JP2965568B2 - Charge detection device - Google Patents

Charge detection device

Info

Publication number
JP2965568B2
JP2965568B2 JP63231740A JP23174088A JP2965568B2 JP 2965568 B2 JP2965568 B2 JP 2965568B2 JP 63231740 A JP63231740 A JP 63231740A JP 23174088 A JP23174088 A JP 23174088A JP 2965568 B2 JP2965568 B2 JP 2965568B2
Authority
JP
Japan
Prior art keywords
electrode
charge
gap
under
last
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63231740A
Other languages
Japanese (ja)
Other versions
JPH0281442A (en
Inventor
敦 本庄
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63231740A priority Critical patent/JP2965568B2/en
Publication of JPH0281442A publication Critical patent/JPH0281442A/en
Application granted granted Critical
Publication of JP2965568B2 publication Critical patent/JP2965568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体基板上に集積化された複数の電極か
らなる電荷転送部によって転送される電荷を浮遊電極を
介して電圧に変換して検出する電荷検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method of transferring electric charges transferred by a charge transfer unit including a plurality of electrodes integrated on a semiconductor substrate through floating electrodes. The present invention relates to a charge detection device that converts a voltage into a voltage and detects the voltage.

(従来の技術) 第2図に従来の電荷検出装置を示す。第2図におい
て、p形基板19上にn形拡散層18が形成され、n形拡散
層18の上にば絶縁膜20を介してポリシリコンからなる2
層構造の電極12〜16が形成されている。そして、第2層
のポリシリコン電極下と第1層ポリシリコンの電極との
間に電位障壁(約−2V)を形成するために、第2層ポリ
シリコンの電極下のn形拡散層18にホウ素をイオン注入
してn-層21を形成している。また電極を形成する際のパ
ターンずれに対して電荷転送を保障するため第1層ポリ
シリコンの電極と第2層ポリシリコンの電極をオーバー
ラップさせている。
(Prior Art) FIG. 2 shows a conventional charge detection device. In FIG. 2, an n-type diffusion layer 18 is formed on a p-type substrate 19, and a polysilicon layer 2 is formed on the n-type diffusion layer 18 via an insulating film 20.
Electrodes 12 to 16 having a layer structure are formed. Then, in order to form a potential barrier (about −2 V) between the second layer polysilicon electrode and the first layer polysilicon electrode, an n-type diffusion layer 18 below the second layer polysilicon electrode is formed. Boron ions are implanted to form the n layer 21. Also, the first layer polysilicon electrode and the second layer polysilicon electrode are overlapped in order to guarantee charge transfer with respect to a pattern shift when the electrodes are formed.

出力ゲート電極14には+4VのDC電源が接続される。浮
遊電極13はスイッチ22を介して+5VのDC電源24に接続さ
れる。浮遊電極13はスイッチ22がONのとき+5Vに固定さ
れスイッチ22がOFFになると浮遊電極13は無接続(浮
遊)状態となる。n形拡散層18の左端にはn+拡散層17が
接続され、この拡散層17は電極11に接続された+15VのD
C電源によって+15Vに固定されている。第2図右方には
電荷転送部が接続され、電極15,16は、その電荷転送部
の端部の2電極を示している。そしてこの電荷転送部に
よって転送される電荷は第2図に示す矢印の方向(右か
ら左)へ転送される。
The output gate electrode 14 is connected to a +4 V DC power supply. The floating electrode 13 is connected to a +5 V DC power supply 24 via a switch 22. When the switch 22 is ON, the floating electrode 13 is fixed at +5 V, and when the switch 22 is turned OFF, the floating electrode 13 is in a non-connected (floating) state. An n + diffusion layer 17 is connected to the left end of the n-type diffusion layer 18, and the diffusion layer 17 is connected to the +11 V D
Fixed to + 15V by C power supply. The right side of FIG. 2 is connected to a charge transfer unit, and electrodes 15 and 16 represent two electrodes at the ends of the charge transfer unit. The charges transferred by the charge transfer section are transferred in the direction of the arrow (right to left) shown in FIG.

第3図に電位図を示す。縦軸は電位であり、横軸は位
置を示す。横軸に示す位置(符号)は第2図に示す電極
の符号に対応している。第4図には電極16,15,12および
スイッチ22に印加されるパルスと電極13の電位を示す。
第2図右方から電荷転送部を介して転送されてきた電荷
は電極15aの下に蓄積され、第4図に示すように時刻t1
で電極15がH→Lとなると、第3図に示す矢印A,B,Cの
ように転送され浮遊電極13の下に蓄積される。第4図に
示す時刻t2において電極12がL→Hとなると、浮遊電極
13下の電荷はn+拡散層17に排出される。浮遊状態の電極
13下に電荷が流入すると、電極13の電位は低下する。ま
た浮遊電極13と電極12およびスイッチ22の電極は容量結
合しているため、浮遊電極13の電位は第4図に示すよう
な変化を示す。そして時刻t1とt2の間において、電位を
サンプリングすることによって、電荷量を電圧変化分と
して検出できる。なお、電極14下には電荷が蓄積される
ことはなく、電荷を浮遊電極13下に局限する役割をはた
している。
FIG. 3 shows a potential diagram. The vertical axis indicates the potential, and the horizontal axis indicates the position. The positions (signs) shown on the horizontal axis correspond to the signs of the electrodes shown in FIG. FIG. 4 shows pulses applied to the electrodes 16, 15, 12 and the switch 22, and the potential of the electrode 13.
Charges transferred through the charge transfer section from Figure 2 the right are accumulated under the electrode 15a, the time t 1 as shown in FIG. 4
When the electrode 15 changes from H to L, the data is transferred as indicated by arrows A, B, and C shown in FIG. When electrode 12 is L → H at time t 2 shown in FIG. 4, the floating electrode
The charges under 13 are discharged to the n + diffusion layer 17. Floating electrode
When electric charge flows below 13, the potential of the electrode 13 decreases. Since the floating electrode 13, the electrode 12, and the electrode of the switch 22 are capacitively coupled, the potential of the floating electrode 13 changes as shown in FIG. And in between times t 1 and t 2, by sampling the potential can be detected charge amount as a voltage variation. Note that no electric charge is accumulated under the electrode 14, and serves to localize the electric charge under the floating electrode 13.

第5図に浮遊電極13まわりの回路接続図を示す。前述
のようにスイッチ22がOFFの状態でn形拡散層18に電荷
が流入すると浮遊電極13の電位が降下する。そしてこの
電圧降下は高入力インピーダンスの増幅器41によって増
幅され出力される。この時増幅器41に入力する電荷量に
対応する電圧の変化分は、浮遊電極13に接続している容
量値によって決定される。これらの容量値を第6図に示
す。
FIG. 5 shows a circuit connection diagram around the floating electrode 13. As described above, when charge flows into the n-type diffusion layer 18 with the switch 22 turned off, the potential of the floating electrode 13 drops. This voltage drop is amplified and output by the amplifier 41 having a high input impedance. At this time, the change in the voltage corresponding to the amount of charge input to the amplifier 41 is determined by the capacitance value connected to the floating electrode 13. FIG. 6 shows these capacitance values.

第6図においてC1はチャネル−p形基板19間の容量を
示す。C2はチャネル−浮遊電極13間の容量を示し、この
容量C2は主に、チャネル−界面間の容量と、電極下酸化
膜容量との直列結合といて表わされる成分からなる。C4
は浮遊電極13−p形基板19間の容量であり、主に浮遊電
極13の配線容量、スイッチ22の入力容量、増幅器41の入
力容量、および浮遊電極13と他電極とのオーバーラップ
による容量からなる。特に第2図に示す浮遊電極13と出
力ゲート電極14との間のオーバーラップによる容量C4
C3の主要な成分の一つである。
C 1 represents the capacitance between the channel -p-type substrate 19 in FIG. 6. C 2 indicates a capacitance between the channel and the floating electrode 13, and the capacitance C 2 mainly includes a component expressed as a series coupling of the capacitance between the channel and the interface and the capacitance of the oxide film under the electrode. C 4
Is the capacitance between the floating electrode 13 and the p-type substrate 19, which is mainly based on the wiring capacitance of the floating electrode 13, the input capacitance of the switch 22, the input capacitance of the amplifier 41, and the capacitance due to the overlap between the floating electrode 13 and other electrodes. Become. In particular, the capacitance C 4 due to the overlap between the floating electrode 13 and the output gate electrode 14 shown in FIG.
It is one of the main components of C 3.

(発明が解決しようとする課題) 第6図に示す容量C1とC2の間はチャネルである。ここ
に電荷Qが流入したときの電位変化をΔV1、増幅器41の
入力電圧の変化をΔV2とすると、 となる。ここでC1<<C3、C1<<C2であるとき、 となり、容量C3が電荷電圧変換比を決定する。第2図に
示すような従来の電荷検出装置においては、前述したよ
うに電極13と他の電極のオーバーラップによる容量が容
量C3の主要な成分であり、これらが大なるために、電荷
電圧変換比が小さくなるとともに、第5図に示す増幅器
41における雑音のため、出力信号のS/N比を低下すると
いう問題があった。
(Problems to be Solved by the Invention) During the capacitance C 1 and C 2 shown in FIG. 6 is a channel. Here, assuming that a potential change when the charge Q flows in is ΔV 1 and a change in the input voltage of the amplifier 41 is ΔV 2 , Becomes Here, when C 1 << C 3 and C 1 << C 2 , Next, the capacitance C 3 to determine the charge-to-voltage conversion ratio. In the conventional charge detecting device as shown in Figure 2, a major component of the capacitance capacitor C 3 by overlap of the electrodes 13 and other electrodes as described above, because they become large, the charge voltage The conversion ratio is reduced and the amplifier shown in FIG.
Due to the noise in 41, there was a problem that the S / N ratio of the output signal was reduced.

本願発明は上記問題点を考慮してなされたものであっ
て、電荷電圧変換比を可及的に高くすることのできる電
荷検出装置を提供することを目的とする。
The present invention has been made in consideration of the above problems, and has as its object to provide a charge detection device capable of increasing the charge-to-voltage conversion ratio as much as possible.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、半導体基板上に集積化された重なりゲート
構造の複数の電極からなる電荷転送部によって転送され
る電荷を浮遊電極を介して電圧に変換して検出する電荷
検出装置において、前記電荷送部の最終段の電極と前記
浮遊電極との間に間隙を設け、この間隙下の空乏電位
が、前記最終段の電極に印加されるパルスがハイレベル
のときに前記最終段の電極下に生じる電位と、前記パル
スがロウレベルのときに前記最終段の電極下に生じる電
位との間の値となるように前記間隙下の不純物濃度を調
整し、前記間隙上には制御電極が設けられていないこと
を特徴とする。
(Means for Solving the Problems) The present invention converts a charge transferred by a charge transfer section composed of a plurality of electrodes of an overlapping gate structure integrated on a semiconductor substrate into a voltage via a floating electrode and detects the voltage. In the charge detection device, a gap is provided between the last-stage electrode of the charge sending unit and the floating electrode, and a depletion potential under this gap is set when a pulse applied to the last-stage electrode is at a high level. Adjusting the impurity concentration under the gap so as to be a value between a potential generated under the electrode at the last stage and a potential generated under the electrode at the last stage when the pulse is at a low level; Has no control electrode.

また本発明は、半導体基板上に集積化された重なりゲ
ート構造の複数の電極からなる電荷転送部によって転送
される電荷を浮遊電極を介して電圧に変換して検出する
電荷検出装置において、前記電荷転送部の最終段の電極
と前記浮遊電極との間に、直上に制御電極を有しない間
隙を設け、前記最終段の電極下に蓄積された電荷は所定
のタイミングで前記間隙下の領域を通過して前記浮遊電
極下に蓄積されることを特徴とする。
Further, according to the present invention, there is provided a charge detecting device for converting a charge transferred by a charge transfer unit including a plurality of electrodes having an overlapping gate structure integrated on a semiconductor substrate into a voltage via a floating electrode and detecting the charge, A gap without a control electrode is provided immediately above the last-stage electrode of the transfer unit and the floating electrode, and the electric charge accumulated under the last-stage electrode passes through a region below the gap at a predetermined timing. And accumulated under the floating electrode.

(作 用) このように構成された本発明による電荷検出装置によ
れば、電荷転送部の最終段の電極と浮遊電極との間に間
隙を設け、この間隙下の空乏電位が所定値となるように
間隙下の不純物濃度が調整される。これにより間隙下に
は所定の空乏電位が形成され、電荷転送部から転送され
てきた電荷は浮遊電極下に局限される。また浮遊電極と
電荷転送部の最終段の電極との間に間隙を設けたことに
より浮遊電極と半導体基板との間の容量C3が減少し、電
荷電圧変換比が向上することになる。
(Operation) According to the charge detection device of the present invention configured as described above, a gap is provided between the electrode at the last stage of the charge transfer section and the floating electrode, and the depletion potential below the gap becomes a predetermined value. Thus, the impurity concentration below the gap is adjusted. As a result, a predetermined depletion potential is formed below the gap, and the charge transferred from the charge transfer unit is localized under the floating electrode. The capacitance C 3 between the floating electrode and the semiconductor substrate is reduced by providing the gap between the electrode of the final stage of the charge transfer portion and the floating electrode, so that the charge-voltage conversion ratio is improved.

(実施例) 第1図に本発明による電荷検出装置の実施例を示す。
この実施例の電荷検出装置は、第2図に示す従来の電荷
検出装置において、出力ゲート電極14を削除して電荷転
送部の最終段の電極15aと浮遊電極13との間に間隙を設
け、電荷転送部の電極15b,16b下に形成されたn-拡散層2
1のn形不純物濃度よりも低い濃度となるように、上記
間隙下にホウ素イオンを注入してn--層61を形成したも
のである。このn--層61においては電荷転送部の電極下
に形成されたn-層よりも不純物濃度が低いことにより、
上記間隙部分は電極がなくとも所定の空乏電位を有する
ことになる。今、n--層61の不純物濃度を適切に調整し
て間隙下の空乏電位が10Vとなるようにすれば、本実施
例の電位図は第3図において電極14を--n層61としたも
のとなる。
(Embodiment) FIG. 1 shows an embodiment of a charge detection device according to the present invention.
The charge detection device of this embodiment is different from the conventional charge detection device shown in FIG. 2 in that the output gate electrode 14 is deleted to provide a gap between the electrode 15a at the last stage of the charge transfer section and the floating electrode 13, N - diffusion layer 2 formed under electrodes 15b and 16b of the charge transfer section
Boron ions are implanted below the gap to form an n layer 61 so as to have a concentration lower than the n-type impurity concentration of 1. Since the n layer 61 has a lower impurity concentration than the n layer formed under the electrode of the charge transfer section,
The gap has a predetermined depletion potential without electrodes. Now, n - if the impurity concentration of the layer 61 is appropriately adjusted so that the depletion potential under the gap becomes 10V, the potential diagram of this embodiment is the electrode 14 in Figure 3 - and n layer 61 It will be.

また、電荷転送部の最終段の電極15aと浮遊電極13と
の間に間隙を設けたことにより、浮遊電極13と最終段の
電極15aとのオーバーラップがなくなり、浮遊電極13と
p形基板19との間の容量C3が減少することになる。これ
により電荷電圧変換比が向上し、例えば第5図に示す増
幅器41の雑音によるS/N比の低下を小さく抑えることが
できることとなる。
Also, by providing a gap between the last-stage electrode 15a and the floating electrode 13 of the charge transfer section, the overlap between the floating electrode 13 and the last-stage electrode 15a is eliminated, and the floating electrode 13 and the p-type substrate 19 capacitance C 3 is to be reduced between. As a result, the charge-to-voltage conversion ratio is improved, and for example, a decrease in the S / N ratio due to noise of the amplifier 41 shown in FIG. 5 can be suppressed.

〔発明の効果〕〔The invention's effect〕

本発明によれば電荷電圧変換比を可及的に高くするこ
とができる。
According to the present invention, the charge-voltage conversion ratio can be made as high as possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による電荷検出装置の実施例を示す断面
図、第2図は従来の電荷検出装置の断面図、第3図は第
2図に示す電荷検出装置の電荷検出装置の電位図、第4
図は第2図に示す電荷検出装置の各電極に印加されるパ
ルスのタイミングチャート、第5図は浮遊電極周辺の接
続図、第6図は第5図に示す接続図に対応した容量を示
す模式図である。 11……電荷排出用電極、12……リセット用電極、13……
浮遊電極、14……出力ゲート電極、15,16……電荷転送
用電極、13,15a,16a……第1層ポリシリコンによる電荷
転送電極、12,15b,16b……第2層ポリシリコンによる電
荷転送用電極、17……n+拡散層、18……n形拡散層、19
……p形基板、20……絶縁層、21……n-拡散層、22……
MOSスイッチ、24……浮遊拡散電極の電圧設定用の5V電
源、41……高入力インピーダンスの増幅器、61……n--
拡散層。
1 is a sectional view showing an embodiment of a charge detecting device according to the present invention, FIG. 2 is a sectional view of a conventional charge detecting device, and FIG. 3 is a potential diagram of the charge detecting device of the charge detecting device shown in FIG. , Fourth
FIG. 5 is a timing chart of a pulse applied to each electrode of the charge detection device shown in FIG. 2, FIG. 5 is a connection diagram around the floating electrode, and FIG. 6 shows a capacitance corresponding to the connection diagram shown in FIG. It is a schematic diagram. 11 ... Electric discharge electrode, 12 ... Reset electrode, 13 ...
Floating electrode, 14 ... Output gate electrode, 15,16 ... Charge transfer electrode, 13,15a, 16a ... Charge transfer electrode of first layer polysilicon, 12,15b, 16b ... Second layer polysilicon Charge transfer electrode, 17 ... n + diffusion layer, 18 ... n-type diffusion layer, 19
... p-type substrate, 20 ... insulating layer, 21 ... n - diffusion layer, 22 ...
MOS switch, 24 ...... 5V power supply voltage setting of the floating diffusion electrode, 41 ...... high input impedance of the amplifier, 61 ...... n -
Diffusion layer.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に集積化された重なりゲート
構造の複数の電極からなる電荷転送部によって転送され
る電荷を浮遊電極を介して電圧に変換して検出する電荷
検出装置において、 前記電荷転送部の最終段の電極と前記浮遊電極との間に
間隙を設け、この間隙下の空乏電位が、前記最終段の電
極に印加されるパルスがハイレベルのときに前記最終段
の電極下に生じる電位と、前記パルスがロウレベルのと
きに前記最終段の電極下に生じる電位との間の値となる
ように前記間隙下の不純物濃度を調整し、前記間隙上に
は制御電極が設けられていないことを特徴とする電荷検
出装置。
1. A charge detection device for detecting a charge transferred by a charge transfer unit comprising a plurality of electrodes having an overlapping gate structure integrated on a semiconductor substrate by converting the charge into a voltage via a floating electrode. A gap is provided between the last-stage electrode of the transfer unit and the floating electrode, and the depletion potential under this gap is below the last-stage electrode when the pulse applied to the last-stage electrode is at a high level. The impurity concentration under the gap is adjusted so as to be a value between the generated potential and a potential generated under the electrode in the final stage when the pulse is at a low level, and a control electrode is provided on the gap. A charge detection device, characterized in that there is no charge detection device.
【請求項2】半導体基板上に集積化された重なりゲート
構造の複数の電極からなる電荷転送部によって転送され
る電荷を浮遊電極を介して電圧に変換して検出する電荷
検出装置において、 前記電荷転送部の最終段の電極と前記浮遊電極との間
に、直上に制御電極を有しない間隙を設け、前記最終段
の電極下に蓄積された電荷は所定のタイミングで前記間
隙下の領域を通過して前記浮遊電極下に蓄積されること
を特徴とする電荷検出装置。
2. A charge detecting device for converting charges transferred by a charge transfer portion comprising a plurality of electrodes of an overlapping gate structure integrated on a semiconductor substrate into a voltage via a floating electrode and detecting the voltage, A gap without a control electrode is provided immediately above the last-stage electrode of the transfer unit and the floating electrode, and the electric charge accumulated under the last-stage electrode passes through a region below the gap at a predetermined timing. A charge detection device which is stored under the floating electrode.
【請求項3】前記電荷転送部の最終段の電極下のチャネ
ル領域と前記浮遊電極下のチャネル領域は前記半導体基
板とは逆導電型であり、前記間隙下の不純物領域は前記
半導体基板とは逆導電型でかつ前記両チャネル領域より
も不純物濃度が低いことを特徴とする請求項1または2
記載の電荷検出装置。
3. The semiconductor device according to claim 2, wherein the channel region under the electrode at the last stage of the charge transfer section and the channel region under the floating electrode are of a conductivity type opposite to that of the semiconductor substrate, and the impurity region under the gap is separated from the semiconductor substrate. 3. The semiconductor device according to claim 1, wherein said channel region is of a reverse conductivity type and has a lower impurity concentration than said two channel regions.
The charge detection device according to claim 1.
JP63231740A 1988-09-16 1988-09-16 Charge detection device Expired - Fee Related JP2965568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231740A JP2965568B2 (en) 1988-09-16 1988-09-16 Charge detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231740A JP2965568B2 (en) 1988-09-16 1988-09-16 Charge detection device

Publications (2)

Publication Number Publication Date
JPH0281442A JPH0281442A (en) 1990-03-22
JP2965568B2 true JP2965568B2 (en) 1999-10-18

Family

ID=16928296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231740A Expired - Fee Related JP2965568B2 (en) 1988-09-16 1988-09-16 Charge detection device

Country Status (1)

Country Link
JP (1) JP2965568B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106589A (en) * 1974-01-29 1975-08-22
JPS60137455U (en) * 1984-02-24 1985-09-11 ソニー株式会社 charge coupled device

Also Published As

Publication number Publication date
JPH0281442A (en) 1990-03-22

Similar Documents

Publication Publication Date Title
JP4295740B2 (en) Charge coupled device image sensor
EP0632506A1 (en) A charge detection amplifier
JPH084136B2 (en) Charge transfer device
US20020017646A1 (en) Low feed through-high dynamic range charge detection using transistor punch through reset
JPS6233751B2 (en)
US5892251A (en) Apparatus for transferring electric charges
EP0161023B1 (en) Charge-coupled semiconductor device with dynamic control
JPH0771235B2 (en) Driving method for charge detection circuit
US5491354A (en) Floating gate charge detection node
JP2965568B2 (en) Charge detection device
JPS6249991B2 (en)
JP2963572B2 (en) Charge-coupled device
JPS6138624B2 (en)
JPH04133336A (en) Charge transfer device
JP2877183B2 (en) Charge transfer device
JPH0319349A (en) Charge-coupled device
JP3055635B2 (en) Charge-coupled device
JPH0697408A (en) Photoelectric conversion device and manufacture thereof
JPH05102201A (en) Semiconductor device
JPH03179276A (en) Charge detection circuit
JP2708115B2 (en) HCCD
JPS6345097Y2 (en)
JP2982258B2 (en) Charge coupled device
JP2993112B2 (en) Charge transfer device
JPH0722611A (en) Charge transfer device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees