JP2958919B2 - Optical lens - Google Patents

Optical lens

Info

Publication number
JP2958919B2
JP2958919B2 JP31052692A JP31052692A JP2958919B2 JP 2958919 B2 JP2958919 B2 JP 2958919B2 JP 31052692 A JP31052692 A JP 31052692A JP 31052692 A JP31052692 A JP 31052692A JP 2958919 B2 JP2958919 B2 JP 2958919B2
Authority
JP
Japan
Prior art keywords
glass
mold
temperature
optical
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31052692A
Other languages
Japanese (ja)
Other versions
JPH05201743A (en
Inventor
静夫 丸山
誠一 新垣
耕平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31052692A priority Critical patent/JP2958919B2/en
Publication of JPH05201743A publication Critical patent/JPH05201743A/en
Application granted granted Critical
Publication of JP2958919B2 publication Critical patent/JP2958919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高屈折率、高いアッベ
数及び低い屈伏点温度を併せ持つ精密プレス成形に適し
た光学ガラスを用いた光学レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical lens using an optical glass having a high refractive index, a high Abbe number and a low yield point temperature and suitable for precision press molding.

【0002】[0002]

【従来の技術】屈折率(nd)が1.65〜1.75、
アッベ数(νd)が50以上の範囲の光学恒数を有する
ものとして、ショットカタログ名称のSSK,LaKな
どのガラスがある。これらの高屈折低分散ガラスはカメ
ラやビデオカメラなどに使われる複数のレンズよりなる
光学結像系を作る場合に必須なガラスであり、しかもこ
のガラスを用いた非球面レンズを使用することによっ
て、従来にない結像特性を持ち、かつ、レンズの構成枚
数の少ない結像系を作ることが可能であることはよく知
られている。
BACKGROUND ART refractive index (n d) from 1.65 to 1.75,
Glasses having an Abbe number (ν d ) having an optical constant in a range of 50 or more include shot catalog names such as SSK and LaK. These high-refractive low-dispersion glasses are indispensable when making an optical imaging system consisting of a plurality of lenses used in cameras and video cameras, etc., and by using an aspheric lens using this glass, It is well known that it is possible to create an imaging system having an unprecedented imaging characteristic and a small number of lenses.

【0003】しかしながら、従来の研削研磨法で非球面
レンズを作製することは高コスト、低能率であるため、
近年では軟化させたガラスをプレス成形して直接レンズ
を作る精密プレス成形技術が盛んに開発されるようにな
ってきた。この方法は、レンズ等の精密光学素子を大量
生産するのに適した画期的な製造方法であるが、成形温
度が高温であり、そのため成形に用いる金型の表面の形
状劣化が激しく、頻繁に型の再加工が必要となり、これ
が製品のコストを引き上げる原因となっている。また、
精密プレスを行う際、作業温度が600℃以上になると
型材の耐久性が急激に悪化し、さらに作業効率も悪くな
るため、600℃以下の温度で精密プレスを行うことが
望まれる。これに対処するためにはガラスが軟化する温
度を下げ、なるべく低い温度において成形を行うことが
必要である。
However, it is expensive and inefficient to manufacture an aspheric lens by the conventional grinding and polishing method.
In recent years, precision press molding technology for directly forming a lens by press-molding softened glass has been actively developed. This method is an epoch-making manufacturing method suitable for mass-producing precision optical elements such as lenses, but the molding temperature is high, and therefore, the shape of the surface of the mold used for molding is severely deteriorated, and frequent In addition, rework of the mold is required, which raises the cost of the product. Also,
When performing precision pressing, if the working temperature is 600 ° C. or higher, the durability of the mold material is rapidly deteriorated, and the working efficiency is also deteriorated. Therefore, it is desired to perform the precision pressing at a temperature of 600 ° C. or lower. In order to cope with this, it is necessary to lower the temperature at which the glass softens, and to carry out molding at a temperature as low as possible.

【0004】[0004]

【発明が解決しようとする課題】一般に屈折率(nd
が1.65〜1.75、アッベ数(νd)が50以上の
範囲の光学恒数を有する比較的高屈折率、低分散のガラ
スは、ガラスの屈伏点温度が高く、また、成形中、金型
との融着やガラスの割れなどの現象を起こし易いといっ
た比較的精密プレス成形が困難なガラスに属している。
In general, the refractive index (n d )
Is relatively high in refractive index and low dispersion and has an optical constant in the range of 1.65 to 1.75 and Abbe number (ν d ) of 50 or more. It belongs to a glass which is relatively difficult to perform precision press molding, such as liable to cause phenomena such as fusion with a mold and breakage of the glass.

【0005】このような領域における低軟化点化ガラス
の例として、B23−La23−ZnO−Li2O−S
23系ガラスが、特開昭62−100449号公報中
の一部組成において提案されている。
As an example of a glass having a low softening point in such a region, B 2 O 3 —La 2 O 3 —ZnO—Li 2 O—S
b 2 O 3 based glass has been proposed in some composition in JP-A-62-100449.

【0006】しかしながら、高温におけるガラスの精密
プレス成形においては、Sb23はガラス組成中に極少
量のみ含まれる場合には問題とならないが、数%以上含
まれると揮発し、金型表面や精密プレスしたガラス素子
表面に曇り現象を発生させたり、金型表面において型材
と反応し、型材の耐久性を低下させる原因となる。
However, in precision press molding of glass at high temperatures, there is no problem if Sb 2 O 3 is contained only in a very small amount in the glass composition, but if Sb 2 O 3 is contained in several percent or more, it volatilizes, and the surface of the mold and It causes clouding on the surface of the precision-pressed glass element, or reacts with the mold on the surface of the mold to cause a reduction in the durability of the mold.

【0007】また、ガラスを低軟化点化させるために
は、Li2O等のアルカリ金属酸化物を組成中に加える
ことが一般的に行われているが、高屈折率、低分散のガ
ラスにおいては、アルカリ金属酸化物を多量に加えるこ
とは、ガラスの化学的耐久性を著しく悪化させ、また光
学性能の維持が困難となる。
In order to lower the softening point of the glass, it is common practice to add an alkali metal oxide such as Li 2 O into the composition. However, adding a large amount of an alkali metal oxide significantly deteriorates the chemical durability of glass and makes it difficult to maintain optical performance.

【0008】従って、本発明は、上記の実情に鑑み、屈
折率(nd)が1.65〜1.75、アッベ数(νd)が
50以上の範囲の光学恒数を有し、充分な化学的耐久性
を維持させつつ、低温での軟化性を実現させ、更に型材
との離型性が良好な精密プレス成形に適した光学ガラス
を提供することを目的とする。
Accordingly, in view of the above-mentioned circumstances, the present invention has an optical constant having a refractive index (n d ) of 1.65 to 1.75 and an Abbe number (ν d ) of 50 or more. It is an object of the present invention to provide an optical glass suitable for precision press molding, which realizes softening properties at a low temperature while maintaining excellent chemical durability and has good releasability from a mold material.

【0009】また、本発明の他の目的は、上述した光学
ガラスを用いて精密プレス加工により形成した光学ガラ
スに関する。
Another object of the present invention relates to an optical glass formed by precision press working using the optical glass described above.

【0010】[0010]

【課題を解決するための手段】本発明による光学ガラス
は下記成分を下記含有量有するものである。 成分 含有量(重量%) SiO2 5〜25 B23 16〜40 ただしSiO2+B23 30〜50 Li2O 2〜 8 Na2O 0〜10 K2O 0〜10 Cs2O 0〜10 ただしNa2O+K2O+Cs2O 0〜15 MgO 0〜10 CaO 0〜30 SrO 0〜30 BaO 0〜20 ZnO 1〜20 ただしCaO+SrO+BaO+ZnO 5〜40 Al23 0〜10 ZrO2 0.5〜15 La23 22〜40 本発明によるSiO2−ZrO2−B23−La23−Z
nO−Li2O系の組成の光学ガラスは化学的耐久性に
優れた、低軟化点化した高屈折率、低分散ガラスの長所
を有している。
The optical glass according to the present invention has the following components and the following contents. Ingredient content (wt%) SiO 2 5~25 B 2 O 3 16~40 However SiO 2 + B 2 O 3 30~50 Li 2 O 2~ 8 Na 2 O 0~10 K 2 O 0~10 Cs 2 O 0 However Na 2 O + K 2 O + Cs 2 O 0~15 MgO 0~10 CaO 0~30 SrO 0~30 BaO 0~20 ZnO 1~20 However CaO + SrO + BaO + ZnO 5~40 Al 2 O 3 0~10 ZrO 2 0. 5 to 15 La 2 O 3 22 to 40 According to the present invention, SiO 2 —ZrO 2 —B 2 O 3 —La 2 O 3 —Z
An optical glass having an nO—Li 2 O composition has the advantages of high chemical durability, low softening point, high refractive index, and low dispersion glass.

【0011】本発明による光学ガラスの各成分範囲を上
記のように規定した理由は次の通りである。
The reasons for defining the component ranges of the optical glass according to the present invention as described above are as follows.

【0012】SiO2は、ガラス網目を構成する主成分
であり、化学的耐久性を向上させ、失透を抑える効果が
ある。しかし、5重量%より少ないと上記効果が充分に
得られず、また25重量%よりも多くなると屈伏点温度
が高くなり、所望の光学性能を得難くなる。尚、屈伏点
とは、十分にアニールされた、長さ50mm、直径4m
mの試料ガラス棒の軸方向に50gの加重をかけた状態
で毎分4℃の一定条件で均一に加熱昇温したときの試料
の伸びと温度を正確に測定することによってガラスの熱
膨張曲線が得られ、この熱膨張曲線上において、温度の
上昇に伴うガラスの軟化による変形が原因で、見かけ
上、試料の伸びが止まり、次に収縮が始まる。この見か
け上の膨張から収縮へ転ずる変化点のことである。
SiO 2 is a main component constituting a glass network and has effects of improving chemical durability and suppressing devitrification. However, if the amount is less than 5% by weight, the above effect cannot be sufficiently obtained. If the amount is more than 25% by weight, the yield point temperature becomes high, and it becomes difficult to obtain desired optical performance. The yield point is defined as a sufficiently annealed, 50 mm long, 4 m diameter.
The thermal expansion curve of the glass by accurately measuring the elongation and temperature of the sample when heated uniformly at a constant temperature of 4 ° C. per minute under a load of 50 g in the axial direction of the sample glass rod of m length. On this thermal expansion curve, the sample apparently stops elongating and then starts shrinking due to deformation due to the softening of the glass with an increase in temperature. This is the transition point from the apparent expansion to the contraction.

【0013】B23は、SiO2と同様にガラス網目を
構成し、16重量%以上の量を用いると低分散化成分と
して有効である。しかし、40重量%を越えると化学的
耐久性が悪くなり、また失透傾向が増大する。
B 2 O 3 constitutes a glass network like SiO 2, and is effective as a low-dispersion component when used in an amount of 16% by weight or more. However, if it exceeds 40% by weight, the chemical durability deteriorates and the tendency of devitrification increases.

【0014】また、ガラスの安定性、低分散性(アッベ
数50以上)を維持させるためには、SiO2とB23
の合計量が30重量%以上必要であり、低軟化性、高屈
折率(nd=1.65以上)を維持させるためにはSi
2とB23の合計量が50重量%以下でなければなら
ない。
In order to maintain the stability and low dispersibility (abbe number of 50 or more) of the glass, SiO 2 and B 2 O 3
Is required to be 30% by weight or more, and in order to maintain a low softening property and a high refractive index (n d = 1.65 or more), Si is required.
The total amount of O 2 and B 2 O 3 must be less than 50% by weight.

【0015】ここでアッベ数(νD)とは、Here, the Abbe number (ν D ) is

【0016】[0016]

【数1】 (nD、nF、nCは、ナトリウムd線(587.56n
m)、水素F線(486.13nm)、水素C線(65
6.28nm)での屈折率を示す。)で表わされ、光の
波長による屈折率の差異の程度を示すものであり、アッ
ベ数が小さいと波長による屈折率の差異が大きい、すな
わち色分散が大きく、アッベ数が大きい場合はその逆で
ある。
(Equation 1) (N D , n F , n C are the sodium d lines (587.56n
m), hydrogen F line (486.13 nm), hydrogen C line (65
6.28 nm). ) Indicates the degree of the difference in the refractive index depending on the wavelength of light. When the Abbe number is small, the difference in the refractive index depending on the wavelength is large, that is, when the chromatic dispersion is large, and when the Abbe number is large, the reverse is true. It is.

【0017】Li2Oは、必須成分とすることによって
ガラスの屈伏点温度を劇的に低下せしめることができ、
溶融性が良好となる。特に屈伏点温度を560℃以下に
するためには、2重量%以上を要す。またLi2Oが多
過ぎると化学的耐久性が悪化し、熱膨張係数が大きくな
り過ぎる、所望の光学定数が得られない、等の弊害が現
われるために8重量%を最大量とする。
Li 2 O can drastically lower the yield point temperature of glass by making it an essential component.
Meltability is improved. In particular, in order to reduce the yield point temperature to 560 ° C. or less, 2% by weight or more is required. On the other hand, if the amount of Li 2 O is too large, the chemical durability deteriorates, the thermal expansion coefficient becomes too large, and a desired optical constant cannot be obtained.

【0018】Na2O、K2O、Cs2OはLi2Oと同
様、屈伏点温度を低下させる効果が顕著である。しかし
ながら、それぞれについて10重量%を、かつ合計量で
15重量%を越えると所望の光学恒数が得られなくな
る。
The Na 2 O, K 2 O, Cs 2 O is similar to the Li 2 O, the effect of lowering the yield point temperature is remarkable. However, if each exceeds 10% by weight and the total amount exceeds 15% by weight, desired optical constants cannot be obtained.

【0019】MgOはガラスの安定化に有効であるが、
10重量%を越えると所望の光学恒数が得られなくな
る。
MgO is effective for stabilizing glass,
If it exceeds 10% by weight, a desired optical constant cannot be obtained.

【0020】CaO、SrO、BaOは所望の光学恒数
を得るため、更にガラスの安定化に有効であるが、Ca
O、SrOについてはそれぞれ30重量%、BaOにつ
いては20重量%を越えるとガラスの化学的耐久性の悪
化、失透傾向の増大を来す。ZnOは化学的耐久性の向
上、ガラスの安定化に大いに効果があり、また、屈伏点
温度の低下に対しても好ましい効果を示す。これらの効
果を引き出すためには最低1重量%の量が必要である。
しかしながら、この成分はガラスの光学性能を高分散化
させる傾向が強いため20重量%を最大量とする。
Although CaO, SrO and BaO are effective for stabilizing the glass in order to obtain a desired optical constant,
If the content of O and SrO exceeds 30% by weight and the content of BaO exceeds 20% by weight, the chemical durability of the glass deteriorates and the tendency of devitrification increases. ZnO is highly effective in improving chemical durability and stabilizing glass, and also has a favorable effect on lowering the yield point temperature. To achieve these effects, an amount of at least 1% by weight is required.
However, since this component has a strong tendency to highly disperse the optical performance of glass, the maximum amount is set to 20% by weight.

【0021】ただし、CaO、SrO、BaO、ZnO
の合計量として40重量%を越えるとガラスの化学的耐
久性の悪化、失透傾向の増大を引き起こし、5重量%未
満では充分な効果が得られない。
However, CaO, SrO, BaO, ZnO
When the total amount exceeds 40% by weight, the chemical durability of the glass is deteriorated and the tendency of devitrification is increased. When the total amount is less than 5% by weight, a sufficient effect cannot be obtained.

【0022】Al23は化学的耐久性の向上に有効であ
るが、10重量%を越えるとガラスの屈伏点温度が高く
なる。
[0022] Although Al 2 O 3 is a effective in improving the chemical durability, sag temperature of the glass increases exceeds 10 wt%.

【0023】ZrO2はガラスの失透現象を抑える効
果、及び化学的耐久性を向上させる効果が顕著であり、
本発明においては必須成分である。ただし、0.5重量
%未満ではその効果を得ることができない。また、15
重量%を越えると所望の光学定数が得られない、ガラス
の屈伏点温度が高くなる、失透現象を誘発し易くなる、
等の弊害が現われる。
ZrO 2 has remarkable effects of suppressing the devitrification phenomenon of glass and improving the chemical durability.
It is an essential component in the present invention. However, if the content is less than 0.5% by weight, the effect cannot be obtained. Also, 15
If the content exceeds 10% by weight, the desired optical constants cannot be obtained, the yield point temperature of the glass increases, the devitrification phenomenon is easily induced,
The adverse effects such as appear.

【0024】La23は本発明のような高屈折率、低分
散のガラスには必須の成分であり、最低量として22重
量%を要するが、40重量%を越えるとガラスの失透を
抑えることが極めて困難となる。
La 2 O 3 is an essential component for a glass having a high refractive index and a low dispersion as in the present invention, and requires a minimum of 22% by weight. It is extremely difficult to suppress.

【0025】[0025]

【0026】また、本発明の光学ガラスとして、失透傾
向を防ぐ点でより好ましい組成は、 成分 含有量(重量%) SiO2 5〜20 B23 20〜35 ただしSiO2+B23 30〜45 Li2O 2〜 7 Na2O 0〜 5 K2O 0〜 5 Cs2O 0〜 5 ただしNa2O+K2O+Cs2O 0〜10 MgO 0〜 5 CaO 0〜15 SrO 0〜15 BaO 0〜15 ZnO 2〜12 ただしCaO+SrO+BaO+ZnO 5〜20 Al23 0〜10 ZrO2 1〜10 La23 25〜35 ただしSiO2+ZrO2 10〜25 である。
Further, as the optical glass of the present invention, a more preferable composition from the viewpoint of preventing the tendency to devitrify is as follows: Component content (% by weight) SiO 2 5 to 20 B 2 O 3 20 to 35 SiO 2 + B 2 O 3 30~45 Li 2 O 2~ 7 Na 2 O 0~ 5 K 2 O 0~ 5 Cs 2 O 0~ 5 except Na 2 O + K 2 O + Cs 2 O 0~10 MgO 0~ 5 CaO 0~15 SrO 0~15 a BaO 0 to 15 ZnO 2 to 12 provided that CaO + SrO + BaO + ZnO 5~20 Al 2 O 3 0~10 ZrO 2 1~10 La 2 O 3 25~35 However SiO 2 + ZrO 2 10~25.

【0027】[0027]

【実施例】以下、本発明に係わる実施例について図表を
用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】まず、表1に実施例1〜10、比較例1〜
3の合計13種のガラスについて、組成(表中、数値は
重量%)、屈折率(nd)、アッベ数(νd)、屈伏点温
度(At)、及び耐水性を示す。
First, Table 1 shows Examples 1 to 10 and Comparative Examples 1 to
About 3 of total 13 kinds of glass, the composition (in the table, values are weight%), refractive index (n d), Abbe number ([nu d), sag temperature (At), and shows the water resistance.

【0029】ガラスは、酸化物、炭酸塩、硝酸塩からな
る原料を用いて、それぞれの組成についてガラス量で2
50mlになるように、所望の量比に計算し、調合し
た。調合されたガラス原料混合物は予め充分均質になる
ように混合し、300mlの白金るつぼを用いて100
0〜1300℃で約3時間溶解を行った後、白金棒によ
る攪拌によってガラスの均質化を行い、清澄した後、予
熱してあったカーボンの型に溶融ガラスを流し込んでガ
ラスブロックを得、これを徐冷した。ガラスの諸特性を
確認するために、作製したガラスブロックから少量の測
定試料用ガラスを切り出し、屈折率(nd)、アッベ数
(νd)、屈伏点温度(At)、及び耐水性の測定を行
った。尚、耐水性は日本光学工業会規格(JOGIS規
格)に基づき次のように評価した。すなわち、420〜
590μmの大きさに粉砕したガラスをガラスの比重×
1gの量をとり、白金製溶出かごの中に入れ、それを純
水の入った石英ガラス製丸底フラスコに入れて沸騰水浴
中で60分間処理し、処理後粉末ガラスの重量減少
(%)を算出した。
Glass is made of a raw material consisting of oxides, carbonates, and nitrates, and has a glass amount of 2 for each composition.
The desired volume ratio was calculated and blended to 50 ml. The prepared glass raw material mixture is mixed in advance so as to be sufficiently homogeneous, and the mixture is mixed in a 300 ml platinum crucible.
After melting at 0 to 1300 ° C. for about 3 hours, the glass is homogenized by stirring with a platinum rod, and after clarification, the molten glass is poured into a preheated carbon mold to obtain a glass block. Was gradually cooled. To confirm the properties of the glass, cut out small measurement specimen glass from the glass block thus produced, the refractive index (n d), Abbe number ([nu d), sag temperature (At), and water resistance of the measurement Was done. The water resistance was evaluated as follows based on the Japan Optical Industry Association Standard (JOGIS Standard). That is, 420-
The glass crushed to a size of 590 μm is divided by the specific gravity of the glass ×
An amount of 1 g is put into a platinum elution basket, put into a quartz glass round bottom flask containing pure water, and treated in a boiling water bath for 60 minutes. After the treatment, the weight loss of the powdered glass (%) Was calculated.

【0030】次に作製したガラスブロックを切り出して
加工を行い、精密プレス用のボール状のガラス素材とし
た。このガラス素材は表面粗さRmaxが0.01μm以
下となるよう仕上げ加工を行った。この表面粗さはZy
go社MAXIM表面粗さ計で、1個の素材について一
ヶ所当たり0.2×0.2mmの面を10ヶ所測定し
た。P−V値は20nm以下であった。尚、P−V値と
は、測定値のもっとも高い値(peak値)と最も低い
値(valley値)との差である。
Next, the produced glass block was cut out and processed to obtain a ball-shaped glass material for precision press. This glass material was finished so that the surface roughness Rmax was 0.01 μm or less. This surface roughness is Zy
Using a GOIM MAXIM surface roughness tester, 10 locations of 0.2 × 0.2 mm surface were measured per location for one material. The PV value was 20 nm or less. The PV value is the difference between the highest value (peak value) and the lowest value (valley value) of the measured values.

【0031】このガラス素材を用いて、表2に示す型材
料を用いて成形実験を行った。図1は成形前の状態を表
わす図であり、図中1は上型、2は下型、3はガラス素
材を示す。上型1及び下型2はそれぞれRmaxを0.0
1μm以内の精度に加工し、実験では上型1、下型2と
も同一材料を使用した。
Using this glass material, a molding experiment was performed using the mold materials shown in Table 2. FIG. 1 is a diagram showing a state before molding, in which 1 is an upper mold, 2 is a lower mold, and 3 is a glass material. The upper mold 1 and the lower mold 2 each have an Rmax of 0.0
Processing was performed to an accuracy of 1 μm or less, and the same material was used for the upper mold 1 and the lower mold 2 in the experiment.

【0032】成形は、まずガラス素材3を下型2の上に
配置し、成形機内を10-2Torr以下に排気した後、型の
材質が非酸化物系の場合は、窒素ガスを導入して窒素ガ
ス雰囲気とし、酸化物を含むものについては、一定の酸
素分圧になるように、窒素ガスと酸素ガスの混合ガス雰
囲気とした。その後、図3に示すスケジュールでガラス
及び金型を加熱し、所定の成形温度(T0)に達した
後、5分間そのまま保持し、その後図2に示すように1
00kg/cm2の圧力で5分間上型1を加圧して成形
を行った。加圧成形が終了し、圧力を除去した後、冷却
速度を−5℃/分でガラスの転移温度よりも50℃低い
温度(T1)まで冷却を行い、その後は−20℃/分以
上の速度で冷却して、200℃以下の温度でレンズ状の
ガラス試料4を取り出した。尚、それぞれ異なる組成の
ガラスに対して、成形条件を一定とするために、成形は
それぞれのガラスの粘性が109.5ポアズに相当する温
度で行った。また、成形実験は1つのガラス−型の組合
せに対して10〜100回行った。
For molding, first, the glass material 3 is placed on the lower mold 2 and the inside of the molding machine is evacuated to 10 −2 Torr or less. Then, when the material of the mold is non-oxide, nitrogen gas is introduced. A nitrogen gas atmosphere was used, and for those containing oxides, a mixed gas atmosphere of nitrogen gas and oxygen gas was used so as to have a constant oxygen partial pressure. Thereafter, the glass and the mold were heated according to the schedule shown in FIG. 3, and after reaching a predetermined molding temperature (T 0 ), the glass and the mold were kept as they were for 5 minutes.
The upper mold 1 was pressed at a pressure of 00 kg / cm 2 for 5 minutes to perform molding. After the pressure molding is completed and the pressure is removed, cooling is performed at a cooling rate of −5 ° C./min to a temperature (T 1 ) lower by 50 ° C. than the glass transition temperature, and thereafter, the cooling rate is −20 ° C./min or more. After cooling at a speed, a lens-shaped glass sample 4 was taken out at a temperature of 200 ° C. or lower. Incidentally, the glass having different compositions, in order to make the molding conditions is constant, the molding was carried out at a temperature at which the viscosity of each of the glass corresponding to 10 9.5 poise. The molding experiment was performed 10 to 100 times for one glass-mold combination.

【0033】その結果、比較例1の組成のガラスでは、
成形温度が高温となるために炭化物系や金属系の型材に
ついては型表面の劣化が激しくなり、比較例2の組成の
ガラスではガラスからの揮発成分による型表面及びレン
ズ表面の曇りが発生した。また、比較例3の組成のガラ
スについては、レンズ表面の曇りの発生及び型表面の劣
化が認められた。これらに対し、本発明による実施例1
〜10の組成のガラスについては、全て型表面またはレ
ンズ表面の曇り現象、型表面の劣化、ガラスと型との融
着等のない良好な成形が行えた。
As a result, in the glass having the composition of Comparative Example 1,
Since the molding temperature was high, the mold surface of the carbide or metal mold material was greatly deteriorated, and the glass having the composition of Comparative Example 2 caused clouding of the mold surface and the lens surface due to volatile components from the glass. Further, with respect to the glass having the composition of Comparative Example 3, occurrence of fogging on the lens surface and deterioration of the mold surface were observed. In contrast, the first embodiment according to the present invention
With respect to the glasses having the compositions of Nos. 1 to 10, good molding was performed without fogging on the surface of the mold or lens surface, deterioration of the mold surface, fusion of the glass and the mold, and the like.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】本発明によれば、屈伏点温度(At)が
560℃以下で、屈折率(nd)が1.65〜1.7
5、アッベ数(νd)が50以上の光学恒数を維持し、
充分な化学的耐久性を持ち、型材との離型性が良好な精
密プレス成形に適した光学ガラスが得られる。
According to the present invention, in sag temperature (At) is 560 ° C. or less, refractive index (n d) of 1.65 to 1.7
5. Abbe number (ν d ) maintains an optical constant of 50 or more,
An optical glass suitable for precision press molding, which has sufficient chemical durability and good releasability from a mold material, can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成形実験におけるプレス成形前の型と
ガラス素材との配置を示す断面図である。
FIG. 1 is a cross-sectional view showing an arrangement of a mold and a glass material before press molding in a molding experiment of the present invention.

【図2】プレス成形後の型と成形されたレンズ状ガラス
の断面図である。
FIG. 2 is a cross-sectional view of a mold after press molding and a molded lenticular glass.

【図3】プレス成形時の温度スケジュールを表わす図で
ある。
FIG. 3 is a diagram illustrating a temperature schedule during press molding.

【符号の説明】[Explanation of symbols]

1 上型 2 下型 3 成形前のガラス素材 4 成形されたレンズ状のガラス試料 Reference Signs List 1 upper mold 2 lower mold 3 glass material before molding 4 molded lens-shaped glass sample

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記含有量の下記成分からなる、屈伏点
温度560℃以下の光学ガラスを用いて精密プレス加工
により形成した光学レンズ。 成分 含有量(重量%) SiO2 5〜25 B23 16〜40 ただしSiO2+B23 30〜50 Li2O 2〜8 Na2O 0〜10 K2O 0〜10 Cs2O 0〜10 ただしNa2O+K2O+Cs2O 0〜15 MgO 0〜10 CaO 0〜30 SrO 0〜30 BaO 0〜20 ZnO 1〜20 ただしCaO+SrO+BaO+ZnO 5〜40 Al23 0〜10 ZrO2 0.5〜15 La23 22〜40
1. A yield point consisting of the following components having the following contents :
An optical lens formed by precision press working using optical glass having a temperature of 560 ° C. or lower . Ingredient content (wt%) SiO 2 5~25 B 2 O 3 16~40 However SiO 2 + B 2 O 3 30~50 Li 2 O 2~8 Na 2 O 0~10 K 2 O 0~10 Cs 2 O 0 However Na 2 O + K 2 O + Cs 2 O 0~15 MgO 0~10 CaO 0~30 SrO 0~30 BaO 0~20 ZnO 1~20 However CaO + SrO + BaO + ZnO 5~40 Al 2 O 3 0~10 ZrO 2 0. 5-15 La 2 O 3 22-40
【請求項2】 屈折率(nd)が1.65〜1.75、
アッベ数(νd)が50以上の範囲の光学恒数を有する
ことを特徴とする請求項1記載の光学レンズ。
2. A refractive index (n d) from 1.65 to 1.75,
2. The optical lens according to claim 1, wherein the Abbe number (v d ) has an optical constant within a range of 50 or more.
【請求項3】 下記含有量の下記成分からなる、屈伏点
温度560℃以下の光学ガラスを用いて精密プレス加工
により形成した光学レンズ。 成分 含有量(重量%) SiO2 5〜20 B23 20〜35 ただしSiO2+B23 30〜45 Li2O 2〜 7 Na2O 0〜 5 K2O 0〜 5 Cs2O 0〜 5 ただしNa2O+K2O+Cs2O 0〜10 MgO 0〜 5 CaO 0〜15 SrO 0〜15 BaO 0〜15 ZnO 2〜12 ただしCaO+SrO+BaO+ZnO 5〜20 Al23 0〜10 ZrO2 1〜10 La23 25〜35 ただしSiO2+ZrO2 10〜25
3. A yield point consisting of the following components having the following contents :
An optical lens formed by precision press working using optical glass having a temperature of 560 ° C. or lower . Ingredient content (wt%) SiO 2 5~20 B 2 O 3 20~35 However SiO 2 + B 2 O 3 30~45 Li 2 O 2~ 7 Na 2 O 0~ 5 K 2 O 0~ 5 Cs 2 O 0-5 except Na 2 O + K 2 O + Cs 2 O 0~10 MgO 0~ 5 CaO 0~15 SrO 0~15 BaO 0~15 ZnO 2~12 However CaO + SrO + BaO + ZnO 5~20 Al 2 O 3 0~10 ZrO 2 1~ 10 La 2 O 3 25 to 35 where SiO 2 + ZrO 2 10 to 25
JP31052692A 1991-11-25 1992-11-19 Optical lens Expired - Fee Related JP2958919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31052692A JP2958919B2 (en) 1991-11-25 1992-11-19 Optical lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-309325 1991-11-25
JP30932591 1991-11-25
JP31052692A JP2958919B2 (en) 1991-11-25 1992-11-19 Optical lens

Publications (2)

Publication Number Publication Date
JPH05201743A JPH05201743A (en) 1993-08-10
JP2958919B2 true JP2958919B2 (en) 1999-10-06

Family

ID=26565920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31052692A Expired - Fee Related JP2958919B2 (en) 1991-11-25 1992-11-19 Optical lens

Country Status (1)

Country Link
JP (1) JP2958919B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820486B2 (en) * 1995-09-18 2006-09-13 Hoya株式会社 Manufacturing method of glass optical element
KR100713598B1 (en) 2000-02-18 2007-05-02 가부시키가이샤 니콘 Optical glass and projection exposure apparatus using the same
KR20080096672A (en) 2006-02-20 2008-10-31 아사히 가라스 가부시키가이샤 Optical glass
JP5237534B2 (en) * 2006-07-10 2013-07-17 株式会社オハラ Glass
JP5727691B2 (en) * 2008-04-30 2015-06-03 株式会社オハラ Optical glass, optical element and optical instrument
JP2010013292A (en) * 2008-06-30 2010-01-21 Ohara Inc Method of manufacturing glass molded body and cloudiness reducing method for glass molded body
WO2018003582A1 (en) 2016-06-29 2018-01-04 株式会社オハラ Optical glass, preform, and optical element
JP7096648B2 (en) * 2016-06-29 2022-07-06 株式会社オハラ Optical glass, preforms and optical elements

Also Published As

Publication number Publication date
JPH05201743A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
JP3943348B2 (en) Optical glass
US7560405B2 (en) Optical glass for precision press molding, preform for precision press molding, and process for the production thereof
JP4034589B2 (en) Optical glass
JP5108209B2 (en) Optical glass
JP3377454B2 (en) Optical glass for mold press
JP5288578B2 (en) Optical glass
US20050049132A1 (en) Optical glass, shapable glass material for press-shaping, optical element and process for producing optical element
JPWO2013031385A1 (en) Optical glass
JP2006131480A (en) Optical glass and optical element
JP4373688B2 (en) Optical glass, precision press-molding preform, and optical element
JP2006111482A (en) Optical glass and optical element
JP2007008761A (en) Optical glass and optical element
JP2007145615A (en) Optical glass and optical element
JP2958919B2 (en) Optical lens
JP3100726B2 (en) Optical glass for precision press molding
JP2009018952A (en) Optical glass
JP2008179500A (en) Optical glass and optical device
JP2002211949A (en) Optical glass for press molding, preform material for press molding and optical element using the same
JP3150992B2 (en) Manufacturing method of lens
JP5713024B2 (en) Optical glass and optical element produced therefrom
JP5589929B2 (en) Optical glass, precision press molding preform, and optical element
JPH0617246B2 (en) Optical glass
JP2577794B2 (en) Optical glass for precision press
WO2020067048A1 (en) Optical glass
JP2004262703A (en) Optical glass and optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120730

LAPS Cancellation because of no payment of annual fees