JP2006111482A - Optical glass and optical element - Google Patents

Optical glass and optical element Download PDF

Info

Publication number
JP2006111482A
JP2006111482A JP2004299617A JP2004299617A JP2006111482A JP 2006111482 A JP2006111482 A JP 2006111482A JP 2004299617 A JP2004299617 A JP 2004299617A JP 2004299617 A JP2004299617 A JP 2004299617A JP 2006111482 A JP2006111482 A JP 2006111482A
Authority
JP
Japan
Prior art keywords
glass
including zero
optical
content
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299617A
Other languages
Japanese (ja)
Inventor
Toshiharu Mori
登史晴 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004299617A priority Critical patent/JP2006111482A/en
Publication of JP2006111482A publication Critical patent/JP2006111482A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Abstract

<P>PROBLEM TO BE SOLVED: To provide optical glass which is substantially free from a compound of lead, arsenic or the like, excellent in the devitrification resistance, and suitable for press molding and which has predetermined optical constants, a low glass-transition temperature (Tg) and a low liquid-phase temperature (T<SB>L</SB>). <P>SOLUTION: The optical glass has respective glass components comprising, by weight, 2-17% SiO<SB>2</SB>, 20-34% B<SB>2</SB>O<SB>3</SB>, 0-6% Li<SB>2</SB>O(where, including zero), 0-2% Na<SB>2</SB>O(where, including zero), 0-2% K<SB>2</SB>O(where, including zero), 1-7% of Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O, 0-5% MgO(where, including zero), 0-5% CaO(where, including zero), 0-5% BaO(where, including zero), 0-5% SrO(where, including zero), 12-27% ZnO, 12-30% of MgO+CaO+BaO+SrO+ZnO, 10-32% La<SB>2</SB>O<SB>3</SB>, and 5-22% Gd<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光学ガラス及びこの光学ガラスからなる光学素子に関し、より詳細にはプレス成形に適した光学ガラス及びこの光学ガラスからなる光学素子に関するものである。   The present invention relates to an optical glass and an optical element made of the optical glass, and more particularly to an optical glass suitable for press molding and an optical element made of the optical glass.

ガラスレンズの製造法としては、屈伏温度(At)以上に加熱したガラスを、加熱した一対の上型・下型からなる成形金型を用いてプレスすることにより直接レンズ成形を行ういわゆるプレス成形法が、従来のガラスを研磨するレンズ成形法に比べて製造工程が少なく、その結果短時間且つ安価にレンズを製造することができることから、近年、ガラスレンズなどの光学素子の製造方法として広く使用されるようになっている。   As a method for producing a glass lens, a so-called press molding method in which glass heated to a temperature higher than the yielding temperature (At) is directly molded by using a heated molding die composed of a pair of upper and lower molds. However, since there are fewer manufacturing steps than conventional lens molding methods for polishing glass, and as a result, lenses can be manufactured in a short time and at low cost, they have been widely used in recent years as methods for manufacturing optical elements such as glass lenses. It has become so.

このプレス成形法は再加熱方式とダイレクトプレス方式とに大別できる。再加熱方式は、ほぼ最終製品形状を有するゴブプリフォームあるいは研磨プリフォームを作成した後、これらのプリフォームを軟化点以上に再び加熱し、加熱した上下一対の金型によりプレス成形して最終製品形状とする方式である。一方、ダイレクトプレス方式は、加熱した金型上にガラス溶融炉から溶融ガラス滴を直接滴下し、プレス成形することにより最終品形状とする方式である。これらいずれの方式のプレス成形法でもガラスを成形する場
合に、プレス金型をガラス転移温度(以下「Tg」と記すことがある)近傍またはそれ以上の温度に加熱する必要がある。このため、ガラスのTgが高いほどプレス金型の表面酸化や金属組成の変化が生じやすく、金型寿命が短くなるため、生産コストの上昇を招く。窒素などの不活性ガス雰囲気下で成形を行うことにより金型劣化を抑制することもできるが、雰囲気制御をするためには成形装置が複雑化し、また不活性ガスのランニングコストも必要となるため生産コストが上昇する。したがって、プレス成形法に用いるガラスとしてはTgのできるだけ低いものが望ましい。また、耐失透性を向上させる観点からは液相温度(以下「TL」と記すことがある)についてもTgと同様に低い方が望ましい。
This press molding method can be roughly divided into a reheating method and a direct press method. In the reheating method, gob preforms or polishing preforms having almost the final product shape are prepared, then these preforms are heated again above the softening point, and press molded with a pair of heated upper and lower molds to obtain the final product. It is a method of shape. On the other hand, the direct press method is a method in which a molten glass droplet is directly dropped from a glass melting furnace onto a heated mold and press-molded to obtain a final product shape. In any of these types of press molding methods, when molding glass, it is necessary to heat the press mold to a temperature near or above the glass transition temperature (hereinafter sometimes referred to as “Tg”). For this reason, the higher the Tg of the glass, the easier the surface oxidation of the press mold and the change of the metal composition occur, and the mold life is shortened, resulting in an increase in production cost. Mold deterioration can be suppressed by molding in an inert gas atmosphere such as nitrogen, but the molding equipment becomes complicated and the inert gas running cost is required to control the atmosphere. Production costs increase. Accordingly, it is desirable that the glass used in the press molding method has a Tg as low as possible. Further, from the viewpoint of improving devitrification resistance, it is desirable that the liquidus temperature (hereinafter sometimes referred to as “ TL ”) is lower as well as Tg.

ところが、Tgを低くするために従来から用いられてきた鉛化合物について人体への悪影響が近年懸念され始めた。このため鉛化合物を使用しないことが市場の強い要請となってきた。そこで鉛化合物を用いずにガラスのTgおよびTLを低くする技術が種々検討され提案されている(例えば特許文献3〜6)。
特開2000−2613号公報(特許請求の範囲) 特開平1−157430号公報(特許請求の範囲) 特開2000−119036号公報(特許請求の範囲)
However, in recent years, there have been concerns about adverse effects on the human body of lead compounds that have been conventionally used to lower Tg. For this reason, it has become a strong market demand not to use lead compounds. Thus, various techniques for reducing Tg and TL of glass without using a lead compound have been studied and proposed (for example, Patent Documents 3 to 6).
JP 2000-2613 A (Claims) JP-A-1-157430 (Claims) JP 2000-119036 (Claims)

しかしながら、特許文献1の光学ガラスはTLが未だ高く耐失透性に問題がある。また、特許文献1〜特許文献3の各光学ガラスはTgが十分には低くないという問題がある。 However, the optical glass of Patent Document 1 still has a high T L and has a problem in devitrification resistance. Moreover, each optical glass of patent document 1-patent document 3 has the problem that Tg is not low enough.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、鉛や砒素などの化合物を実質的に含有せず、Tg及びTLが低く、耐失透性に優れた、プレス成形に適した光学ガラスを提供することにある。 The present invention has been made in view of such conventional problems, and an object, is substantially free of compounds such as lead and arsenic, Tg and T L is lower, the devitrification resistance It is an object of the present invention to provide an optical glass suitable for press molding.

また本発明の他の目的は、所定の光学恒数を有し、鉛や砒素などの化合物を実質的に含有せず、生産性の高い光学素子を提供することにある。   Another object of the present invention is to provide an optical element having a predetermined optical constant and containing substantially no compound such as lead or arsenic and having high productivity.

本発明者は前記目的を達成すべく鋭意検討を重ねた結果、SiO2−B23系のガラス組成において、Li2Oなどのアルカリ金属酸化物を含有させることにより、所定の光学恒数を維持しながらTgを低くでき、さらにしZnOとLa23、Gd23とを所定量含有させることにより、高屈折率を維持しながらTLを低くでき、プレス成形に適した粘性が得られることを見出し本発明をなすに至った。 The present inventors have result of intensive investigations to achieve the above object, in the glass composition of SiO 2 -B 2 O 3 -based, by containing an alkali metal oxide such as Li 2 O, a predetermined optical constants The Tg can be lowered while maintaining the viscosity, and further, by containing a predetermined amount of ZnO, La 2 O 3 and Gd 2 O 3 , the TL can be lowered while maintaining a high refractive index, and viscosity suitable for press molding can be achieved. Has been found to yield the present invention.

すなわち、本発明のプレス成形用光学ガラスは、重量%で、SiO2:2〜17%、B23:20〜34%、Li2O:0〜6%(ただし、ゼロを含む)、Na2O:0〜2%(ただし、ゼロを含む)、K2O:0〜2%(ただし、ゼロを含む)、ただし、Li2O+Na2O+K2O:1〜7%、MgO:0〜5%(ただし、ゼロを含む)、CaO:0〜5%(ただし、ゼロを含む)、BaO:0〜5%(ただし、ゼロを含む)、SrO:0〜5%(ただし、ゼロを含む)、ZnO:12〜27%、ただし、MgO+CaO+BaO+SrO+ZnO:12〜30%、La23:10〜32%、Gd23:5〜22%の各ガラス成分を有することを特徴とする。なお、以下「%」は特に断りのない限り「重量%」を意味するものとする。 That is, press-molding the optical glass of the present invention, in weight%, SiO 2: (including where zero) 0~6%,: 2~17%, B 2 O 3: 20~34%, Li 2 O Na 2 O: 0 to 2% (including zero), K 2 O: 0 to 2% (including zero), however, Li 2 O + Na 2 O + K 2 O: 1 to 7%, MgO: 0 ~ 5% (including zero), CaO: 0 to 5% (including zero), BaO: 0 to 5% (including zero), SrO: 0 to 5% (provided zero) ZnO: 12 to 27%, except that MgO + CaO + BaO + SrO + ZnO: 12 to 30%, La 2 O 3 : 10 to 32%, and Gd 2 O 3 : 5 to 22%. Hereinafter, “%” means “% by weight” unless otherwise specified.

ここで、ガラスの安定性向上や光学恒数の調整などの観点から、重量%で、Al23:0〜3%、Y23:0〜10%、TiO2:0〜5%、ZrO2:0〜5%、Nb25:0〜10%、Ta25:0〜10%、WO3:0〜10%、Sb23:0〜2%、Bi23:0〜6%、のガラス成分の1種または2種以上をさらに含有させてもよい。 Here, from the viewpoint of improving the stability of the glass and adjusting the optical constant, the weight percentages are Al 2 O 3 : 0 to 3%, Y 2 O 3 : 0 to 10%, TiO 2 : 0 to 5%. , ZrO 2 : 0 to 5%, Nb 2 O 5 : 0 to 10%, Ta 2 O 5 : 0 to 10%, WO 3 : 0 to 10%, Sb 2 O 3 : 0 to 2%, Bi 2 O 3 : 0 to 6% of one or more glass components may be further contained.

また溶融生産性及び成形性などの観点から、屈折率(nd)を1.65〜1.77の範囲、アッベ数(νd)を40〜55の範囲、ガラス転移温度(Tg)を550℃以下とするのが好ましい。   From the viewpoint of melt productivity and moldability, the refractive index (nd) is in the range of 1.65 to 1.77, the Abbe number (νd) is in the range of 40 to 55, and the glass transition temperature (Tg) is 550 ° C. or less. It is preferable that

また、耐失透性や成形性などの観点から、液相温度(TL)を1,000℃以下とし、液相温度における粘度を0.5ポアズ以上とするのが好ましい。 Further, from the viewpoint of devitrification resistance, moldability, etc., it is preferable that the liquidus temperature (T L ) is 1,000 ° C. or less and the viscosity at the liquidus temperature is 0.5 poise or more.

本発明によれば、前記光学ガラスからなる光学素子が提供される。このような光学素子としてはレンズやプリズム、ミラーが好ましい。   According to the present invention, an optical element made of the optical glass is provided. Such an optical element is preferably a lens, a prism, or a mirror.

本発明の光学ガラスでは、所定のガラス成分を特定量含有させることにより、人体への悪影響が懸念される鉛や砒素などの化合物を用いることなく、高屈折率・低分散の光学恒数が得られる。またTgが低くプレス成形性に優れ、さらにはTLが低く耐失透性にも優れる。 In the optical glass of the present invention, by containing a specific amount of a predetermined glass component, an optical constant having a high refractive index and a low dispersion can be obtained without using a compound such as lead or arsenic that may cause adverse effects on the human body. It is done. In addition, Tg is low and press formability is excellent, and TL is low and devitrification resistance is also excellent.

また本発明の光学素子は、前記光学ガラスをプレス成形することにより作製するので、前記光学ガラスの特性を有し、また生産効率が高く低コスト化が図れる。   Further, since the optical element of the present invention is produced by press-molding the optical glass, it has the characteristics of the optical glass, has high production efficiency, and can be reduced in cost.

本発明の光学ガラスの各成分を前記のように限定した理由について以下説明する。まず、SiO2はガラス骨格を構成する成分(ガラスフォーマー)であり、その含有量が2%未満であるとガラスの耐久性が悪化する。他方、SiO2の含有量が17%を超えると耐失透性が悪化する。そこでSiO2の含有量を2〜17%の範囲と定めた。より好ましいSiO2の含有量は2〜15%の範囲である。 The reason why each component of the optical glass of the present invention is limited as described above will be described below. First, SiO 2 is a component (glass former) constituting a glass skeleton, and if the content is less than 2%, the durability of the glass deteriorates. On the other hand, when the content of SiO 2 exceeds 17%, the devitrification resistance deteriorates. Therefore, the content of SiO 2 is determined to be in the range of 2 to 17%. A more preferable SiO 2 content is in the range of 2 to 15%.

23はSiO2と同様にガラス骨格を構成する成分であり、B23の含有量が20%未満であるとガラスが失透しやすくなる。他方、含有量が34%を超えると屈折率が低下し所望の光学恒数が得られなくなる。そこでB23の含有量を20〜34%の範囲と定めた。より好ましい含有量は20〜32%の範囲である。 B 2 O 3 is a component that constitutes a glass skeleton in the same manner as SiO 2. If the content of B 2 O 3 is less than 20%, the glass tends to devitrify. On the other hand, if the content exceeds 34%, the refractive index decreases and the desired optical constant cannot be obtained. Therefore, the content of B 2 O 3 is set to a range of 20 to 34%. A more preferable content is in the range of 20 to 32%.

Li2Oはガラスの軽量化と低Tg化とに大きな効果を奏する。Li2Oの含有量が6%を超えるとガラスの耐久性が悪化になるとともに屈折率が低下し、所望の光学恒数が得られなくなる。そこでLi2Oの含有量を0〜6%(ゼロを含む)の範囲と定めた。 Li 2 O has a great effect on reducing the weight of the glass and lowering the Tg. If the Li 2 O content exceeds 6%, the durability of the glass deteriorates and the refractive index decreases, making it impossible to obtain a desired optical constant. Therefore, the Li 2 O content is set to a range of 0 to 6% (including zero).

またNa2OとK2OはTgを低下させる成分として有用であるが、それぞれ2%を超えて含有させると耐失透性が顕著に悪化する。そこでNa2OとK2Oの含有量をそれぞれ0〜2%(ゼロを含む)の範囲とした。 Na 2 O and K 2 O are useful as components for lowering Tg, but when each content exceeds 2%, devitrification resistance is remarkably deteriorated. Therefore, the content of Na 2 O and K 2 O was set to a range of 0 to 2% (including zero).

そして、R2O(R=Li,Na,K)成分の総量が1%より少ないとTgを下げる効果が十分には得られない一方、R2O成分の総量が7%を超えると耐久性が悪化すると共に屈折率が低下し所望の光学恒数が得られなくなる。そこでR2Oの総量を1〜7%の範囲と定めた。より好ましいR2Oの総量は1〜6%の範囲である。 If the total amount of R 2 O (R = Li, Na, K) components is less than 1%, the effect of lowering Tg cannot be obtained sufficiently, while if the total amount of R 2 O components exceeds 7%, durability As a result, the refractive index decreases and the desired optical constant cannot be obtained. Therefore, the total amount of R 2 O is set to a range of 1 to 7%. A more preferable total amount of R 2 O is in the range of 1 to 6%.

MgOはガラスの軽量化と屈折率の向上、さらに分散を低くする効果を奏するが、5%を超えて含有させるとガラスが不安定となって耐失透性が悪化する。そこでMgOの含有量を0〜5%(ただし、ゼロを含む)の範囲とした。   MgO has the effect of reducing the weight of the glass, improving the refractive index, and lowering the dispersion, but if it exceeds 5%, the glass becomes unstable and devitrification resistance deteriorates. Therefore, the content of MgO is set to a range of 0 to 5% (including zero).

CaOは、ガラスの軽量化と、屈折率の向上、ガラスの耐久性の向上という効果を奏するが、5%を超えて含有させるとガラスが不安定となり耐失透性が悪化する。そこでCaOの含有量を0〜5%(ただし、ゼロを含む)の範囲と定めた。   CaO has the effects of reducing the weight of the glass, improving the refractive index, and improving the durability of the glass. However, if it exceeds 5%, the glass becomes unstable and devitrification resistance deteriorates. Therefore, the CaO content is set to a range of 0 to 5% (including zero).

BaOは屈折率を調整すると共にガラスの安定性を向上させる効果を奏するが、含有量が5%を超えると耐失透性が悪化する。そこでBaOの含有量を0〜5%(ただしゼロを含む)の範囲とした。   BaO has an effect of adjusting the refractive index and improving the stability of the glass. However, when the content exceeds 5%, the devitrification resistance deteriorates. Therefore, the BaO content is set to a range of 0 to 5% (including zero).

SrOはTLを低下させる共にガラスの安定性を向上させる効果を奏するが、含有量が5%を超えると耐失透性が悪化する。そこでSrOの含有量を0〜5%(ただし、ゼロを含む)の範囲とした。 SrO has the effect of lowering T L and improving the stability of the glass, but when the content exceeds 5%, devitrification resistance deteriorates. Therefore, the SrO content is set to a range of 0 to 5% (including zero).

ZnOは屈折率を高めると共に分散を維持し、TLを低下させる効果を奏するが、含有量が12%より少ないと屈折率が低下し所望の光学恒数が得られなくなる一方、含有量が27%を超えると耐失透性が低下する。そこでZnOの含有量を12〜27%の範囲と定めた。より好ましいZnOの含有量は12〜25%の範囲である。 ZnO has the effect of increasing the refractive index and maintaining the dispersion and lowering TL. However, if the content is less than 12%, the refractive index decreases and a desired optical constant cannot be obtained, while the content is 27. When it exceeds%, devitrification resistance decreases. Therefore, the content of ZnO is determined to be in the range of 12 to 27%. A more preferable content of ZnO is in the range of 12 to 25%.

そして、R’O(R’=Mg,Ca,Ba,Sr,Zn)成分の総量が12%より少ないと、屈折率が低下し所望の光学恒数が得られなくなる。一方、R’O成分の総量が30%を超えると耐失透性が悪化する。そこでR’Oの総量を12〜30%の範囲と定めた。より好ましいR’Oの総量は12〜28%の範囲である。   If the total amount of R′O (R ′ = Mg, Ca, Ba, Sr, Zn) components is less than 12%, the refractive index decreases and a desired optical constant cannot be obtained. On the other hand, when the total amount of the R′O component exceeds 30%, the devitrification resistance deteriorates. Therefore, the total amount of R′O is set to a range of 12 to 30%. A more preferred total amount of R'O is in the range of 12-28%.

La23はガラスの屈折率を高めると共に分散を維持する効果を奏するが、その含有量が10%より少ないと、屈折率が低下し所望の光学恒数が得られなくなる。一方、含有量が32%を超えると、分相が強くなりTLが高くなる。そこでLa23の含有量を10〜32%の範囲と定めた。より好ましいLa23の含有量は10〜30%の範囲である。 La 2 O 3 has the effect of increasing the refractive index of the glass and maintaining the dispersion, but if its content is less than 10%, the refractive index decreases and the desired optical constant cannot be obtained. On the other hand, when the content exceeds 32%, the phase separation becomes strong and T L becomes high. Therefore, the content of La 2 O 3 is set to a range of 10 to 32%. A more preferable content of La 2 O 3 is in the range of 10 to 30%.

Gd23はガラスの屈折率を高め、耐候性を向上させ、TLを低下させる効果を奏するが、その含有量が5%より少ないと、屈折率が低下し所望の光学恒数が得られなくなる。一方、含有量が22%を超えると、ガラスの耐失透性が低下する。そこでGd23の含有量を5〜22%の範囲と定めた。より好ましいGd23の含有量は5〜20%の範囲である。 Gd 2 O 3 has the effect of increasing the refractive index of glass, improving the weather resistance, and lowering TL. However, if its content is less than 5%, the refractive index decreases and the desired optical constant is obtained. It becomes impossible. On the other hand, if the content exceeds 22%, the devitrification resistance of the glass decreases. Therefore, the content of Gd 2 O 3 is set to a range of 5 to 22%. A more preferable content of Gd 2 O 3 is in the range of 5 to 20%.

また、本発明の光学ガラスでは、Al23、Y23、TiO2、ZrO2、Nb25、Ta25、WO3、Sb23、Bi23のガラス成分の1種または2種以上を必要によりさらに特定量含有させてもよい。これら成分に限定した理由をそれぞれ以下に説明する。 In the optical glass of the present invention, glass components of Al 2 O 3 , Y 2 O 3 , TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Sb 2 O 3 , Bi 2 O 3 1 type or 2 types or more of them may be further added in a specific amount as required. The reasons for limiting to these components will be described below.

Al23はガラスの耐久性を向上させると共に、粘性を増大させる効果を奏する。Al23の含有量が3%を超えると、ガラスの耐失透性が悪化すると共に溶融性が悪化する。そこで、Al23の含有量を0〜3%の範囲とした。 Al 2 O 3 has the effect of increasing the viscosity while improving the durability of the glass. When the content of Al 2 O 3 exceeds 3%, the devitrification resistance of the glass deteriorates and the meltability deteriorates. Therefore, the content of Al 2 O 3 is set to a range of 0 to 3%.

23はガラスの屈折率を高める効果を奏するが、含有量が10%を超えると、ガラスの耐失透性が悪化しTLが高くなる。そこで、Y23の含有量を0〜10%の範囲とした。 Y 2 O 3 has the effect of increasing the refractive index of the glass. However, if the content exceeds 10%, the devitrification resistance of the glass deteriorates and TL increases. Therefore, the content of Y 2 O 3 is set to a range of 0 to 10%.

TiO2は屈折率を高める効果を奏するが、含有量が5%を超えると、ガラスの耐失透性が悪化しTLが高くなる。そこで、TiO2の含有量を0〜5%の範囲とした。 TiO 2 has an effect of increasing the refractive index. However, if the content exceeds 5%, the devitrification resistance of the glass deteriorates and TL increases. Therefore, the content of TiO 2 is set in the range of 0 to 5%.

ZrO2は屈折率を高め、ガラスの耐候性を高める効果を奏するが、含有量が5%を超えると、ガラスの耐失透性が悪化しTLが高くなる。そこで、ZrO2の含有量を0〜5%の範囲とした。 ZrO 2 has the effect of increasing the refractive index and increasing the weather resistance of the glass. However, if the content exceeds 5%, the devitrification resistance of the glass deteriorates and TL increases. Therefore, the content of ZrO 2 is set to a range of 0 to 5%.

Nb25はガラスの屈折率を高め、ガラスの溶融性を向上させる効果を奏するが、含有量が10%を超えると所定の分散を維持できなくなる。そこで、Nb25の含有量を0〜10%の範囲とした。 Nb 2 O 5 has the effect of increasing the refractive index of the glass and improving the meltability of the glass, but if the content exceeds 10%, the predetermined dispersion cannot be maintained. Therefore, the Nb 2 O 5 content is set to a range of 0 to 10%.

Ta25はガラスの屈折率を高め、ガラスの耐候性を向上させる効果を奏するが、含有量が10%を超えると、ガラスの耐失透性が悪化しTLが高くなる。そこで、Ta25の含有量を0〜10%の範囲とした。 Ta 2 O 5 has the effect of increasing the refractive index of the glass and improving the weather resistance of the glass. However, if the content exceeds 10%, the devitrification resistance of the glass deteriorates and TL increases. Therefore, the content of Ta 2 O 5 is set to a range of 0 to 10%.

WO3はガラスの屈折率を高め、TLを低くする効果を奏するが、含有量が10%を超えると、ガラスの着色度が悪化する。そこで、WO3の含有量を0〜10%の範囲とした。 WO 3 has the effect of increasing the refractive index of the glass and lowering TL , but if the content exceeds 10%, the degree of coloration of the glass deteriorates. Therefore, the content of WO 3 is set to a range of 0 to 10%.

Sb23は、少量添加されることにより清澄作用を向上させる効果を奏する。そこで、Sb23の含有量を0〜2%の範囲とした。 Sb 2 O 3 has the effect of improving the clarification effect when added in a small amount. Therefore, the Sb 2 O 3 content is set to a range of 0 to 2%.

Bi23は、ガラスの屈折率を高める効果を奏するが、含有量が6%を超えるとガラスの着色度が悪化する。そこで、Bi23の含有量を0〜6%の範囲とした。 Bi 2 O 3 has the effect of increasing the refractive index of the glass, but if the content exceeds 6%, the coloration degree of the glass deteriorates. Therefore, the Bi 2 O 3 content is set to a range of 0 to 6%.

また、本発明の光学ガラスでは必要により、CuO、GeO2などの従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加してももちろん構わない。 In addition, in the optical glass of the present invention, of course, conventionally known glass components and additives such as CuO and GeO 2 may be added as long as they do not impair the effects of the present invention.

本発明の光学素子は前記光学ガラスをプレス成形することによって作製される。このプレス成形法としては、溶融したガラスをノズルから、所定温度に加熱された金型へ滴下しプレス成形するダイレクトプレス成形法、及びプリフォーム材を金型に載置してガラス軟化点以上に加熱してプレス成形する再加熱成形法が挙げられる。このような方法によれば研磨、研削工程が不要となり、生産性が向上し、また自由曲面や非球面といった加工困難な形状の光学素子を得ることができる。   The optical element of the present invention is produced by press-molding the optical glass. The press molding method includes a direct press molding method in which molten glass is dropped from a nozzle into a mold heated to a predetermined temperature and press molded, and a preform material is placed on the mold and exceeds the glass softening point. There is a reheating molding method in which heating and press molding are performed. According to such a method, polishing and grinding steps are not required, productivity is improved, and an optical element having a shape difficult to process such as a free curved surface or an aspherical surface can be obtained.

成形条件としては、ガラス成分や成形品の形状などにより異なるが一般に、金型温度は350〜600℃の範囲が好ましく、中でもガラス転移温度に近い温度域が好ましい。プレス時間は数秒〜数十秒の範囲が好ましい。またプレス圧力はレンズの形状や大きさにより200kgf/cm2〜600kgf/cm2の範囲が好ましく、高圧力でプレスするほど高精度の成形ができる。 The molding conditions vary depending on the glass component and the shape of the molded product, but generally the mold temperature is preferably in the range of 350 to 600 ° C., and the temperature range close to the glass transition temperature is particularly preferable. The pressing time is preferably in the range of several seconds to several tens of seconds. The pressing pressure is preferably in the range of 200kgf / cm 2 ~600kgf / cm 2 by the shape and size of the lens can be molded as high-precision pressing at high pressure.

本発明の光学素子は、例えばデジタルカメラのレンズやレーザービームプリンタなどのコリメータレンズ、プリズム、ミラーなどとして用いることができる。   The optical element of the present invention can be used as, for example, a digital camera lens, a collimator lens such as a laser beam printer, a prism, or a mirror.

以下に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.

実施例1〜10、比較例1〜3
酸化物原料、炭酸塩、硝酸塩など一般的なガラス原料を用いて、表1に示す目標組成となるように、ガラスの原料を調合し、粉末で十分に混合して調合原料とした。これを1,000〜1,300℃に加熱された溶融炉に投入し、溶融・清澄後、撹拌均質化して予め加熱された鉄製又はカーボン製の鋳型に鋳込み、徐冷して各サンプルを製造した。これら各サンプルについてのd線に対する屈折率(nd)およびアッベ数(νd)、ガラス転移温度(Tg)、液相温度(TL)、液相温度における粘度を測定した。測定結果を表1に合わせて示す。
Examples 1-10, Comparative Examples 1-3
Using general glass raw materials such as oxide raw materials, carbonates, and nitrates, glass raw materials were prepared so as to have the target composition shown in Table 1, and thoroughly mixed with powders to prepare mixed raw materials. This is put into a melting furnace heated to 1,000 to 1,300 ° C, melted and refined, homogenized with stirring, cast into a preheated iron or carbon mold, and gradually cooled to produce each sample. did. The refractive index (nd) and Abbe number (νd), glass transition temperature (Tg), liquid phase temperature (T L ), and viscosity at the liquid phase temperature for each of these samples were measured. The measurement results are shown in Table 1.

なお、比較例1は前述の特許文献1(特開2000−2613号公報)の実施例4、比較例2は特許文献2(特開平1−157430号公報)の実施例1、比較例3は特許文献3(特開2000−119036号公報)の実施例13をそれぞれ追試したものである。   Comparative Example 1 is Example 4 of Patent Document 1 (Japanese Patent Laid-Open No. 2000-2613), Comparative Example 2 is Example 1 of Patent Document 2 (Japanese Patent Laid-Open No. 1-157430), and Comparative Example 3 is Examples 13 of Patent Document 3 (Japanese Patent Laid-Open No. 2000-119036) are retested.

上記の物性測定は日本光学硝子工業会規格(JOGIS)の試験方法に準じて行った。すなわち屈折率(nd)とアッベ数(νd)とは−30℃/時間で徐冷した時の値である。測定はカルニュー光学工業社製「KPR-200」を用いて行った。ガラス転移温度(Tg)の測定はセイコーインスツルメンツ社製の熱機械的分析装置「TMA/SS6000」を用いて毎分10℃の昇温条件で行った。液相温度(TL)の測定は、溶融炉を用いて、1,200℃で融液にしたガラスを−100℃/時間で所定の温度まで降温させ所定温度で12時間保持した後、ガラスを鋳型に流し込み室温まで冷却し、ガラス内部に失透(結晶)が確認されない温度とした。ガラス内部はオリンパス社製の光学顕微鏡「BX50」の倍率100倍を用いて観察した。粘性の測定は、アドバンテスト社製の高温粘度測定装置「TVB−20H型粘度計」を用いて測定した。 The above physical properties were measured according to the test method of Japan Optical Glass Industry Association Standard (JOGIS). That is, the refractive index (n d ) and the Abbe number (ν d ) are values when cooled slowly at −30 ° C./hour. The measurement was performed using “KPR-200” manufactured by Kalnew Optical Industry Co., Ltd. The glass transition temperature (Tg) was measured using a thermomechanical analyzer “TMA / SS6000” manufactured by Seiko Instruments Inc. under a temperature rising condition of 10 ° C./min. The liquid phase temperature (T L ) is measured by using a melting furnace to lower the glass melted at 1,200 ° C. to a predetermined temperature at −100 ° C./hour and holding it at the predetermined temperature for 12 hours. Was poured into a mold and cooled to room temperature to a temperature at which devitrification (crystals) was not confirmed inside the glass. The inside of the glass was observed using an Olympus optical microscope “BX50” at a magnification of 100 times. The viscosity was measured using a high temperature viscosity measuring device “TVB-20H viscometer” manufactured by Advantest Corporation.

Figure 2006111482
Figure 2006111482

表1から明らかなように、実施例1〜10の光学ガラスでは、屈折率が1.656〜1.767、アッベ数が41.6〜54.1と高屈折率・低分散の光学恒数を有し、しかもTgが547℃以下とプレス成形に適しているものであった。またTLが990℃以下で、TLにおける粘度が1.0ポアズ以上と、耐失透性および成形性に優れたものであった。これに対して、比較例1の光学ガラスは、Tgが652℃と高くプレス成形に適さず、またTLが1030℃と高く耐失透性に劣るものであった。また、比較例2の光学ガラスも、Tgが620℃以上と高くプレス成形に適さないものであった。比較例3の光学ガラスは、アッベ数が56.9と所望範囲よりも高かった。またTgが579℃と高くプレス成形に適さないものであった。 As is clear from Table 1, in the optical glasses of Examples 1 to 10, the refractive index is 1.656 to 1.767 and the Abbe number is 41.6 to 54.1, which is an optical constant having a high refractive index and low dispersion. Furthermore, Tg is 547 ° C. or less, which is suitable for press molding. Further, T L was 990 ° C. or lower, and the viscosity at T L was 1.0 poise or more, which was excellent in devitrification resistance and moldability. On the other hand, the optical glass of Comparative Example 1 had a high Tg of 652 ° C. and was not suitable for press molding, and had a high TL of 1030 ° C. and was inferior in devitrification resistance. Further, the optical glass of Comparative Example 2 also had a high Tg of 620 ° C. or higher and was not suitable for press molding. The optical glass of Comparative Example 3 had an Abbe number of 56.9, which was higher than the desired range. Moreover, Tg was as high as 579 ° C. and was not suitable for press molding.

Claims (5)

重量%で、
SiO2:2〜17%、
23:20〜34%、
Li2O:0〜6%(ただし、ゼロを含む)、
Na2O:0〜2%(ただし、ゼロを含む)、
2O:0〜2%(ただし、ゼロを含む)、
ただし、Li2O+Na2O+K2O:1〜7%、
MgO:0〜5%(ただし、ゼロを含む)、
CaO:0〜5%(ただし、ゼロを含む)、
BaO:0〜5%(ただし、ゼロを含む)、
SrO:0〜5%(ただし、ゼロを含む)、
ZnO:12〜27%、
ただし、MgO+CaO+BaO+SrO+ZnO:12〜30%、
La23:10〜32%、
Gd23:5〜22%、
の各ガラス成分を有することを特徴とするプレス成形用光学ガラス。
% By weight
SiO 2 : 2 to 17%,
B 2 O 3 : 20 to 34%,
Li 2 O: 0 to 6% (including zero),
Na 2 O: 0 to 2% (including zero),
K 2 O: 0 to 2% (including zero),
However, Li 2 O + Na 2 O + K 2 O: 1~7%,
MgO: 0 to 5% (including zero),
CaO: 0 to 5% (including zero),
BaO: 0 to 5% (including zero),
SrO: 0 to 5% (including zero),
ZnO: 12 to 27%,
However, MgO + CaO + BaO + SrO + ZnO: 12 to 30%,
La 2 O 3 : 10 to 32%,
Gd 2 O 3 : 5 to 22%,
An optical glass for press molding characterized by having each glass component.
重量%で、
Al23:0〜3%、
23:0〜10%、
TiO2:0〜5%、
ZrO2:0〜5%、
Nb25:0〜10%、
Ta25:0〜10%、
WO3:0〜10%、
Sb23:0〜2%、
Bi23:0〜6%、
のガラス成分の1種または2種以上をさらに含有する請求項1記載のプレス成形用光学ガラス。
% By weight
Al 2 O 3 : 0 to 3%,
Y 2 O 3 : 0 to 10%,
TiO 2: 0~5%,
ZrO 2 : 0 to 5%,
Nb 2 O 5 : 0 to 10%,
Ta 2 O 5 : 0 to 10%,
WO 3: 0~10%,
Sb 2 O 3 : 0 to 2%,
Bi 2 O 3 : 0 to 6%,
The optical glass for press molding according to claim 1, further comprising one or more glass components.
屈折率(nd)が1.65〜1.77の範囲、アッベ数(νd)が40〜55の範囲、ガラス転移温度(Tg)が550℃以下である請求項1又は2記載のプレス成形用光学ガラス。   The press molding according to claim 1 or 2, wherein the refractive index (nd) is in the range of 1.65 to 1.77, the Abbe number (νd) is in the range of 40 to 55, and the glass transition temperature (Tg) is 550 ° C or lower. Optical glass. 液相温度(TL)が1,000℃以下で、液相温度における粘度が0.5ポアズ以上である請求項1〜3のいずれかに記載のプレス成形用光学ガラス。 The optical glass for press molding according to any one of claims 1 to 3, wherein the liquidus temperature (T L ) is 1,000 ° C or less and the viscosity at the liquidus temperature is 0.5 poise or more. 請求項1〜4のいずれかに記載のプレス成形用光学ガラスからなることを特徴とする光学素子。   An optical element comprising the optical glass for press molding according to any one of claims 1 to 4.
JP2004299617A 2004-10-14 2004-10-14 Optical glass and optical element Pending JP2006111482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299617A JP2006111482A (en) 2004-10-14 2004-10-14 Optical glass and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299617A JP2006111482A (en) 2004-10-14 2004-10-14 Optical glass and optical element

Publications (1)

Publication Number Publication Date
JP2006111482A true JP2006111482A (en) 2006-04-27

Family

ID=36380305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299617A Pending JP2006111482A (en) 2004-10-14 2004-10-14 Optical glass and optical element

Country Status (1)

Country Link
JP (1) JP2006111482A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106611A (en) * 2005-10-11 2007-04-26 Ohara Inc Optical glass
JP2007137701A (en) * 2005-11-16 2007-06-07 Nippon Electric Glass Co Ltd Optical glass for mold press molding
WO2007145173A1 (en) * 2006-06-13 2007-12-21 Asahi Glass Co., Ltd. Optical glass and lens using the same
JP2008201646A (en) * 2007-02-22 2008-09-04 Konica Minolta Opto Inc Optical glass and optical element
JP2008239474A (en) * 2007-02-28 2008-10-09 Nippon Electric Glass Co Ltd Optical glass
WO2009072586A1 (en) * 2007-12-06 2009-06-11 Asahi Glass Co., Ltd. Optical glass, and preform for fine press molding and optical element each comprising the same
WO2009116645A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Optical glass, preform for precision press molding using the optical glass, and optical element using the optical glass
JP2009537427A (en) * 2006-10-17 2009-10-29 成都光明光▲電▼股▲分▼有限公司 Optical glass for high refractive index low color dispersion precision press molding
JP2009263141A (en) * 2008-03-31 2009-11-12 Ohara Inc Optical glass, optical element and optical device
JP2009269770A (en) * 2008-04-30 2009-11-19 Ohara Inc Optical glass, preform for precision press molding and optical element
JP2009269771A (en) * 2008-04-30 2009-11-19 Ohara Inc Optical glass, optical element and optical apparatus
US7928027B2 (en) * 2005-06-30 2011-04-19 Konica Minolta Opto, Inc. Optical glass and optical element
US8034733B2 (en) * 2006-03-22 2011-10-11 Hoya Corporation Optical glass, optical element and method of manufacturing thereof
JP2011225383A (en) * 2010-04-15 2011-11-10 Hoya Corp Optical glass, preform for precision press molding, and optical element and method for manufacturing the same
CN101229956B (en) * 2007-01-24 2012-07-04 柯尼卡美能达精密光学株式会社 Optical glass and optical element
JP2014062024A (en) * 2011-12-28 2014-04-10 Ohara Inc Optical glass and optical element
JP2015093787A (en) * 2013-11-08 2015-05-18 株式会社オハラ Optical glass, preform material and optical element
JP2017007944A (en) * 2011-12-28 2017-01-12 株式会社オハラ Optical glass and optical element
JP2017171578A (en) * 2017-06-23 2017-09-28 株式会社オハラ Optical glass and optical element
JP2018140930A (en) * 2017-02-24 2018-09-13 日本電気硝子株式会社 Optical glass
TWI641572B (en) * 2015-01-13 2018-11-21 日商Hoya股份有限公司 Glass, glass materials for stamping, optical component blanks, and optical components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492834A (en) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk Optical glass for precise press
JPH08259257A (en) * 1995-03-28 1996-10-08 Nikon Corp Optical glass
JPH10226533A (en) * 1997-02-10 1998-08-25 Nikon Corp Radiation shielding glass
JP2003201143A (en) * 2001-10-24 2003-07-15 Hoya Corp Optical glass, preform for press forming and optical parts
JP2005272194A (en) * 2004-03-24 2005-10-06 Hoya Corp Method for manufacturing preform for press molding, manufacturing apparatus, and method for manufacturing optical element
JP2005298262A (en) * 2004-04-12 2005-10-27 Hoya Corp Method of mass-producing optical device
JP2006016286A (en) * 2004-07-05 2006-01-19 Hoya Corp Method for manufacturing glass optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492834A (en) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk Optical glass for precise press
JPH08259257A (en) * 1995-03-28 1996-10-08 Nikon Corp Optical glass
JPH10226533A (en) * 1997-02-10 1998-08-25 Nikon Corp Radiation shielding glass
JP2003201143A (en) * 2001-10-24 2003-07-15 Hoya Corp Optical glass, preform for press forming and optical parts
JP2005272194A (en) * 2004-03-24 2005-10-06 Hoya Corp Method for manufacturing preform for press molding, manufacturing apparatus, and method for manufacturing optical element
JP2005298262A (en) * 2004-04-12 2005-10-27 Hoya Corp Method of mass-producing optical device
JP2006016286A (en) * 2004-07-05 2006-01-19 Hoya Corp Method for manufacturing glass optical element

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928027B2 (en) * 2005-06-30 2011-04-19 Konica Minolta Opto, Inc. Optical glass and optical element
JP2007106611A (en) * 2005-10-11 2007-04-26 Ohara Inc Optical glass
US8110515B2 (en) * 2005-10-11 2012-02-07 Ohara, Inc. Optical glass
TWI391353B (en) * 2005-11-16 2013-04-01 Nippon Electric Glass Co Molded glass for molding
JP2007137701A (en) * 2005-11-16 2007-06-07 Nippon Electric Glass Co Ltd Optical glass for mold press molding
US8034733B2 (en) * 2006-03-22 2011-10-11 Hoya Corporation Optical glass, optical element and method of manufacturing thereof
JPWO2007145173A1 (en) * 2006-06-13 2009-10-29 旭硝子株式会社 Optical glass and lens using the same
WO2007145173A1 (en) * 2006-06-13 2007-12-21 Asahi Glass Co., Ltd. Optical glass and lens using the same
JP2009537427A (en) * 2006-10-17 2009-10-29 成都光明光▲電▼股▲分▼有限公司 Optical glass for high refractive index low color dispersion precision press molding
CN101229956B (en) * 2007-01-24 2012-07-04 柯尼卡美能达精密光学株式会社 Optical glass and optical element
JP2008201646A (en) * 2007-02-22 2008-09-04 Konica Minolta Opto Inc Optical glass and optical element
JP2008239474A (en) * 2007-02-28 2008-10-09 Nippon Electric Glass Co Ltd Optical glass
WO2009072586A1 (en) * 2007-12-06 2009-06-11 Asahi Glass Co., Ltd. Optical glass, and preform for fine press molding and optical element each comprising the same
WO2009116645A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Optical glass, preform for precision press molding using the optical glass, and optical element using the optical glass
JP2009263141A (en) * 2008-03-31 2009-11-12 Ohara Inc Optical glass, optical element and optical device
JP2009269771A (en) * 2008-04-30 2009-11-19 Ohara Inc Optical glass, optical element and optical apparatus
JP2009269770A (en) * 2008-04-30 2009-11-19 Ohara Inc Optical glass, preform for precision press molding and optical element
US8592332B2 (en) 2010-04-15 2013-11-26 Hoya Corporation Optical glass, preform for precision press molding, optical element, method for manufacturing optical element
JP2011225383A (en) * 2010-04-15 2011-11-10 Hoya Corp Optical glass, preform for precision press molding, and optical element and method for manufacturing the same
JP2017007944A (en) * 2011-12-28 2017-01-12 株式会社オハラ Optical glass and optical element
JP2014062024A (en) * 2011-12-28 2014-04-10 Ohara Inc Optical glass and optical element
JP2015093787A (en) * 2013-11-08 2015-05-18 株式会社オハラ Optical glass, preform material and optical element
TWI641572B (en) * 2015-01-13 2018-11-21 日商Hoya股份有限公司 Glass, glass materials for stamping, optical component blanks, and optical components
TWI671270B (en) * 2015-01-13 2019-09-11 日商Hoya股份有限公司 Glass, glass materials for stamping, optical component blanks, and optical components
JP2018140930A (en) * 2017-02-24 2018-09-13 日本電気硝子株式会社 Optical glass
JP7148880B2 (en) 2017-02-24 2022-10-06 日本電気硝子株式会社 optical glass
JP2017171578A (en) * 2017-06-23 2017-09-28 株式会社オハラ Optical glass and optical element

Similar Documents

Publication Publication Date Title
JP4810901B2 (en) Optical glass and optical element
JP5358888B2 (en) Optical glass and optical element
JP4759986B2 (en) Optical glass and optical element
US7827823B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
JP5867507B2 (en) Optical glass
JP2006111482A (en) Optical glass and optical element
JP5109488B2 (en) Optical glass and optical element produced therefrom
JP2005047732A (en) Optical glass and optical element
WO2008050591A1 (en) Optical glass
JP5986938B2 (en) Optical glass, glass material for precision press molding, optical element and manufacturing method thereof
JP2007145615A (en) Optical glass and optical element
JP2007008761A (en) Optical glass and optical element
JP4373688B2 (en) Optical glass, precision press-molding preform, and optical element
JP4881579B2 (en) Optical glass and optical product using the same
JP4003874B2 (en) Optical glass, press-molding preforms and optical components
JP2004231501A (en) Optical glass and optical element produced from it
JP4997990B2 (en) Optical glass and optical element
JP2008179500A (en) Optical glass and optical device
JP4655502B2 (en) Optical glass and optical element
JP2002211949A (en) Optical glass for press molding, preform material for press molding and optical element using the same
JP4792718B2 (en) Optical glass and optical element
JP4442168B2 (en) Optical glass and optical element
JP2005053749A (en) Optical glass and optical device formed from the same
JP2004262703A (en) Optical glass and optical element
JP2005053743A (en) Optical glass and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070921

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Effective date: 20100907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A02 Decision of refusal

Effective date: 20110517

Free format text: JAPANESE INTERMEDIATE CODE: A02