歯車及び歯車装置に関する。
【0002】
【従来の技術】
複写機や自動車用部品等の動力伝達機構には、図17に示すように、平行軸歯車対の一つである平歯車対20を組み合わせて構成された多くの歯車装置K1が使用されている。ここで、この歯車装置K1の平歯車対20において、インボリュート歯形で且つかみあい率εが1.0<ε<2.0の範囲に形成された一般的な平歯車対20は、図9〜図13に示すように、2組の歯41A−41B,42A−42B(43A,43B)が噛み合う場合(図9〜図10,図13)と、1組の歯41A−41Bが噛み合う場合(図11〜図12)とがあり、2組の歯が噛み合う場合と1組の歯が噛み合う場合とで歯の見かけ上のこわさが急激に変化する(図18参照)。その結果、このような平歯車対20は、2組の歯21が噛み合う場合と1組の歯21が噛み合う場合とで歯21の撓み変形量が大きく異なることになり、この歯21の撓み変形量の急激な変動に起因するねじり振動を生じさせる。この動力伝達系のねじり振動は、カラー複写機やカラーレーザープリンターの作像ユニットや転写ユニット等において回転伝達誤差を生じさせ、色ズレという不具合を生じさせることになる。又、このような平歯車対20を使用した動力伝達機構は、ねじり振動に起因する騒音を生じることになる。尚、ここで、見かけ上のこわさとは、同時にかみあい状態にある歯の合成されたこわさである。従って、2組の歯が同時にかみあい状態にある場合の歯の見かけ上のこわさは、1組の歯が噛み合っている状態に比較して略2倍になる。
【0003】
又、かみあい率εが2.0<εの平歯車対は、2組の歯が噛み合う場合と3組の歯が噛み合う場合があり、2組の歯が噛み合う場合と3組の歯が噛み合う場合とで歯の見かけ上のこわさが大きく異なることになり、上記かみあい率εが1.0<ε<2.0の平歯車対と同様に、ねじり振動やねじり振動に起因する騒音を生じることになる。
【0004】
そこで、従来から、平歯車対20の歯21の撓み変形量の急激な変動を抑えることにより、動力伝達系のねじり振動を低減すると共に、ねじり振動に起因する騒音を低減するための様々な技術が開発されてきた。
【0005】
例えば、図19〜図20に示すように、平歯車対20の各歯21の非接触面22であって且つ二対かみあい領域の一部23を切り欠くか(第1の従来例)、又は図21に示すように、歯21の一方の側面から他方の側面に貫通する穴24を形成し(第2の従来例)、歯21の先端側の二対かみあい領域のこわさを低下させ、二対かみあい時における歯21の撓み変形量と一対かみあい時における歯21の撓み変形量との差を少なくすることにより、ねじり振動の低減化を図るようにした技術が既に案出されている(特開平8−312755号公報参照)。
【0006】
又、図22及び図23に示すように、平歯車対20の駆動歯車(平歯車20A)の歯21の側面に補強板25を固定すると共に、被動歯車(平歯車20B)の歯21の側面に補強板26を固定し(第3の従来例)、歯21の一対かみあい領域のこわさを高め、一対かみあい時における歯21の撓み変形量と二対かみあい時における歯21の撓み変形量の差を少なくして、ねじり振動の低減化を図るようにした技術も既に案出されている(特開平8−312755号公報参照)。
【0007】
又、平歯車対において、歯の変形量と製造誤差に相当する分だけの歯形修整を行ってかみあい率を2.0にし、常時2組の歯が噛み合うようにして、ねじり振動の低減化を図るようにした技術(第4の従来技術)も既に案出されている(特開平5−340463号公報参照)。
【0008】
更に、図24に示すように、平歯車対20の歯21の先端から回転中心側へ延び且つ歯幅方向に歯21を横切る溝27を形成し、歯21の先端側のこわさを低下させて、歯21のかみあい始め時及び歯のかみあい終わり時における衝撃を歯先の撓み変形で吸収するようにした技術(第5の従来技術)も既に案出されている(特開平9−4697号公報,特開昭63−135647号公報参照)。
【0009】
【発明が解決しようとする課題】
しかしながら、第1の従来例は、平歯車対20が一方向への回転を伝達できるのみであり、正逆両方向への回転伝達が不可能であるという問題を有している。
【0010】
又、第2の従来例は、力を受ける歯21の歯先部分の肉厚が薄くなるため、撓み変形量と歯先強度のバランスをとるのが極めて困難であるという問題を有している。
【0011】
又、第3の従来例は、平歯車20A及び平歯車20Bの各歯21の側面に別途補強板25,26を固定する構成であるため、平歯車20A,20Bの製造工数が嵩み、平歯車20A,20Bの製品単価の高騰を招くという不具合を有していると共に、平歯車対20の取付精度のばらつきにより、一方の平歯車の歯の側面が他方の平歯車の補強板に擦り付けられ、新たな騒音を発生する虞を有している。
【0012】
又、第4の従来例は、かみあい率εが2.0以上となる歯車諸元が選択できない場合には実施不可能であると共に、歯形修整が高精度で行われる必要があり、歯形修整が容易でないため、平歯車の製造単価の高騰を招くという不具合を有している。
【0013】
又、第5の従来例は、歯先に溝27を形成するようになっているため、歯先面を充分に確保できない平歯車に適用できないという不具合を有している。
【0014】
そこで、本発明は、このような従来例によって生じる不具合を招くことなく、動力伝達系のねじり振動を低減し、騒音を低減することを目的とする。
【0015】
【課題を解決するための手段】
即ち、本発明に係る歯車は、歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側が取り除かれたことを特徴としている。
【0016】
又、本発明に係る歯車は、歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側の両側歯面が凹むように切り欠かれたことを特徴としている。
【0017】
又、本発明に係る歯車装置は、歯車を少なくとも一対噛み合わせてなる歯車装置であって、噛み合う一対の歯車の少なくとも一方の歯車の歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側が取り除かれたことを特徴としている。
【0018】
又、本発明に係る歯車装置は、歯車を少なくとも一対噛み合わせてなる歯車装置であって、噛み合う一対の歯車の少なくとも一方の歯車の歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側の両側歯面が凹むように切り欠かれたことを特徴としている。
【0019】
[第1の実施の形態]
図1〜図3は、本発明の第1の実施の形態に係る平行軸歯車としての平歯車1を示すものである。これらの図に示すように、本実施の形態の平歯車1は、中心部に軸2に嵌合される軸穴3が形成され、外周側にかみあい率εが1.0<ε<2.0となるように形成されたインボリュート歯形の歯4が多数形成されている。
【0020】
この平歯車1の歯4は、スリット5によって歯幅方向に二分されており、スリット5によって二分された各歯片4a,4bがそれぞれ独立して撓み変形するようになっている。ここで、スリット5は、歯4の歯幅方向略中央部に形成されており、歯先面6から歯底面7に達する深さに形成されている。尚、スリット5の幅Wは、加工が可能な幅寸法に設定されるが、歯幅寸法をなるべく小さくするために、可能な限り小さく設定するのが好ましい。また、スリット5の幅Wは、後述する平歯車対11(図6参照)のように平歯車1,1を噛み合わせた際に、平歯車1,1の取付誤差等により、一方の歯車1の歯片4aと他方の歯片4bとが互いに干渉してしまわないように設計するのが好ましい。
【0021】
二分された歯4の一方の歯片4bは、先端側の二対かみあい領域8aが切り欠いたように取り除かれている。その結果、図5〜図6に示すように、本実施の形態の平歯車1を一対噛み合わせた平歯車対11は、二対かみあい領域8a,8bにおいて、二分された歯4の他方の歯片4a,4a同士だけが噛み合い、一対かみあい領域10において、全ての歯片4a−4a,4b−4b同士が噛み合うため、歯4の見かけ上のこわさが一対かみあい状態と二対かみあい状態で等しくなり(図7参照)、一対かみあい状態の歯4の撓み変形量と二対かみあい状態の歯4の撓み変形量が急激に変化するようなことがない。尚、歯4のこわさは、歯形形状に起因して、図7に示すような上に凸の山形形状になるため、噛み合いの進行に伴い僅かに変動する。従って、本実施の形態の平歯車1は、噛み合いの進行に伴って撓み変形量も僅かに変動することになるが、従来例のような歯4のこわさの急激な変化がないため、ねじり振動を生じにくい。
【0022】
即ち、平歯車対11は、図9に示すように、駆動歯車の歯41Aの噛み合い開始時において、駆動歯車の歯41Aの歯元の面と被動歯車の歯41Bの歯末の面とが作用線12上の点13で接触すると共に、駆動歯車の歯42Aの歯末の面と被動歯車の歯42Bの歯元の面とが作用線12上の点14で接触しており、2組の歯41A−41B,42A−42Bが噛み合っている状態にある。駆動歯車と被動歯車の噛み合いが更に進行すると、図9〜図10に示すように、接触点13がピッチ円15A,15Bに近づくように移動し、接触点14がピッチ円15A,15Bから遠ざかるように移動する。尚、これら図9〜図10の状態において、接触点13は、駆動歯車の歯41Aの歯元の面の二対かみあい領域8bに位置する一方、被動歯車の歯41Bの歯末の面の二対かみあい領域8aに位置している(図3参照)。又、接触点14は、駆動歯車の歯42Aの歯末の面の二対かみあい領域8aに位置する一方、被動歯車の歯42Bの歯元の面の二対かみあい領域8bに位置している(図3参照)。
【0023】
駆動歯車と被動歯車の噛み合いが更に進行すると、図11に示すように、駆動歯車の歯42Aの歯末の面の先端が作用線12上から離れ、駆動歯車の歯42Aと被動歯車の歯42Bが非接触となり、駆動歯車の歯41Aのピッチ円15A近傍の歯元の面と被動歯車の歯41Bのピッチ円15B近傍の歯末の面とが点13のみで接触する。そして、更に駆動歯車と被動歯車の噛み合いが進行すると、図11の接触点13が図12の接触点13の位置まで移動する。この図11〜図12の状態は、駆動歯車の歯41Aと被動歯車の歯41Bが1組だけ噛み合っている状態であり、接触点13は駆動歯車及び被動歯車の一対かみあい領域10に位置している(図3参照)。
【0024】
更に駆動歯車と被動歯車の噛み合いが進行すると、図13に示すように、駆動歯車の歯41Aと被動歯車の歯41Bの接触点13がピッチ円15A,15Bから離れ、駆動歯車の歯41Aの歯末の面と被動歯車の歯41Bの歯元の面が接触すると共に、駆動歯車の次の歯43Aの歯元の面と被動歯車の次の歯43Bの歯末の面とが噛み合い(接触点16)、駆動歯車の歯41A,43Aと被動歯車の歯41B,43Bの2組が噛み合う状態になる。尚、図9〜図13中噛み合いの生じている歯については、本実施の形態において、先端側の二対かみあい領域が切り欠かれた歯片4bの歯先面に相当する位置を二点鎖線により仮想的に示す。
【0025】
ここで、本実施の形態の平歯車1,1を噛み合わせてなる平歯車対11は、一方の歯片4bの歯末の面の二対かみあい領域8aを切り欠いてあるため(図3及び図5参照)、図9〜図10及び図13の状態において、一方の歯片4b,4b同士が非接触であり、他方の歯片4a,4a同士が2対かみあい状態にある。このため、本実施の形態の平歯車1と同じ歯幅等の条件で設計された一般的な平歯車に比して、2対かみあい状態にある歯の噛み合い歯幅が低減し、これに伴って歯4の見かけ上のこわさが減少する。又、本実施の形態の平歯車1,1を噛み合わせてなる平歯車対11は、図11〜図12の状態において、1組の歯4,4の各歯片4a,4bが全て一対かみあい状態にある。その結果、上記したように、歯4の見かけ上のこわさは、1組の歯4が噛み合う状態と2組の歯4が噛み合う状態で差がなくなる(図7参照)。従って、本実施の形態の平歯車1,1を一対噛み合わせてなる平歯車対11は、上記のようにねじり振動を生じにくくなるのである。
【0026】
以上のように、本実施の形態は、平歯車1の歯4をスリット5によって歯幅方向に二分し、一方の歯片4bの歯末の面の二対かみあい領域8aを取り除くように切り欠いてあり、駆動歯車と被動歯車の二対かみあい状態と一対かみあい状態とで歯4の見かけ上のこわさを等しくすることができるため、歯4の撓み変形量の急激な変化を生じることがなく、ねじり振動の発生を防止することができると共に、このねじり振動に起因する騒音の発生を防止することができる。従って、図6に示すように、本実施の形態の平歯車1を少なくとも一対噛み合わせてなる歯車装置Kは、カラーコピー機やカラーレーザープリンター等の動力伝達機構に使用されると、静粛で正確な回転伝達を行うことが可能になり、色ズレ等の不具合の発生を効果的に防止することが可能になる。
【0027】
又、本実施の形態は、平歯車対11を正逆両方向へ回転させることができ、平歯車1の歯先の肉厚を薄くする構成でなく、平歯車1の歯4に別途補強板を固定する構成でもない。更に、本実施の形態は、一方の歯片4bの歯末の面の二対かみあい領域8aを単に取り除くだけであるため、歯4の変形量と製造誤差に相当する分だけの歯形修整を行う従来例に比較し、平歯車1を容易に形成することができる。加えて、本実施の形態は、歯先面6を充分確保できない場合にも適用できる。従って、本実施の形態によれば、第1の従来技術から第5の従来技術の不具合を解消することができる。
【0028】
尚、本実施の形態に係る平歯車対11は、切り欠いた一方の歯片4b,4b同士を噛み合わせる態様を示したが、これに限られず、駆動歯車の切り欠いた一方の歯片4bと被動歯車の切り欠かない他方の歯片4aを噛み合わせ、駆動歯車の切り欠かない他方の歯片4aと被動歯車の切り欠いた一方の歯片4bを噛み合わせるようにしてもよい。
【0029】
又、本実施の形態は、一対かみあい状態の歯4のこわさが二対かみあい状態の歯4のこわさに等しくなるように歯4の歯幅寸法を増加させる態様を例示しているが(図7(a)参照)、二対かみあい状態の歯4のこわさが一対かみあい状態の歯4のこわさに等しくなるように、歯4の歯幅寸法を調整するようにしてもよい(図7(b)参照)。尚、前者は所定の歯幅の平歯車に二対かみあい領域8aを切り欠いた歯片4bを付加したが如き態様であり、後者は所定の歯幅の平歯車の歯4をそのままの歯幅で歯片4a,4bに二分したが如き態様である。
【0030】
又、本実施の形態は、図3に示すように、一方の歯片4bの歯末の面の二対かみあい領域8a全体を切り欠く態様を例示したが、これに限られず、二対かみあい領域8aの切り欠き量を調整することにより(図16(a),(b)参照)、歯4の撓み変形量を調整するようにしてもよい。
【0031】
[第2の実施の形態]
図4は、本発明の第2の実施の形態に係る平歯車1の歯4の一部拡大斜視図である。この図4に示すように、本実施の形態の平歯車1は、歯4がスリット5,5によって歯幅方向に3分割され(歯片4c〜4e)、両側の歯片4c,4eが同一形状に形成されたものである。このうち、図4(a)に示す平歯車1は、両側の歯片4c,4eの歯末の面の二対かみあい領域8aが切り欠かれている。一方、図4(b)に示す平歯車1は、中央の歯片4dの歯末の面の二対かみあい領域8aのみが切り欠かれている。このような構成の平歯車1(図4(a)に示す平歯車1同士又は図4(b)に示す平歯車1同士)を一対噛み合わせてなる平歯車対11は、歯4に作用する力が歯幅方向中央位置に対して常時左右均等に作用するようになっており、軸穴3の中心線をこの軸穴3に嵌合する軸2の軸芯に対して傾けるような力が作用することがなく、より一層円滑な回転伝達を可能にする(図6参照)。
【0032】
このような構成の本実施の形態の平歯車1及びこの平歯車1を少なくとも一対備えた歯車装置は、上記第1の実施の形態と同様に、一対かみあい状態の歯4のこわさと二対かみあい状態の歯4の見かけ上のこわさを同一にし、ねじり振動を効果的に抑え、ねじり振動に起因する騒音の発生を防止することができる。
【0033】
[第3の実施の形態]
図14〜図15は、本発明の第3の実施の形態に係る平歯車1を示すものである。すなわち、本実施の形態に係る平歯車1は、これらの図に示すように、歯4がスリット5により歯幅方向に2分割(歯片4a,歯片4b)されており、そのうちの一方の歯片4bにおいて、両側の歯末の面の二対かみあい領域8a,8aが歯先面6を残すように部分的に取り除かれている(切り欠かれている)。
【0034】
このように二分された歯4の一方の歯片4bは、先端側の二対かみあい領域8aが本来の歯面(切り欠く前の歯面)よりも凹んでいる。その結果、本実施の形態の平歯車1を一対噛み合わせてなる平歯車対は、二対かみあい領域8a,8bにおいて、二分された歯4の他方の歯片4a,4a同士だけが噛み合い、一対かみあい領域10において、全ての歯片4a−4a,4b−4b同士が噛み合うため、歯4の見かけ上のこわさが一対かみあい状態と二対かみあい状態で等しくなり(図7参照)、一対かみあい状態の歯4の撓み変形量と二対かみあい状態の歯4の撓み変形量が急激に変化するようなことがない。これは、前述の各実施の形態に係る平歯車1と同様に、平歯車1の正逆両方向の回転時において成立する。
【0035】
以上のように、本実施の形態に係る平歯車1は、前述の各実施の形態と同様に、一対かみあい状態の歯4のこわさと二対かみあい状態の歯4の見かけ上のこわさを同一にし、ねじり振動を効果的に抑え、ねじり振動に起因する騒音の発生を防止することができる。
【0036】
[その他の応用例]
尚、以上の各実施の形態において、かみあい率εが1.0<ε<2.0の場合を例に採って説明したが、これに限られず、かみあい率εが2.0<εの場合にも適用することができる。即ち、かみあい率εが2.0<εの場合は、2対の歯4が噛み合う状態と3対の歯4が噛み合う状態とが生じるが、同一の歯を複数の歯片に分けたもののうちの少なくとも1歯片を除く他の歯片の歯末の面の三対かみあい領域を上記各実施の形態の二対かみあい領域と同様に切り欠くことにより、上記各実施の形態よりも一層円滑で且つ静粛な回転伝達を可能にすることができる。
【0037】
又、上記の各実施の形態において、歯4を歯幅方向にスリット5で2又は3分割する態様を示したが、これに限られず、歯4を歯幅方向にスリット5で4分割以上に分割し、複数の歯片のうちの少なくとも1歯片を除く他の歯片の歯末の面の二対かみあい領域を切り欠くようにしてもよい。
【0038】
又、上記の各実施の形態において、各歯片4a,4b,4c,4d,4eの歯幅を適宜変更して、各歯4の撓み変形量を調整するようにしてもよい。
【0039】
又、上記第1の実施の形態において、スリット5が歯先面6から歯底面7に達する深さに形成される態様を例示したが、これに限られず、スリット5の深さを適宜変更し、歯片4a,4bの撓み変形量を調整するようにしてもよい。
【0040】
又、本発明は、図8(a)又は図8(b)に示すように、駆動歯車と被動歯車のいずれか一方に一般的な平歯車17を使用し、この一般的な平歯車17に上記第1の実施の形態の平歯車1又は第2の実施の形態の平歯車1を噛み合わせるようにしてもよい。
【0041】
又、本発明は、上記各実施の形態に限定されるものではなく、外歯車を内歯車に噛み合わせる構成の歯車装置に適用することができる。
【0042】
又、本発明は、射出成形される樹脂製歯車や切削加工により形成される金属製歯車及びダイカストによって形成される金属製歯車等に広く適用される。
【0043】
【発明の効果】
以上の説明から明らかなように、本発明の歯車は、歯がスリットによって歯幅方向に複数の歯片に分割され、この複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側が取り除かれることにより、動力伝達時の歯の撓み変形量の急激な変動が抑えられるようになっているため、従来例の不具合を解消できることはもちろんのこと、ねじり振動を低減でき、ねじり振動に起因する騒音を低減することができる。従って、本発明の歯車を少なくとも一対噛み合わせてなる歯車装置は、動力伝達系のねじり振動を低減できると共にねじり振動に起因する騒音を低減でき、静粛で正確な回転伝達が可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る平歯車の外観斜視図である。
【図2】図1に示す平歯車の縦断面図である。
【図3】本発明の第1の実施の形態に係る平歯車の一部を拡大して示す図である。図3(a)は平歯車の一部を拡大して示す斜視図であり、図3(b)は図3(a)のA方向から見た図である。
【図4】本発明の第2の実施の形態に係る平歯車の一部を拡大して示す斜視図である。図4(a)は第1例を示す斜視図であり、図4(b)は第2例を示す斜視図である。
【図5】本発明の第1の実施の形態に係る平歯車を一対噛み合わせた平歯車対を示す斜視図である。
【図6】図5に示す平歯車対の縦断面図である。
【図7】第1の実施の形態に係る平歯車対の歯のこわさの変化を示す図である。図7(a)は歯幅を増加した場合の歯のこわさの変化を示す図であり、図7(b)は歯幅を増加しない場合の歯のこわさの変化を示す図である。
【図8】本発明の他の実施の形態に係る平歯車対を示す縦断面図である。図8(a)は他の実施の形態の第1例を示す図であり、図8(b)は他の実施の形態の第2例を示す図である。
【図9】平歯車対の第1段階のかみあい状態を示す図である。
【図10】平歯車対の第2段階のかみあい状態を示す図である。
【図11】平歯車対の第3段階のかみあい状態を示す図である。
【図12】平歯車対の第4段階のかみあい状態を示す図である。
【図13】平歯車対の第5段階のかみあい状態を示す図である。
【図14】本発明の第3の実施の形態に係る平歯車の一部を拡大して示す斜視図である。
【図15】本発明の第3の実施の形態に係る平歯車の一部を拡大して示す正面図である。
【図16】本発明の第1の実施の形態に係る平歯車の応用例を示す図である。図16(a)は第1の応用例を示す平歯車の側面側断面図であり、図16(b)は第2応用例を示す平歯車の側面側断面図である。
【図17】従来の平歯車対の外観斜視図である。
【図18】従来の平歯車対の歯のこわさの変化を示す図である。
【図19】第1の従来技術を示す平歯車対のかみあい部分の拡大図である。
【図20】図19の平歯車対の歯の拡大斜視図である。
【図21】第2の従来技術を示す平歯車対のかみあい部分の拡大図である。
【図22】第3の従来技術を示す平歯車対のかみあい部分の拡大図である。
【図23】図22の平歯車対の縦断面図である。
【図24】第5の従来技術を示す平歯車対のかみあい部分の拡大図である。
【符号の説明】
1……平歯車(平行軸歯車)、4,41A,41B,42A,42B,43A,43B……歯、4a〜4e……歯片、5……スリット、K……歯車装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear and a gear device widely used in a power transmission mechanism of a copying machine, a printer, a facsimile machine, a camera, a VTR, an electric washing machine, an automobile part, and the like.
[0002]
[Prior art]
As shown in FIG. 17, many gear devices K1 configured by combining a spur gear pair 20 which is one of parallel shaft gear pairs are used in a power transmission mechanism such as a copying machine or an automobile part. . Here, in the spur gear pair 20 of the gear device K1, a general spur gear pair 20 having an involute tooth shape and a meshing ratio ε of 1.0 <ε <2.0 is shown in FIGS. 13, when two sets of teeth 41A-41B, 42A-42B (43A, 43B) mesh (FIGS. 9-10, 13), and when a set of teeth 41A-41B mesh (FIG. 11). To FIG. 12), and the apparent stiffness of the teeth changes abruptly when two sets of teeth mesh with each other and when one set of teeth meshes (see FIG. 18). As a result, in the spur gear pair 20, the amount of bending deformation of the teeth 21 is greatly different between the case where the two sets of teeth 21 are engaged and the case where the one set of teeth 21 are engaged. Causes torsional vibration due to sudden fluctuations in quantity. This torsional vibration of the power transmission system causes a rotation transmission error in an image forming unit or a transfer unit of a color copying machine or a color laser printer, thereby causing a problem of color misregistration. Moreover, the power transmission mechanism using such a spur gear pair 20 generates noise due to torsional vibration. Here, the apparent stiffness is the synthesized stiffness of the teeth that are in mesh at the same time. Accordingly, the apparent stiffness of the teeth when the two sets of teeth are engaged at the same time is approximately doubled as compared to the state where the one set of teeth is engaged.
[0003]
Also, spur gear pairs with a meshing ratio ε of 2.0 <ε may have two sets of teeth meshing with each other, with three sets of teeth meshing with each other, with two sets of teeth meshing with each other, and with three sets of teeth meshing. And the apparent stiffness of the teeth differ greatly, and as with the spur gear pair with the meshing ratio ε of 1.0 <ε <2.0, torsional vibration and noise due to torsional vibration are generated. Become.
[0004]
Therefore, conventionally, various techniques for reducing torsional vibrations of the power transmission system and reducing noise caused by torsional vibrations by suppressing rapid fluctuations in the amount of bending deformation of the teeth 21 of the spur gear pair 20. Has been developed.
[0005]
For example, as shown in FIGS. 19 to 20, the non-contact surface 22 of each tooth 21 of the spur gear pair 20 and a part 23 of the two-pair meshing region are notched (first conventional example), or As shown in FIG. 21, a hole 24 penetrating from one side surface of the tooth 21 to the other side surface is formed (second conventional example), and the stiffness of the two-pair meshing region on the tip side of the tooth 21 is reduced. A technique has already been devised to reduce torsional vibration by reducing the difference between the amount of bending deformation of the tooth 21 during the pairing and the amount of bending deformation of the tooth 21 during the pairing (specialized). (See Kaihei 8-312755).
[0006]
22 and 23, the reinforcing plate 25 is fixed to the side surface of the tooth 21 of the drive gear (spur gear 20A) of the spur gear pair 20, and the side surface of the tooth 21 of the driven gear (spur gear 20B). The reinforcing plate 26 is fixed to the teeth (third conventional example), the stiffness of the pair of meshing regions of the teeth 21 is increased, and the difference between the amount of flexure deformation of the teeth 21 during the pair of meshes and the amount of flexure deformation of the teeth 21 during the two-pair meshing. A technique for reducing torsional vibration by reducing the above has already been devised (see JP-A-8-312755).
[0007]
In addition, in the spur gear pair, the tooth profile is corrected by an amount corresponding to the amount of deformation of the tooth and the manufacturing error so that the meshing rate is 2.0, and the two sets of teeth are always meshed to reduce torsional vibration. A technique (fourth prior art) that has been designed has already been devised (see Japanese Patent Laid-Open No. 5-340463).
[0008]
Furthermore, as shown in FIG. 24, a groove 27 extending from the tip of the tooth 21 of the spur gear pair 20 to the rotation center side and crossing the tooth 21 in the tooth width direction is formed to reduce the stiffness on the tip side of the tooth 21. Also, a technique (fifth conventional technique) has been devised so as to absorb the impact at the start of tooth engagement and at the end of tooth engagement by bending deformation of the tooth tip (Japanese Patent Laid-Open No. 9-4697). JP, 63-135647, A).
[0009]
[Problems to be solved by the invention]
However, the first conventional example has a problem that the spur gear pair 20 can only transmit rotation in one direction and cannot transmit rotation in both forward and reverse directions.
[0010]
Further, the second conventional example has a problem that it is extremely difficult to balance the amount of bending deformation and the tip strength because the thickness of the tip portion of the tooth 21 receiving the force becomes thin. .
[0011]
In addition, the third conventional example has a configuration in which the reinforcing plates 25 and 26 are separately fixed to the side surfaces of the teeth 21 of the spur gear 20A and the spur gear 20B. Therefore, the manufacturing man-hours of the spur gears 20A and 20B increase. The gears 20A and 20B have a problem that the product unit price increases, and due to variation in the mounting accuracy of the spur gear pair 20, the side surfaces of the teeth of one spur gear are rubbed against the reinforcing plate of the other spur gear. There is a risk of generating new noise.
[0012]
In addition, the fourth conventional example cannot be carried out when the gear specifications having a meshing ratio ε of 2.0 or more cannot be selected, and the tooth profile modification needs to be performed with high accuracy. Since it is not easy, there is a problem that the manufacturing cost of the spur gear increases.
[0013]
In addition, the fifth conventional example has a defect that it cannot be applied to a spur gear in which the tooth tip surface cannot be sufficiently secured because the groove 27 is formed in the tooth tip.
[0014]
Therefore, the present invention has an object to reduce torsional vibration of a power transmission system and reduce noise without incurring problems caused by such a conventional example.
[0015]
[Means for Solving the Problems]
That is, in the gear according to the present invention, the teeth are divided into a plurality of tooth pieces in the tooth width direction by the slits, and the plurality of tooth pieces are positioned so as not to deviate from the tooth streaks of the teeth. The tip of the other tooth piece except for at least one tooth piece of the plurality of tooth pieces is removed.
[0016]
Further, a gear according to the present invention, the tooth is divided into a plurality of tooth segments in the tooth width direction by the slit, the plurality of tooth segments are located without deviating from the tooth trace of the tooth, the slit is the tooth The tooth surface is formed to have a depth that reaches the tooth bottom surface from the tooth tip surface, and is cut out so that both tooth surfaces on the tip side of the other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces are recessed. It is a feature.
[0017]
The gear device according to the present invention is a gear device formed by meshing at least a pair of gears, and the teeth of at least one gear of the pair of meshed gears are divided into a plurality of tooth pieces in the tooth width direction by a slit, The plurality of tooth pieces are positioned without deviating from the tooth streaks of the teeth, and the slit is formed to a depth reaching the tooth bottom surface from the tip surface of the tooth , and at least one of the plurality of tooth pieces. It is characterized in that the tip side of other tooth pieces excluding the tooth piece is removed.
[0018]
The gear device according to the present invention is a gear device formed by meshing at least a pair of gears, and the teeth of at least one gear of the pair of meshed gears are divided into a plurality of tooth pieces in the tooth width direction by a slit, The plurality of tooth pieces are positioned without deviating from the tooth streaks of the teeth, and the slit is formed to a depth reaching the tooth bottom surface from the tip surface of the tooth , and at least one of the plurality of tooth pieces. It is characterized in that both tooth surfaces on the tip side of the other tooth pieces excluding the tooth pieces are cut out so as to be recessed.
[0019]
[First Embodiment]
1 to 3 show a spur gear 1 as a parallel shaft gear according to a first embodiment of the present invention. As shown in these drawings, the spur gear 1 of the present embodiment is formed with a shaft hole 3 fitted to the shaft 2 at the center, and the meshing ratio ε is 1.0 <ε <2. A large number of involute teeth 4 formed to be zero are formed.
[0020]
The teeth 4 of the spur gear 1 are bisected by the slit 5 in the tooth width direction, and the tooth pieces 4a and 4b bisected by the slit 5 are independently bent and deformed. Here, the slit 5 is formed at a substantially central portion of the tooth 4 in the tooth width direction, and is formed at a depth reaching the tooth bottom surface 7 from the tooth tip surface 6. In addition, although the width W of the slit 5 is set to the width dimension which can be processed, it is preferable to set it as small as possible in order to make the tooth width dimension as small as possible. Further, the width W of the slit 5 is set so that when the spur gears 1 and 1 are engaged with each other as in a spur gear pair 11 (see FIG. 6), which will be described later, one of the gears 1 is caused by an attachment error of the spur gears 1 and 1. It is preferable to design so that the tooth piece 4a and the other tooth piece 4b do not interfere with each other.
[0021]
One tooth piece 4b of the bisected tooth 4 is removed so that the two-pair meshing region 8a on the distal end side is notched. As a result, as shown in FIGS. 5 to 6, the pair of spur gears 11 in which the spur gear 1 of the present embodiment is meshed with the other tooth of the bisected tooth 4 in the two-pair meshing regions 8 a and 8 b. Since only the pieces 4a and 4a mesh with each other and all the tooth pieces 4a-4a and 4b-4b mesh with each other in the pair of meshing regions 10, the apparent stiffness of the teeth 4 becomes equal in the paired meshing state and the two-paired meshing state. (Refer to FIG. 7) The bending deformation amount of the tooth 4 in the paired engagement state and the bending deformation amount of the tooth 4 in the two pair engagement state do not change abruptly. Note that the stiffness of the teeth 4 is slightly convex with the progress of the meshing because it has an upward convex chevron shape as shown in FIG. 7 due to the tooth profile shape. Therefore, in the spur gear 1 of the present embodiment, the amount of flexure deformation slightly varies with the progress of meshing, but there is no sudden change in the stiffness of the teeth 4 as in the conventional example, so torsional vibration It is hard to produce.
[0022]
That is, in the spur gear pair 11, as shown in FIG. 9, at the start of meshing of the teeth 41A of the drive gear, the root surface of the teeth 41A of the drive gear and the end surface of the teeth 41B of the driven gear act. In addition to contact at the point 13 on the line 12, the end surface of the tooth 42A of the driving gear and the root surface of the tooth 42B of the driven gear are in contact at the point 14 on the action line 12, and two sets of The teeth 41A-41B and 42A-42B are in a meshed state. When the meshing of the driving gear and the driven gear further proceeds, as shown in FIGS. 9 to 10, the contact point 13 moves so as to approach the pitch circles 15A and 15B, and the contact point 14 moves away from the pitch circles 15A and 15B. Move to. 9 to 10, the contact point 13 is located in the two-pair meshing region 8 b of the root surface of the tooth 41 </ b> A of the drive gear, while the second end surface of the tooth 41 </ b> B of the driven gear. It is located in the counter mesh area 8a (see FIG. 3). Further, the contact point 14 is located in the two-pair meshing region 8a of the end surface of the tooth 42A of the drive gear, while being located in the two-pair meshing region 8b of the base surface of the tooth 42B of the driven gear ( (See FIG. 3).
[0023]
When the meshing of the driving gear and the driven gear further proceeds, as shown in FIG. 11, the tip of the end surface of the tooth 42A of the driving gear moves away from the action line 12, and the tooth 42A of the driving gear and the tooth 42B of the driven gear 42 Becomes non-contact, and the root surface near the pitch circle 15A of the tooth 41A of the driving gear and the end surface near the pitch circle 15B of the tooth 41B of the driven gear come into contact only at the point 13. When the engagement between the drive gear and the driven gear further proceeds, the contact point 13 in FIG. 11 moves to the position of the contact point 13 in FIG. The state shown in FIGS. 11 to 12 is a state where the tooth 41A of the driving gear and the tooth 41B of the driven gear are engaged with each other, and the contact point 13 is located in the paired engagement region 10 of the driving gear and the driven gear. (See FIG. 3).
[0024]
When the meshing of the driving gear and the driven gear further proceeds, as shown in FIG. 13, the contact point 13 between the tooth 41A of the driving gear and the tooth 41B of the driven gear is separated from the pitch circles 15A and 15B, and the tooth of the tooth 41A of the driving gear. The end surface and the root surface of the tooth 41B of the driven gear come into contact with each other, and the root surface of the next tooth 43A of the drive gear meshes with the end surface of the next tooth 43B of the driven gear (contact point). 16) Two sets of teeth 41A and 43A of the driving gear and teeth 41B and 43B of the driven gear are engaged with each other. In addition, about the tooth | gear which the mesh | engagement has produced in FIGS. 9-13, in this Embodiment, the position corresponded to the tooth tip surface of the tooth piece 4b by which the two pairs meshing area | region of the front end side was notched is shown with a dashed-two dotted line. Is shown virtually.
[0025]
Here, the spur gear pair 11 formed by meshing the spur gears 1 and 1 of the present embodiment has a notch in the two-pair meshing region 8a on the end surface of one tooth piece 4b (see FIG. 3 and FIG. 3). In the states of FIGS. 9 to 10 and 13, one tooth pieces 4 b and 4 b are not in contact with each other, and the other tooth pieces 4 a and 4 a are in a paired engagement state. For this reason, compared with the general spur gear designed on condition of the same tooth width etc. as the spur gear 1 of this embodiment, the meshing tooth width of the tooth in the two-pair meshing state is reduced. The apparent stiffness of the teeth 4 is reduced. Further, in the spur gear pair 11 formed by meshing the spur gears 1 and 1 of the present embodiment, the tooth pieces 4a and 4b of the pair of teeth 4 and 4 are all in a pair in the state shown in FIGS. Is in a state. As a result, as described above, there is no difference in the apparent stiffness of the teeth 4 between the state where one set of teeth 4 is engaged and the state where two sets of teeth 4 are engaged (see FIG. 7). Therefore, the spur gear pair 11 formed by meshing a pair of the spur gears 1 and 1 according to the present embodiment is less likely to generate torsional vibration as described above.
[0026]
As described above, in the present embodiment, the teeth 4 of the spur gear 1 are divided into two in the tooth width direction by the slits 5, and the two pairs of meshing regions 8 a on the end surface of one tooth piece 4 b are removed. The apparent stiffness of the teeth 4 can be made equal in the two-meshing state and the paired-meshing state of the driving gear and the driven gear, so that there is no sudden change in the amount of bending deformation of the teeth 4, Generation of torsional vibration can be prevented and generation of noise due to this torsional vibration can be prevented. Therefore, as shown in FIG. 6, the gear device K formed by meshing at least a pair of the spur gears 1 of the present embodiment is quiet and accurate when used in a power transmission mechanism such as a color copying machine or a color laser printer. Therefore, it is possible to effectively transmit the rotation, and to effectively prevent the occurrence of problems such as color misregistration.
[0027]
Further, in the present embodiment, the spur gear pair 11 can be rotated in both forward and reverse directions, and the thickness of the tooth tip of the spur gear 1 is not reduced, but a reinforcing plate is separately provided on the tooth 4 of the spur gear 1. It is not a fixed configuration. Furthermore, since the present embodiment merely removes the two-pair meshing region 8a on the end surface of one tooth piece 4b, the tooth profile is corrected by an amount corresponding to the deformation amount and manufacturing error of the tooth 4. Compared with the conventional example, the spur gear 1 can be formed easily. In addition, the present embodiment can also be applied to a case where the tooth tip surface 6 cannot be secured sufficiently. Therefore, according to the present embodiment, it is possible to solve the problems of the first conventional technique to the fifth conventional technique.
[0028]
The spur gear pair 11 according to the present embodiment shows a mode in which the notched tooth pieces 4b and 4b are engaged with each other, but the present invention is not limited to this, and the notched tooth piece 4b of the drive gear is not limited thereto. And the other tooth piece 4a without the notch of the driven gear, and the other tooth piece 4a without the notch of the drive gear and the one tooth piece 4b with the notch of the driven gear engaged.
[0029]
Moreover, although this Embodiment has illustrated the aspect which increases the tooth | gear width dimension of the tooth | gear 4 so that the rigidity of the tooth | gear 4 of a pair meshing state may become equal to the stiffness of the tooth | gear 4 of a two-pair meshing state (FIG. 7). (See (a)), the tooth width dimension of the teeth 4 may be adjusted so that the stiffness of the teeth 4 in the two-meshing state is equal to the stiffness of the teeth 4 in the one-meshing state (FIG. 7B). reference). The former is such that the spur gear having a predetermined tooth width is provided with a tooth piece 4b in which the two-meshing region 8a is notched, and the latter is the spur gear 4 having a predetermined tooth width. Thus, the tooth pieces 4a and 4b are divided into two parts.
[0030]
Moreover, although this Embodiment illustrated the aspect which notched the whole 2 pair meshing area | region 8a of the surface of the tooth end of one tooth piece 4b, as shown in FIG. 3, it is not restricted to this, Two pairs meshing area | region The amount of bending deformation of the tooth 4 may be adjusted by adjusting the notch amount 8a (see FIGS. 16A and 16B).
[0031]
[Second Embodiment]
FIG. 4 is a partially enlarged perspective view of the teeth 4 of the spur gear 1 according to the second embodiment of the present invention. As shown in FIG. 4, in the spur gear 1 of the present embodiment, the teeth 4 are divided into three in the tooth width direction by the slits 5 and 5 (tooth pieces 4c to 4e), and the tooth pieces 4c and 4e on both sides are the same. It is formed into a shape. Of these, the spur gear 1 shown in FIG. 4A has two pairs of meshing regions 8a on the end surfaces of the tooth pieces 4c and 4e on both sides. On the other hand, in the spur gear 1 shown in FIG. 4B, only the two-pair meshing region 8a of the end surface of the central tooth piece 4d is cut away. A spur gear pair 11 formed by meshing a pair of spur gears 1 (spur gears 1 shown in FIG. 4 (a) or spur gears 1 shown in FIG. 4 (b)) acts on the teeth 4. The force always acts on the center position in the tooth width direction evenly on the left and right, and the force that inclines the center line of the shaft hole 3 with respect to the shaft center of the shaft 2 fitted in the shaft hole 3. It does not act and enables smoother rotation transmission (see FIG. 6).
[0032]
The spur gear 1 of this embodiment having such a configuration and the gear device including at least one pair of the spur gears 1 are similar to the first embodiment in the above-described pair of meshed teeth 4 and the two-pair meshing. The apparent stiffness of the teeth 4 in the state can be made the same, the torsional vibration can be effectively suppressed, and the generation of noise due to the torsional vibration can be prevented.
[0033]
[Third Embodiment]
14 to 15 show a spur gear 1 according to a third embodiment of the present invention. That is, in the spur gear 1 according to the present embodiment, as shown in these drawings, the teeth 4 are divided into two in the tooth width direction by the slits 5 (tooth pieces 4a, tooth pieces 4b). In the tooth piece 4b, the two pairs of meshing regions 8a, 8a on the end surface on both sides are partially removed (notched) so as to leave the tip surface 6.
[0034]
In one tooth piece 4b of the tooth 4 divided in this way, the two-pair meshing region 8a on the tip side is recessed from the original tooth surface (tooth surface before notching). As a result, a pair of spur gears formed by meshing a pair of spur gears 1 of the present embodiment is such that only the other tooth pieces 4a, 4a of the divided teeth 4 mesh with each other in the two-pair meshing regions 8a, 8b. Since all the tooth pieces 4a-4a and 4b-4b mesh with each other in the meshing area 10, the apparent stiffness of the teeth 4 is equal in the paired meshing state and the two-paired meshing state (see FIG. 7). The bending deformation amount of the tooth 4 and the bending deformation amount of the tooth 4 in the two-pair meshing state do not change abruptly. This is established when the spur gear 1 rotates in both forward and reverse directions, like the spur gear 1 according to each of the embodiments described above.
[0035]
As described above, in the spur gear 1 according to the present embodiment, the stiffness of the teeth 4 in the paired engagement state and the apparent stiffness of the teeth 4 in the two-paired engagement state are the same as in the above-described embodiments. In addition, it is possible to effectively suppress torsional vibrations and prevent noises due to torsional vibrations.
[0036]
[Other application examples]
In the above embodiments, the case where the meshing rate ε is 1.0 <ε <2.0 has been described as an example. However, the present invention is not limited to this, and the meshing rate ε is 2.0 <ε. It can also be applied to. That is, when the meshing ratio ε is 2.0 <ε, there are a state in which two pairs of teeth 4 are engaged and a state in which three pairs of teeth 4 are engaged, but the same tooth is divided into a plurality of tooth pieces. By cutting out the three pairs of engagement areas on the end surface of the other tooth pieces except at least one tooth piece in the same manner as the two pairs of engagement areas in each of the above embodiments, it is smoother than in each of the above embodiments. In addition, quiet rotation transmission can be achieved.
[0037]
In each of the above embodiments, the tooth 4 is divided into two or three by the slit 5 in the tooth width direction. However, the present invention is not limited to this, and the tooth 4 is divided into four or more by the slit 5 in the tooth width direction. It is possible to divide and cut out two pairs of meshing regions on the end surface of other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces.
[0038]
Further, in each of the above embodiments, the amount of flexure deformation of each tooth 4 may be adjusted by appropriately changing the tooth width of each tooth piece 4a, 4b, 4c, 4d, 4e.
[0039]
Moreover, in the said 1st Embodiment, although the aspect in which the slit 5 was formed in the depth which reaches the tooth bottom surface 7 from the tooth tip surface 6 was illustrated, it is not restricted to this, The depth of the slit 5 is changed suitably. The bending deformation amount of the tooth pieces 4a and 4b may be adjusted.
[0040]
In the present invention, as shown in FIG. 8A or FIG. 8B, a general spur gear 17 is used for either the driving gear or the driven gear. You may make it mesh | engage the spur gear 1 of the said 1st Embodiment, or the spur gear 1 of 2nd Embodiment.
[0041]
The present invention is not limited to the above embodiments, and can be applied to a gear device having a configuration in which an external gear meshes with an internal gear.
[0042]
The present invention is widely applied to resin gears that are injection-molded, metal gears that are formed by cutting, metal gears that are formed by die casting, and the like.
[0043]
【The invention's effect】
As is clear from the above description, the gear of the present invention is divided into a plurality of tooth pieces in the tooth width direction by a slit, and the tooth of the other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces. By removing the tip side, it is possible to suppress sudden fluctuations in the amount of bending deformation of the teeth during power transmission, so it is possible to reduce the torsional vibration as well as to eliminate the problems of the conventional example. It is possible to reduce noise caused by the noise. Therefore, the gear device formed by meshing at least one pair of the gears of the present invention can reduce torsional vibration of the power transmission system and can reduce noise caused by torsional vibration, and enables quiet and accurate rotation transmission.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a spur gear according to a first embodiment of the present invention.
2 is a longitudinal sectional view of the spur gear shown in FIG.
FIG. 3 is an enlarged view showing a part of a spur gear according to the first embodiment of the present invention. FIG. 3A is an enlarged perspective view showing a part of the spur gear, and FIG. 3B is a view as seen from the A direction of FIG.
FIG. 4 is an enlarged perspective view showing a part of a spur gear according to a second embodiment of the present invention. FIG. 4A is a perspective view showing a first example, and FIG. 4B is a perspective view showing a second example.
FIG. 5 is a perspective view showing a spur gear pair in which a pair of spur gears according to the first embodiment of the present invention are engaged.
6 is a longitudinal sectional view of the spur gear pair shown in FIG.
FIG. 7 is a view showing a change in stiffness of teeth of the spur gear pair according to the first embodiment. FIG. 7A is a diagram showing changes in tooth stiffness when the tooth width is increased, and FIG. 7B is a diagram showing changes in tooth stiffness when the tooth width is not increased.
FIG. 8 is a longitudinal sectional view showing a spur gear pair according to another embodiment of the present invention. FIG. 8A is a diagram illustrating a first example of another embodiment, and FIG. 8B is a diagram illustrating a second example of another embodiment.
FIG. 9 is a diagram showing a first stage meshing state of a spur gear pair.
FIG. 10 is a diagram showing a second stage meshing state of a spur gear pair.
FIG. 11 is a diagram showing a meshing state of a third stage of a spur gear pair.
FIG. 12 is a diagram showing a meshing state of a fourth stage of the spur gear pair.
FIG. 13 is a diagram showing a meshing state of a fifth stage of a spur gear pair.
FIG. 14 is an enlarged perspective view showing a part of a spur gear according to a third embodiment of the present invention.
FIG. 15 is an enlarged front view showing a part of a spur gear according to a third embodiment of the present invention.
FIG. 16 is a diagram showing an application example of a spur gear according to the first embodiment of the present invention. FIG. 16A is a side sectional view of a spur gear showing a first application example, and FIG. 16B is a side sectional view of a spur gear showing a second application example.
FIG. 17 is an external perspective view of a conventional spur gear pair.
FIG. 18 is a diagram showing a change in stiffness of teeth of a conventional spur gear pair.
FIG. 19 is an enlarged view of a meshing portion of a spur gear pair showing the first prior art.
20 is an enlarged perspective view of teeth of the spur gear pair of FIG. 19;
FIG. 21 is an enlarged view of a meshing portion of a spur gear pair showing the second prior art.
FIG. 22 is an enlarged view of a meshing portion of a spur gear pair showing the third prior art.
23 is a longitudinal sectional view of the spur gear pair of FIG.
FIG. 24 is an enlarged view of a meshing portion of a spur gear pair showing a fifth prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Spur gear (parallel shaft gear), 4, 41A, 41B, 42A, 42B, 43A, 43B ... Teeth, 4a-4e ... Teeth piece, 5 ... Slit, K ... Gear device

Claims (4)

歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、
前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、
前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側が取り除かれた、
ことを特徴とする歯車。
The teeth are divided into a plurality of tooth pieces in the tooth width direction by slits, and the plurality of tooth pieces are positioned without deviating from the tooth streaks of the teeth,
The slit is formed to a depth reaching the tooth bottom surface from the tooth tip surface of the tooth,
The tip side of the other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces is removed;
A gear characterized by that.
歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、
前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、
前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側の両側歯面が凹むように切り欠かれた、
ことを特徴とする歯車。
The teeth are divided into a plurality of tooth pieces in the tooth width direction by slits, and the plurality of tooth pieces are positioned without deviating from the tooth streaks of the teeth,
The slit is formed to a depth reaching the tooth bottom surface from the tooth tip surface of the tooth,
Cut out so that both side tooth surfaces on the tip side of the other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces are recessed,
A gear characterized by that.
歯車を少なくとも一対噛み合わせてなる歯車装置において、
噛み合う一対の歯車の少なくとも一方の歯車の歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、
前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、
前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側が取り除かれた、
ことを特徴とする歯車装置。
In a gear device formed by meshing at least a pair of gears,
The teeth of at least one gear of the pair of gears engaged with each other are divided into a plurality of tooth pieces in the tooth width direction by a slit, and the plurality of tooth pieces are positioned without deviating from the tooth traces of the teeth,
The slit is formed to a depth reaching the tooth bottom surface from the tooth tip surface of the tooth,
The tip side of the other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces is removed;
A gear device characterized by that.
歯車を少なくとも一対噛み合わせてなる歯車装置において、
噛み合う一対の歯車の少なくとも一方の歯車の歯がスリットによって歯幅方向に複数の歯片に分割され、前記複数の歯片が前記歯の歯すじからずれることなく位置しており、
前記スリットが前記歯の歯先面から歯底面に達する深さに形成され、
前記複数の歯片のうちの少なくとも1歯片を除く他の歯片の先端側の両側歯面が凹むように切り欠かれた、
ことを特徴とする歯車装置。
In a gear device formed by meshing at least a pair of gears,
The teeth of at least one gear of the pair of gears engaged with each other are divided into a plurality of tooth pieces in the tooth width direction by a slit, and the plurality of tooth pieces are positioned without deviating from the tooth traces of the teeth,
The slit is formed to a depth reaching the tooth bottom surface from the tooth tip surface of the tooth,
Cut out so that both side tooth surfaces on the tip side of the other tooth pieces excluding at least one tooth piece of the plurality of tooth pieces are recessed,
A gear device characterized by that.
JP2001010360A 2000-01-19 2001-01-18 Gear and gear device Expired - Fee Related JP4737839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010360A JP4737839B2 (en) 2000-01-19 2001-01-18 Gear and gear device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-11054 2000-01-19
JP2000011054 2000-01-19
JP2000011054 2000-01-19
JP2001010360A JP4737839B2 (en) 2000-01-19 2001-01-18 Gear and gear device

Publications (2)

Publication Number Publication Date
JP2001271912A JP2001271912A (en) 2001-10-05
JP4737839B2 true JP4737839B2 (en) 2011-08-03

Family

ID=26583813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010360A Expired - Fee Related JP4737839B2 (en) 2000-01-19 2001-01-18 Gear and gear device

Country Status (1)

Country Link
JP (1) JP4737839B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766887B2 (en) * 2005-03-04 2011-09-07 株式会社エンプラス Gear and gear device
KR101378157B1 (en) * 2005-07-05 2014-04-04 저먼 알렉산드로비치 주라블레브 Gear Drive
JP4979218B2 (en) * 2005-09-30 2012-07-18 株式会社エンプラス Gear and gear device
JP5391396B2 (en) * 2008-11-28 2014-01-15 株式会社エンプラス gear
DE102010034261A1 (en) * 2010-08-13 2012-02-16 Valeo Schalter Und Sensoren Gmbh Device for detecting a position angle of a rotatable component of a vehicle and vehicle with such a device
CA3111737A1 (en) 2010-12-03 2012-06-07 Ricoh Company, Ltd. Powder container, powder supply device and image forming apparatus
JP5870647B2 (en) 2011-02-17 2016-03-01 株式会社リコー Powder container, powder supply device, and image forming apparatus
CN108051988B (en) 2011-11-25 2021-08-10 株式会社理光 Nozzle receiving device, powder box and image forming equipment
KR102270523B1 (en) 2012-06-03 2021-06-29 가부시키가이샤 리코 Powder container and image forming apparatus
US9465317B2 (en) 2013-02-25 2016-10-11 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
CA3114929C (en) 2013-03-15 2023-01-10 Ricoh Company, Limited Powder container and image forming apparatus
JP6972365B2 (en) * 2017-11-08 2021-11-24 ジェネシス アドバンスド テクノロジー インコーポレイテッド Gear box
DE102017222070A1 (en) * 2017-12-06 2019-06-06 Zf Friedrichshafen Ag Sectional width correction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157748A (en) * 1984-12-28 1986-07-17 Fuji Heavy Ind Ltd Racing preventive device of driving wheel
JPS63135647A (en) * 1986-11-27 1988-06-08 Nec Corp Gear
JPH0328565A (en) * 1989-06-24 1991-02-06 Nissan Motor Co Ltd Noise reducing gear
JPH05340463A (en) * 1992-06-05 1993-12-21 Kawasaki Heavy Ind Ltd Tooth shape correction method for spur gear and tooth shape correction spur gear pair
JPH08312755A (en) * 1995-05-16 1996-11-26 Matsushita Electric Ind Co Ltd Gear pair with parallel axes
JPH094697A (en) * 1995-06-16 1997-01-07 Ricoh Co Ltd Spur gear
JPH10171302A (en) * 1996-12-12 1998-06-26 Minolta Co Ltd Photoreceptor driving device
US6230578B1 (en) * 1999-04-30 2001-05-15 Axicon Technologies, Inc. Variable face width gearing

Also Published As

Publication number Publication date
JP2001271912A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4737839B2 (en) Gear and gear device
JP4919497B2 (en) Resin gear
JP4618806B2 (en) gear
US8201471B2 (en) Gears and gearing apparatus
JP4640777B2 (en) Resin gear
JP2000065156A (en) Silent chain transmitting device
JPH08506650A (en) Backlash-free gear mechanism
JP2965913B2 (en) Three-dimensional tooth surface modification is helical or helical gear
JP4375723B2 (en) gear
JP2006183824A (en) Planetary gear mechanism and its manufacturing method
JPH08312755A (en) Gear pair with parallel axes
JP2710861B2 (en) Tooth wheel
US1813875A (en) Gear
JP4725965B2 (en) Gear device
JP4135794B2 (en) Injection molded plastic gear
JPH09210143A (en) Gear transmission device
JPH05340463A (en) Tooth shape correction method for spur gear and tooth shape correction spur gear pair
JPH08285048A (en) Three-dimensional tooth surface modification structure in helical/double-helical gear
JP2007092787A (en) Gear and gear device
JP4979218B2 (en) Gear and gear device
JP4297926B2 (en) Injection molded plastic gear
JP4766887B2 (en) Gear and gear device
JP4414688B2 (en) Gear mechanism
JP2000081114A (en) Gear transmission mechanism
JP4010129B2 (en) Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4737839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees