JP2964695B2 - Plating steel sheet for DI can - Google Patents

Plating steel sheet for DI can

Info

Publication number
JP2964695B2
JP2964695B2 JP11771691A JP11771691A JP2964695B2 JP 2964695 B2 JP2964695 B2 JP 2964695B2 JP 11771691 A JP11771691 A JP 11771691A JP 11771691 A JP11771691 A JP 11771691A JP 2964695 B2 JP2964695 B2 JP 2964695B2
Authority
JP
Japan
Prior art keywords
sample
plating
thickness
layer
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11771691A
Other languages
Japanese (ja)
Other versions
JPH04346676A (en
Inventor
直幸 大庭
博之 加藤
隆明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP11771691A priority Critical patent/JP2964695B2/en
Publication of JPH04346676A publication Critical patent/JPH04346676A/en
Application granted granted Critical
Publication of JP2964695B2 publication Critical patent/JP2964695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、円形状に打ち抜かれ
た鋼板を絞り加工によってカップ状に加工し、この側壁
をしごき加工により薄く成形してなる2ピ−ス缶(Draw
n and IronedCan)の製造に用いられるDI缶用めっき
鋼板に関する。
BACKGROUND OF THE INVENTION The present invention relates to a two-piece can (Draw) in which a steel plate punched into a circular shape is formed into a cup shape by drawing, and the side wall is thinned by ironing.
n and Ironed Can).

【0002】[0002]

【従来の技術】2ピ−ス缶(以下、DI缶という)用素
材としては、アルミニウム板と、ぶりき板(錫めっき鋼
板)とが使用されている。DI缶加工の第一段階では、
先ず鋼板を円形状に打ち抜き、これを絞り加工によって
カップ状に成形する(Drawn )。さらに、一次カップ成
形品をもう一段小径のカップに成形する(Redrawn )。
次いで、この二次カップ成形品をしごきダイスに通し、
胴部側壁をダイスとポンチとの間でしごき、減肉加工し
ながら胴長を増大させ(Ironing)、所定長の缶とする。
2. Description of the Related Art As a material for a two-piece can (hereinafter referred to as a DI can), an aluminum plate and a tin plate (tin-plated steel plate) are used. In the first stage of DI can processing,
First, a steel plate is punched into a circular shape, and is formed into a cup shape by drawing (Drawn). Further, the primary cup molded product is molded into another smaller-diameter cup (Redrawn).
Next, this secondary cup molded product is passed through an ironing die,
The body side wall is squeezed between the die and the punch, and the body length is increased (Ironing) while reducing the wall thickness to obtain a can having a predetermined length.

【0003】このようにDI成形によって製造される缶
は、缶底よりも缶壁(胴部)のほうが板厚が薄いことか
ら、缶底と同じ板厚で缶壁を製造した場合と比べて素材
使用量を少なくすることができるという利点がある。
[0003] As described above, the cans manufactured by DI molding have a smaller wall thickness at the can wall (body portion) than at the can bottom. There is an advantage that the amount of material used can be reduced.

【0004】しかしながら、従来のDI缶は、缶壁部の
板厚が薄く、胴部の強さが弱いことから、真空巻き締め
を行なう減圧缶には採用することができず、ビ−ルや炭
酸飲料などの陽圧を発生する飲料用の缶に主として採用
されている。
[0004] However, the conventional DI can cannot be used for vacuum depressurizing cans that are vacuum-tightened because the wall thickness of the can wall is small and the strength of the body is weak. It is mainly used for beverage cans that generate positive pressure such as carbonated beverages.

【0005】このように、DI缶は素材使用量が少ない
ことからコスト的に有利であり、需要が増大する傾向に
あり、将来的にも用途の拡大が期待されている。アルミ
ニウム材とぶりき材とを比較した場合に、コスト的に有
利であることからぶりき材のほうが注目されている。
[0005] As described above, DI cans are advantageous in terms of cost because they use a small amount of raw materials, tend to increase in demand, and are expected to expand applications in the future. Tinplate has attracted attention because of its cost advantage when compared with aluminum and tinplate.

【0006】しかしながら、DI缶の製造工程において
は上述のように過酷な加工がなされることから、素材に
は優れた成形性が要求される。また、近時、DI成形加
工は生産性向上のために、さらに高速化が求められてお
り、従来よりもさらに成形性に優れた素材が求められて
いる。この点、ぶりき材は、Snめっき層が耐食性の確
保と共に、しごき加工時の潤滑剤の役目を果たし、DI
缶用鋼板としては好適な材料である。
However, in the manufacturing process of the DI can, since the severe processing is performed as described above, the material is required to have excellent moldability. In recent years, in order to improve productivity, DI molding has been required to further increase the speed, and a material having better moldability than before has been required. In this regard, the tinplate material has a function of a lubricant at the time of ironing, while ensuring that the Sn plating layer has corrosion resistance.
It is a suitable material for steel plates for cans.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
ぶりき材は、ある程度までの速度のDI成形加工は可能
なものの、さらに高速の製缶を行なうと成形加工時の発
熱によりSnめっき層が溶け、ダイスに缶が焼き付くと
いう不都合がある。また、Snめっき層の部分的な溶融
によって缶壁部の光沢にムラができ、美麗な外観が損な
われるという欠点がある。
However, although the conventional tinplate material can be DI-formed up to a certain speed, the Sn-plated layer melts due to heat generated during the forming process when the can is made at a higher speed. However, there is an inconvenience that the can is burned on the die. In addition, there is a disadvantage that the partial melting of the Sn plating layer causes unevenness in the gloss of the can wall, thereby impairing the beautiful appearance.

【0008】特開平1−132778号公報には、Sn
の融点(約232℃)よりも高融点のZn,Ti,Ni
等の金属をめっきした後に、さらにAlをめっきしたD
I缶が記載されている。このように、高融点金属のめっ
き層を形成することにより、焼き付けを起こすことなく
製缶スピ−ドを上昇させることができる。
[0008] JP-A-1-132778 discloses Sn
Zn, Ti, Ni with a melting point higher than the melting point of
After plating a metal such as
I cans are described. Thus, by forming the plating layer of the high melting point metal, the can-making speed can be raised without burning.

【0009】しかしながら、Zn,Ti,Ni等の融点
の比較的高い金属は、Snに比べて硬い材料であること
から、成形加工に要する仕事エネルギ−がぶりき材より
も大幅に増大し、エネルギコスト及び設備コストの観点
から不経済である。
However, since metals having relatively high melting points, such as Zn, Ti, and Ni, are harder materials than Sn, the work energy required for the forming process is significantly increased as compared with the tin material, and the energy is increased. It is uneconomical in terms of cost and equipment cost.

【0010】特開平1−111853号公報には、Sn
めっき後に、溶融AlしたDI缶が記載されている。こ
れによれば、AlはSnにかなり近い柔らかさを有して
いるので、加工性の点では成形エネルギ−を低いレベル
でおさえることができる。
[0010] Japanese Patent Application Laid-Open No. 1-111853 discloses Sn
After plating, a molten Al can is described. According to this, Al has a softness substantially close to Sn, so that the forming energy can be suppressed to a low level in terms of workability.

【0011】しかしながら、このようなDI缶の被膜構
造においては、製缶速度を上昇させると、缶体の温度が
Snの融点を越えてしまい、下層に存在するSn層と鉄
素地との合金化反応が進み、FeSn合金層生成による
光沢ムラが生じる。この結果、製缶速度をあるスピ−ド
以上に上昇させることができず、生産性の向上を図るこ
とができないでいた。
However, in such a coating structure of a DI can, when the speed of the can is increased, the temperature of the can exceeds the melting point of Sn, and the alloying of the underlying Sn layer and the iron base material occurs. The reaction proceeds, and gloss unevenness occurs due to the formation of the FeSn alloy layer. As a result, the canning speed cannot be increased beyond a certain speed, and the productivity cannot be improved.

【0012】この発明は、上記課題を解決するためにな
されたものであり、高速で製缶することができ、ぶりき
材に要する程度の小さな加工エネルギ−で成形すること
ができるDI缶用めっき鋼板を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a plating method for a DI can that can be manufactured at a high speed and can be formed with a small processing energy required for a tinplate. The purpose is to provide steel sheets.

【0013】[0013]

【課題を解決するための手段】この発明に係るDI缶用
めっき鋼板は、缶用鋼板の缶外面となるべき面に形成さ
れた膜厚0.05〜 5μm のAlSn合金又はAlからなる
中間皮膜と、この中間皮膜の上にさらに形成された膜厚
0.04〜 2μm のSn層と、缶用鋼板の缶内面となるべき
面に形成されたSnめっき層と、を有することを特徴と
する。この場合に、AlSn合金からなる中間皮膜中の
Sn含有率は50重量%以下であることが好ましい。
A plated steel sheet for a DI can according to the present invention comprises: an intermediate film made of an AlSn alloy or Al having a thickness of 0.05 to 5 μm formed on a surface to be an outer surface of the can for a steel sheet for a can; Film thickness further formed on this intermediate film
It is characterized by having a Sn layer of 0.04 to 2 μm and a Sn plating layer formed on a surface to be an inner surface of a steel plate for a can. In this case, the Sn content in the AlSn alloy intermediate film is preferably 50% by weight or less.

【0014】[0014]

【作用】この発明に係るDI缶用めっき鋼板において
は、AlSn合金又はAlからなる中間皮膜を缶外面側
のSn層と鋼板素地との間に形成しているので、高速製
缶による摩擦熱で缶体が過熱されたとしても、中間皮膜
の存在によりSn層のFe素地側への拡散が有効に阻止
され、缶外面でSnとFeとの合金化が生じなくなる。
In the plated steel sheet for DI cans according to the present invention, the intermediate film made of AlSn alloy or Al is formed between the Sn layer on the outer surface of the can and the steel sheet base, so that the frictional heat generated by the high-speed can makes. Even if the can body is overheated, the diffusion of the Sn layer to the Fe substrate side is effectively prevented by the presence of the intermediate film, and alloying of Sn and Fe does not occur on the outer surface of the can.

【0015】Sn及びFeの合金化抑制効果は、中間被
膜中のSn含有量を50重量%以下にしたときに顕著に
発揮される。中間被膜中のSn含有量を増大させると、
成形加工時にAlSn合金のなかからSnが溶け出し、
溶出したSnの潤滑作用付与効果により成形エネルギ−
は軽減される。しかし、Sn含有量が50重量%を越え
ると、溶出SnがFeと反応して合金化するようにな
り、その結果、光沢ムラを生じる。このため、中間被膜
中のSn含有量は50重量%以下であることが望まし
い。
The effect of suppressing the alloying of Sn and Fe is remarkably exhibited when the Sn content in the intermediate film is set to 50% by weight or less. When the Sn content in the intermediate coating is increased,
Sn melts out of the AlSn alloy during molding,
The molding energy is reduced by the lubrication effect of the eluted Sn.
Is reduced. However, when the Sn content exceeds 50% by weight, the eluted Sn reacts with Fe to form an alloy, resulting in uneven gloss. For this reason, the Sn content in the intermediate coating is desirably 50% by weight or less.

【0016】なお、中間被膜中にSnを含ませず、中間
被膜をAlのみで形成したときがFeSn合金化抑制効
果が最大となり、光沢ムラ発生防止の観点からは最も好
ましい。
When the intermediate film does not contain Sn and the intermediate film is formed only of Al, the effect of suppressing FeSn alloying is maximized, and is most preferable from the viewpoint of preventing the occurrence of gloss unevenness.

【0017】また、中間被膜の厚さが0.05μm を下回る
と、FeSn合金化を十分に抑制することができなくな
るため、中間被膜の厚さは少なくとも0.05μm 以上であ
ることが必要である。一方、厚さが 5μm を上回る中間
被膜は、技術的な観点から不必要なものであり、製造上
の観点から見ても不経済である。
If the thickness of the intermediate coating is less than 0.05 μm, it is not possible to sufficiently suppress the alloying of FeSn. Therefore, the thickness of the intermediate coating must be at least 0.05 μm. On the other hand, an intermediate coating having a thickness of more than 5 μm is unnecessary from a technical point of view and uneconomical from a manufacturing point of view.

【0018】さらに、Al含有中間被膜のみでは成形エ
ネルギ−が高くなるので、この上にSn層が必要にな
る。上層となるSn層の厚さは、潤滑性の向上を図り、
成形エネルギ−を軽減させる観点から0.04μm 以上であ
ることが必要である。Sn層が厚くなるに従って製缶時
の潤滑性は向上するが、厚さが 2μm を上回ると潤滑性
改善効果が飽和する。このため、厚さが 2μm を上回る
Sn層は、技術的な観点から不必要なものであり、製造
上の観点から見ても不経済である。
Further, since the forming energy is increased only with the Al-containing intermediate film, an Sn layer is required thereon. The thickness of the upper Sn layer improves lubricity,
From the viewpoint of reducing molding energy, the thickness needs to be 0.04 μm or more. As the Sn layer becomes thicker, the lubricity at the time of can making improves, but when the thickness exceeds 2 μm, the lubricity improving effect is saturated. Therefore, a Sn layer having a thickness exceeding 2 μm is unnecessary from a technical point of view and is uneconomical from a manufacturing point of view.

【0019】[0019]

【実施例】以下、添付の図面及び表を参照して本発明の
実施例について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings and tables.

【0020】図1に示すように、本発明の実施例に係る
DI缶用めっき鋼板2の基本構成は、鋼板からなる基材
3の一方面にAlSn合金からなる中間被膜4が形成さ
れ、さらにその上にSnめっき層5が形成される一方、
基材3の他方面にはSnめっき層5が直接めっき形成さ
れている。次に、表1を参照しながら、種々の錫めっき
鋼板を製造し、それぞれにつき各種特性を調べた結果を
説明する。 実施例1(製造法タイプA)
As shown in FIG. 1, a basic structure of a plated steel sheet for DI can 2 according to an embodiment of the present invention is such that an intermediate film 4 made of an AlSn alloy is formed on one surface of a base material 3 made of a steel sheet. While the Sn plating layer 5 is formed thereon,
The Sn plating layer 5 is directly formed on the other surface of the substrate 3 by plating. Next, the results of manufacturing various tin-plated steel sheets and examining various characteristics of each of them will be described with reference to Table 1. Example 1 (Production method type A)

【0021】水冷銅るつぼを2個備えた真空蒸着装置に
より板厚0.29mmの低炭素アルミキルド鋼板の片面にAl
Sn共蒸着めっき又はAl蒸着めっきし、めっき組成及
びめっき厚さの異なる6種類のサンプル1〜6を作製し
た。蒸着めっき層のそれぞれは、サンプル1が厚さ 2μ
m のAl層、サンプル2が厚さ 2μm のAlSn合金層
(Sn 0.5重量%)、サンプル3が厚さ4.5 μm のAl
Sn合金層(Sn10重量%)、サンプル4が厚さ1.8 μ
m のAlSn合金層(Sn21重量%)、サンプル5が厚
さ3.2 μm のAlSn合金層(Sn33重量%)、サンプ
ル6が厚さ0.5μm のAlSn合金層(Sn50重量%)
とした。
Using a vacuum evaporation apparatus equipped with two water-cooled copper crucibles, one side of a low carbon aluminum killed steel sheet having a thickness of 0.29 mm
Six types of samples 1 to 6 having different plating compositions and plating thicknesses were produced by Sn co-evaporation plating or Al evaporation plating. For each of the vapor-deposited plating layers, sample 1 was 2μ thick.
m, an Al layer having a thickness of 2 μm, an AlSn alloy layer having a thickness of 2 μm (Sn 0.5% by weight), and a sample 3 having an Al layer having a thickness of 4.5 μm.
Sn alloy layer (Sn 10% by weight), sample 4 is 1.8 μm thick
m, an AlSn alloy layer (Sn21% by weight), sample 5 was a 3.2 μm thick AlSn alloy layer (Sn33% by weight), and sample 6 was a 0.5 μm thick AlSn alloy layer (Sn50% by weight).
And

【0022】さらに、同装置内で各サンプルの両面にS
nめっき層を形成した。Snめっき層の各厚さは、サン
プル1が1.3 μm 、サンプル2が1.0 μm 、サンプル3
が0.5 μm 、サンプル4が1.0 μm 、サンプル5が0.3
μm 、サンプル6が1.5 μmとした。Snめっき処理
後、各サンプルを重クロム酸ナトリウム溶液(20g/l)
中に約1秒間浸漬し、CrOX 被膜を約1mg/m2 付与し
た。化成処理後、所定サイズの試験片を打ち抜き、後述
するDI缶成形性評価試験を実施した。 実施例2(製造法タイプB)
Further, S is applied to both sides of each sample in the same apparatus.
An n plating layer was formed. The thickness of each Sn plating layer was 1.3 μm for sample 1, 1.0 μm for sample 2,
Is 0.5 μm, sample 4 is 1.0 μm, sample 5 is 0.3
μm and 1.5 μm for sample 6. After Sn plating, each sample was treated with sodium dichromate solution (20g / l)
About dipped for 1 second in the CrO X film about 1 mg / m 2 Granted. After the chemical conversion treatment, a test piece of a predetermined size was punched out, and a DI can formability evaluation test described later was performed. Example 2 (Production method type B)

【0023】板厚0.29mmの低炭素アルミキルド鋼板を脱
脂、酸洗した後に、Al及びSnを混合溶解した溶融金
属浴中に浸漬し、種々の組成及び厚さのAlSn合金め
っき層を鋼板表面に形成した。溶融めっき層のそれぞれ
は、サンプル7が厚さ2.5 μm のAlSn合金層(Sn
5重量%)、サンプル8が厚さ1.5 μm のAlSn合金
層(Sn18重量%)、サンプル9が厚さ3.0 μm のAl
Sn合金層(Sn24重量%)、サンプル10が厚さ4.3
μm のAlSn合金層(Sn31重量%)、サンプル11
が厚さ1.0 μm のAlSn合金層(Sn40重量%)とし
た。
A low carbon aluminum killed steel sheet having a thickness of 0.29 mm is degreased and pickled, then immersed in a molten metal bath in which Al and Sn are mixed and dissolved, and AlSn alloy plating layers of various compositions and thicknesses are coated on the surface of the steel sheet. Formed. In each of the hot-dip plating layers, Sample 7 was a 2.5 μm thick AlSn alloy layer (Sn
5% by weight), Sample 8 was a 1.5 μm thick AlSn alloy layer (Sn 18% by weight), and Sample 9 was a 3.0 μm thick Al
Sn alloy layer (Sn 24% by weight), sample 10 has a thickness of 4.3
μm AlSn alloy layer (Sn 31% by weight), sample 11
Was an AlSn alloy layer (Sn 40% by weight) having a thickness of 1.0 μm.

【0024】その後、通常の錫めっき条件(フェロスタ
ン浴)で各サンプルの両面にSnめっき層を形成した。
Snめっき層の各厚さは、サンプル7が1.4μm 、サン
プル8が1.0 μm 、サンプル9が0.2 μm 、サンプル1
0が0.5 μm 、サンプル11が1.5 μm とした。Snめ
っき処理後、上記実施例1と同様の化成処理を施し、そ
の後、各サンプルから所定サイズの試験片を打ち抜き、
後述するDI缶成形性評価試験を実施した。 比較例1(製造法タイプA)
Thereafter, Sn plating layers were formed on both surfaces of each sample under normal tin plating conditions (ferrostan bath).
The thicknesses of the Sn plating layers were 1.4 μm for Sample 7, 1.0 μm for Sample 8, 0.2 μm for Sample 9, and 1 μm for Sample 1.
0 was 0.5 μm, and Sample 11 was 1.5 μm. After the Sn plating treatment, a chemical conversion treatment similar to that of the above-described Example 1 was performed. Thereafter, a test piece of a predetermined size was punched from each sample.
A DI can formability evaluation test described below was performed. Comparative Example 1 (Production method type A)

【0025】上記実施例1と同様の方法で中間被膜の組
成及び厚さの異なる4種類のサンプル12〜15を作製
した。蒸着めっき層のそれぞれは、サンプル12が厚さ
2.5μm のAlSn合金層(Sn62重量%)、サンプル
13が厚さ4.5 μm のAlSn合金層(Sn80重量
%)、サンプル14が厚さ0.03μm のAlSn合金層
(Sn21重量%)、サンプル15が厚さ2.0 μm のAl
Sn合金層(Sn65重量%)とした。
In the same manner as in Example 1, four types of samples 12 to 15 having different compositions and thicknesses of the intermediate coating film were produced. Each of the vapor-deposited plating layers has a thickness of Sample 12.
2.5 μm AlSn alloy layer (Sn 62 wt%), sample 13 is 4.5 μm thick AlSn alloy layer (Sn 80 wt%), sample 14 is 0.03 μm thick AlSn alloy layer (Sn 21 wt%), sample 15 is thick 2.0 μm Al
This was a Sn alloy layer (Sn 65% by weight).

【0026】その後、通常の錫めっき条件(フェロスタ
ン浴)で各サンプルの両面にSnめっきした。Snめっ
き層の各厚さは、サンプル12が1.5 μm 、サンプル1
3が0.7 μm 、サンプル14が1.3 μm 、サンプル15
が1.2 μm とした。Snめっき処理後、上述と同様の化
成処理を施し、所定サイズの試験片を打ち抜き、後述す
るDI缶成形性評価試験を実施した。 比較例2(製造法タイプC)
Thereafter, Sn plating was performed on both surfaces of each sample under normal tin plating conditions (ferrostan bath). The thickness of the Sn plating layer was 1.5 μm for sample 12 and 1.5 μm for sample 12.
3 is 0.7 μm, sample 14 is 1.3 μm, sample 15
Was set to 1.2 μm. After the Sn plating, a chemical conversion treatment similar to that described above was performed, a test piece having a predetermined size was punched out, and a DI can formability evaluation test described later was performed. Comparative Example 2 (Production method type C)

【0027】板厚0.29mmの低炭素アルミキルド鋼板を脱
脂、酸洗した後に、通常の錫めっき条件(フェロスタン
浴)で各サンプルの両面にSnめっきした。Snめっき
層の各厚さは、サンプル16が0.4 μm 、サンプル17
が1.0 μm 、サンプル18が0.8 μm とした。Snめっ
き処理後、上述と同様の化成処理し、所定サイズの試験
片を打ち抜き、後述するDI缶成形性評価試験を実施し
た。 比較例3(製造法タイプCからタイプB)
A low-carbon aluminum-killed steel sheet having a thickness of 0.29 mm was degreased and pickled, and then Sn-plated on both sides of each sample under ordinary tin plating conditions (ferrostan bath). The thickness of the Sn plating layer was 0.4 μm for sample 16 and
Was 1.0 μm and Sample 18 was 0.8 μm. After the Sn plating treatment, the same chemical conversion treatment as described above was performed, a test piece of a predetermined size was punched out, and a DI can formability evaluation test described later was performed. Comparative Example 3 (from manufacturing method type C to type B)

【0028】上記比較例2のサンプル16及びサンプル
18とそれぞれ同じ条件でサンプル19及びサンプル2
0の片面を電気錫めっき処理した後に、Alを溶解した
溶融金属浴中にこれらを浸漬し、Alめっきした。Al
めっき層の各厚さは、サンプル19が1.5 μm 、サンプ
ル20が3.0 μm とした。Alめっき処理後、上述と同
様の化成処理し、所定サイズの試験片を打ち抜き、後述
するDI缶成形性評価試験を実施した。 比較例4(製造法タイプA)
Samples 19 and 2 were prepared under the same conditions as those of Samples 16 and 18 of Comparative Example 2, respectively.
No. 0 was electroplated with tin, and then immersed in a molten metal bath in which Al was dissolved to perform Al plating. Al
The thickness of each plating layer was 1.5 μm for sample 19 and 3.0 μm for sample 20. After the Al plating treatment, the same chemical conversion treatment as described above was performed, a test piece of a predetermined size was punched out, and a DI can formability evaluation test described later was performed. Comparative Example 4 (Production method type A)

【0029】上記実施例1と同じ条件でサンプル21の
片面にNiを蒸着めっきした後に、Alを溶解した溶融
金属浴中にこれを浸漬し、Alめっきした。Ni蒸着め
っき層の厚さは1.0 μm 、Alめっき層の厚さは1.5μm
とした。Alめっき処理後、上述と同様の化成処理
し、所定サイズの試験片を打ち抜き、下記のDI缶成形
性評価試験を実施した。次に、DI缶成形性評価試験に
ついて説明する。
After Ni was vapor-deposited and plated on one surface of the sample 21 under the same conditions as in Example 1, this was immersed in a molten metal bath in which Al was dissolved, and Al plating was performed. The thickness of the Ni deposited plating layer is 1.0 μm, and the thickness of the Al plating layer is 1.5 μm
And After the Al plating treatment, the same chemical conversion treatment as described above was performed, a test piece of a predetermined size was punched out, and the following DI can formability evaluation test was performed. Next, the DI can formability evaluation test will be described.

【0030】各サンプル鋼板から直径123mm の円板を打
ち抜き、これらを市販のカッピングプレスで内径72mm、
高さ36mmのカップにそれぞれ成形した。次いで、各成形
カップをDIマシンにそれぞれ装入し、40℃の冷媒を循
環させつつ、ポンチを最大毎分50mまでの速度、ストロ
−ク長さ600mm でリドロ−加工した。さらに、これらに
対して三段階のしごき加工を施し、DI缶とした。この
場合に、サンプル1〜14,16,17,19〜21の
成形速度はそれぞれ毎分45m、サンプル15,18の成
形速度はそれぞれ毎分30mであった。DI缶のそれぞれ
は、内径52mm、高さ130mm で、缶胴部の厚さは約0.12mm
まで薄くなった。
A disk having a diameter of 123 mm was punched from each of the sample steel plates, and these were punched with a commercially available cupping press to obtain an inner diameter of 72 mm.
Each was molded into a 36 mm high cup. Next, each molding cup was charged into a DI machine, and the punch was reflowed at a speed of up to 50 m / min and a stroke length of 600 mm while circulating a refrigerant at 40 ° C. Further, these were subjected to three-stage ironing to obtain DI cans. In this case, the molding speed of Samples 1 to 14, 16, 17, and 19 to 21 was 45 m / min, and the molding speed of Samples 15 and 18 was 30 m / min. Each of the DI cans has an inner diameter of 52 mm and a height of 130 mm, and the thickness of the can body is about 0.12 mm
Until thin.

【0031】DI成形性の評価は、成形荷重及び変形量
からDI成形に必要な成形エネルギ−をそれぞれ算出
し、その値の大小に基づき行なった。表1に示すよう
に、実施例のサンプル1〜11のいずれも、ぶりき材と
同等か又はそれを下回る成形エネルギ−値を示す結果を
得た。このように、本発明のめっき鋼板では低い成形エ
ネルギ−で高速製缶することができる。
The evaluation of the DI formability was performed by calculating the forming energy required for the DI forming from the forming load and the deformation amount, and based on the magnitude of the value. As shown in Table 1, all of the samples 1 to 11 of the examples obtained results showing molding energy values equal to or lower than the tinplate. Thus, with the plated steel sheet of the present invention, cans can be manufactured at high speed with low forming energy.

【0032】また、目視観察により各サンプル缶胴部の
外観試験を実施したところ、比較例のサンプル12〜1
4,16,17,19,20には光沢ムラがそれぞれ生
じていたが、実施例のサンプル1〜11のいずれにも光
沢ムラは皆無であった。
The appearance test of the body of each sample can was carried out by visual observation.
4, 16, 17, 19, and 20 each had uneven gloss, but none of Samples 1 to 11 of the examples had any uneven gloss.

【0033】比較例1の結果から明らかなように、Al
Sn合金被膜中のSn含有量が50重量%を越える場合
は、成形速度を高速(毎分45m)から低速(毎分30m)
に落とさないと光沢ムラが生じることがわかる。また、
比較例2の結果からも同様のことが言え、サンプル16
〜18の従来のぶりき材では光沢ムラを生じることなく
高速製缶することはできない。さらに、比較例3の結果
からも同様のことが言え、サンプル19,20では光沢
ムラを生じることなく高速製缶することはできない。比
較例4のサンプル21では、高速製缶時に光沢ムラは生
じないが、成形エネルギ−値が大幅に増大した。
As is clear from the results of Comparative Example 1, Al
When the Sn content in the Sn alloy coating exceeds 50% by weight, the forming speed is increased from high speed (45 m / min) to low speed (30 m / min).
It can be seen that unevenness in gloss occurs if the sample is not dropped. Also,
The same can be said from the results of Comparative Example 2;
With the conventional tinting materials of Nos. To 18, high-speed cans cannot be produced without causing uneven gloss. Further, the same can be said from the results of Comparative Example 3, and Samples 19 and 20 cannot be manufactured at high speed without uneven gloss. In Sample 21 of Comparative Example 4, gloss unevenness did not occur during high-speed can-making, but the molding energy value was greatly increased.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】この発明のDI缶用めっき鋼板によれ
ば、焼き付きを生じることなく、高速で製缶することが
できるとともに、ぶりき材に要する程度の小さな加工エ
ネルギ−で成形することができる。このため、光沢ムラ
のない美麗な外観を有するDI缶を高速で製造すること
ができる。
According to the plated steel sheet for DI cans of the present invention, cans can be manufactured at high speed without seizure, and can be formed with a small processing energy required for tinplate. . Therefore, a DI can having a beautiful appearance without gloss unevenness can be manufactured at a high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に係るDI缶用めっき鋼板を
示す縦断面図。
FIG. 1 is a longitudinal sectional view showing a plated steel sheet for a DI can according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3;基材、4;中間被膜、5;Snめっき層 3; substrate, 4; intermediate coating, 5; Sn plating layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 缶用鋼板の缶外面となるべき面に形成さ
れた膜厚0.05〜 5μm のAlSn合金又はAlからなる
中間皮膜と、この中間皮膜の上にさらに形成された膜厚
0.04〜 2μm のSn層と、缶用鋼板の缶内面となるべき
面に形成されたSnめっき層と、を有することを特徴と
するDI缶用めっき鋼板。
1. An intermediate film made of an AlSn alloy or Al having a thickness of 0.05 to 5 μm formed on a surface to be an outer surface of a can of a steel sheet for a can, and a film further formed on the intermediate film.
A plated steel sheet for a DI can having a Sn layer of 0.04 to 2 μm and a Sn plated layer formed on a surface to be an inner surface of the can for a steel sheet for a can.
【請求項2】 中間皮膜中のSn含有率が50重量%以
下であることを特徴とする請求項1記載のDI缶用めっ
き鋼板。
2. The plated steel sheet for DI can according to claim 1, wherein the Sn content in the intermediate film is 50% by weight or less.
JP11771691A 1991-05-22 1991-05-22 Plating steel sheet for DI can Expired - Fee Related JP2964695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11771691A JP2964695B2 (en) 1991-05-22 1991-05-22 Plating steel sheet for DI can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11771691A JP2964695B2 (en) 1991-05-22 1991-05-22 Plating steel sheet for DI can

Publications (2)

Publication Number Publication Date
JPH04346676A JPH04346676A (en) 1992-12-02
JP2964695B2 true JP2964695B2 (en) 1999-10-18

Family

ID=14718530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11771691A Expired - Fee Related JP2964695B2 (en) 1991-05-22 1991-05-22 Plating steel sheet for DI can

Country Status (1)

Country Link
JP (1) JP2964695B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270768B2 (en) 2000-11-08 2009-06-03 Jfeスチール株式会社 Tin-plated steel sheet and chemical treatment liquid
JP6070607B2 (en) * 2014-03-07 2017-02-01 Jfeスチール株式会社 Al-Sn alloy coated steel sheet

Also Published As

Publication number Publication date
JPH04346676A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JPH02190483A (en) Galvanized steel sheet having superior press formability
CN112538591B (en) Cold-rolled electroplated tin steel plate with excellent coating performance and manufacturing method thereof
TW201244847A (en) A method for manufacturing warm press materials
US3982314A (en) Method of producing tin coated steel sheet used for seamless steel container
JPH0488196A (en) Galvanized steel sheet excellent in press workability and chemical conversion treating property
JP2964695B2 (en) Plating steel sheet for DI can
JP2964694B2 (en) Plating steel sheet for DI can
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JPH0266148A (en) Multi-layer played steel sheet excellent in flaking resistance
JPH09228030A (en) High workability zinc-magnesium alloy plated steel sheet having low magnesium concentration and its production
JPH0472091A (en) Surface-treated steel sheet for two-piece can and production thereof
JP3133235B2 (en) Steel plate for fuel tank with excellent workability
JPH0611918B2 (en) Surface-treated steel plate for cans
JP3571753B2 (en) High-rigidity surface-treated thin steel sheet for drawing or drawing and ironing cans
JP3425223B2 (en) High-rigidity, high-corrosion-resistant surface-treated thin steel sheet for drawn or drawn and ironed cans
JP2577246B2 (en) Manufacturing method of surface-treated steel sheet for coating base with excellent processing corrosion resistance
JPH05295564A (en) Plated steel sheet for di can excellent in workability and rusting resistance and its manufacture
KR0160065B1 (en) Sn-al/sn coated steel sheet by vacuum deposition method and manufacturing method therefor
JPH03249180A (en) Galvanized steel sheet having excellent press formability and chemical convertibility
JPH06101066A (en) Plated steel sheet for di can excellent in workability and rusting resistance and its production
JPH03150390A (en) Surface-treated steel sheet for di can
JPH04154997A (en) Ni diffused steel sheet for di can and its production
CN111793812A (en) Production process of tinplate with composite coating and tinplate
JPH03249183A (en) Galvanized steel sheet having excellent press formability and chemical conversion treatability
JPH05287487A (en) Aluminum plated steel sheet for container excellent in appearance and rusting resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees