JP2955241B2 - Multi-type absorption air conditioning system and outdoor unit - Google Patents

Multi-type absorption air conditioning system and outdoor unit

Info

Publication number
JP2955241B2
JP2955241B2 JP8278432A JP27843296A JP2955241B2 JP 2955241 B2 JP2955241 B2 JP 2955241B2 JP 8278432 A JP8278432 A JP 8278432A JP 27843296 A JP27843296 A JP 27843296A JP 2955241 B2 JP2955241 B2 JP 2955241B2
Authority
JP
Japan
Prior art keywords
cooling
heating
refrigerant
heater
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8278432A
Other languages
Japanese (ja)
Other versions
JPH09119682A (en
Inventor
富久 大内
章 西口
晴一郎 坂口
大資 久島
道彦 相沢
剛 中尾
康雄 小関
恭二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17597271&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2955241(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8278432A priority Critical patent/JP2955241B2/en
Publication of JPH09119682A publication Critical patent/JPH09119682A/en
Application granted granted Critical
Publication of JP2955241B2 publication Critical patent/JP2955241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸収冷温水機を使っ
た空調システムに係り、とくに個別に空調を要求するユ
ーザーの希望にあわせて冷暖房の運転操作ができるマル
チタイプ吸収式空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system using an absorption chiller / heater, and more particularly to a multi-type absorption air conditioning system capable of performing a cooling / heating operation according to a request of a user who individually requests air conditioning.

【0002】[0002]

【従来の技術】吸収冷温水機を使った空調システムは、
例えば「中小型ガス空調システム」(社団法人日本冷凍
協会、平成元年3月25日発行)に述べられているよう
に、基本的にセントラル空調方式であった。このセント
ラル空調方式には以下の3方式が知られている。
2. Description of the Related Art An air conditioning system using an absorption chiller / heater is
For example, as described in "Small and Medium-sized Gas Air Conditioning System" (Japan Refrigeration Association, issued on March 25, 1989), the air conditioning system was basically a central air conditioning system. The following three systems are known as the central air conditioning system.

【0003】1)全空気方式・・・図3に示すように、
吸収冷温水機30に空気調和機AHUを組合せ、建屋内
の各部屋には冷温風ダクト107で冷温風を分配供給す
る方式である。空気調和機遠方運転操作盤101、吸収
冷温水機30の遠方操作盤103をそれぞれ操作するこ
とにより運転される。冷温風が供給される建屋内の部屋
全部を一括して空調できるが、そのために快適になるま
でに時間がかかること、無人で空調の必要が無い部屋ま
で空調するため省エネルギーでないこと、などの欠点が
ある。
[0003] 1) All air method: As shown in FIG.
An air conditioner AHU is combined with the absorption chiller / heater 30, and the cool and hot air is distributed and supplied to each room in the building by the cool and hot air duct 107. The air conditioner is operated by operating the remote operation panel 101 and the remote operation panel 103 of the absorption chiller / heater 30, respectively. Although all the rooms in the building to which the hot and cold air is supplied can be air-conditioned collectively, it takes a long time to become comfortable, and it is not energy saving because it air-conditions unmanned rooms that do not need air conditioning. There is.

【0004】2)水−空気方式・・・図4に示すよう
に、建屋内に複数台の空気調和機AHUを分散配置し、
吸収冷温水機30から空気調和機AHUに冷温水主幹配
管105を行い、各空気調和機AHUからは冷温風ダク
ト107で各部屋に冷温風を分配供給する方式である。
吸収冷温水機30の運転が行われていれば、各空気調和
機AHUのそれぞれのAHU運転スイッチ109を操作
すればそのエリアのみが空調でき、全空気方式よりも省
エネルギーである。各部屋のユーザーの空調要求とは無
関係に、まず、最初に吸収冷温水機30を運転する必要
がある。その時に空気調和機AHUが運転されていない
と吸収冷温水機30内の溶液が過濃縮され結晶したり、
希釈運転ができないなどの不具合が起こるため、AHU
の勝手な運転は出来ないという欠点がある。
2) Water-air system: As shown in FIG. 4, a plurality of air conditioners AHU are dispersedly arranged in a building,
In this system, the main pipe 105 of the hot / cold water is provided from the absorption chiller / heater 30 to the air conditioner AHU.
If the absorption chiller / heater 30 is operated, operating only the AHU operation switch 109 of each air conditioner AHU can air-condition only that area, which is more energy saving than the all-air system. Regardless of the air conditioning requirements of the user in each room, it is necessary to first operate the absorption chiller / heater 30. If the air conditioner AHU is not operating at that time, the solution in the absorption chiller / heater 30 is over-concentrated and crystallized,
The AHU
There is a drawback that selfish driving is not possible.

【0005】3)全水方式・・・図5に示すように、建
屋内に複数台のファンコイルユニットFCが分配配置さ
れ、これに吸収冷温水機30から冷温水主幹配管10
5、冷温水枝管106を介して接続されている方式であ
り、室内天井等に冷温水枝管106が配置されるためO
A機器にとって大敵である漏水の危険性が高いシステム
である。各部屋のユーザーの空調要求とは無関係に、ま
ず、最初に吸収冷温水機30を運転する必要があり、そ
の時に、ファンコイルユニットFCが運転されていない
と吸収冷温水機30内の溶液が過濃縮され結晶したり、
希釈運転が出来ない等の不具合が起こるため、ファンコ
イルユニットFCの勝手な運転は出来ないという欠点が
ある。
[0005] 3) All-water system ... As shown in Fig. 5, a plurality of fan coil units FC are distributed and arranged in the building, and the absorption chiller / heater 30 and the chiller / warmer main pipe 10
5. The system is connected via the cold / hot water branch pipe 106. Since the cold / hot water branch pipe 106 is arranged on the indoor ceiling or the like,
This is a system that has a high risk of water leakage, which is a great enemy for the A equipment. Irrespective of the air-conditioning requirements of the user in each room, it is necessary to first operate the absorption chiller / heater 30, and at that time, if the fan coil unit FC is not operating, the solution in the absorption chiller / heater 30 will be discharged. Overconcentrated and crystallized,
There is a disadvantage that the fan coil unit FC cannot be operated on its own because troubles such as a diluting operation cannot be performed.

【0006】以上のように、吸収冷温水機30はセント
ラル空調の熱源機器として一定温度の冷水もしくは温水
(以下、冷温水と呼ぶ)の供給源として利用されてい
る。また、吸収冷温水機30は冷房運転と暖房運転のサ
イクルの切り替えが必要であり、予めどちらかにセット
アップされている。
As described above, the absorption chiller / heater 30 is used as a heat source for central air conditioning as a supply source of cold water or hot water (hereinafter, referred to as cold / hot water) at a constant temperature. Further, the absorption chiller heater 30 is required to switch a cycle of heating operation and cooling operation, it is set up in advance either.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の吸収冷
温水機を使った空調システムでは、建屋内の各部屋の空
気調和機AHUの運転操作と、室外機である吸収冷温水
機30は別の運転操作が必要であり、空調する場合にそ
れぞれの運転スイッチ投入操作が必要であり、ある部屋
(もしくはフロア)の人が空調が必要と思って空気調和
機AHUの運転スイッチを入れても吸収冷温水機30の
運転スイッチが投入されていないと空調できないという
不具合があった。またこれらのスイッチ操作は溶液結晶
などのトラブルが発生しないように運転するための操作
手順を必要としていた。即ち、吸収冷温水機30の冷房
運転の起動時には、冷房開始までに溶液の濃度差が生じ
るまでの時間が必要であり、また、停止時には濃縮溶液
が自然放熱で冷却されて結晶することを防止するための
希釈時間が必要である。これらの起動または停止時に空
気調和機AHUやファンコイルユニットFCからの熱負
荷が無い状態での運転を行うと、前述のように溶液結晶
が生じたり希釈運転が出来ないなどの不具合が生じる。
そのため吸収冷温水機30が運転される前に負荷要求と
関係無しに一部または全部のAHUまたはFCの運転を
行って冷温水が循環されるように運転する必要があっ
た。しかし、これらの操作は複雑であり、一般ユーザー
が運転できないようにしていた。また、冷房/暖房の運
転モード切り替えは、吸収冷温水機30本体の運転切り
替えも必要としていた。即ち、冷媒サイクルの切り替え
並びに吸収器と凝縮器の熱交換器からの冷却水を抜く操
作であり、これらも一般ユーザーができない作業であっ
た。また上記のように、負荷要求と関係無しに一部また
は全部の空気調和器AHUまたはファンコイルユニット
FCを、吸収冷温水機30が運転される前に運転して冷
温水を循環させるから、送風起動力、冷温水循環動力な
どで無駄なエネルギーを使うという問題があった。
In the above-mentioned air conditioning system using the conventional absorption chiller / heater, the operation of the air conditioner AHU in each room in the building is different from the operation of the absorption chiller / heater 30 as the outdoor unit. It is necessary to turn on each operation switch when performing air conditioning, and even if a person in a certain room (or floor) thinks that air conditioning is required and turns on the operation switch of the air conditioner AHU, it is absorbed. There is a problem that air conditioning cannot be performed unless the operation switch of the water heater 30 is turned on. In addition, these switch operations require an operation procedure for operating such that troubles such as solution crystals do not occur. That is, at the time of starting the cooling operation of the absorption chiller / heater 30, it is necessary to allow time for a solution concentration difference to occur before the start of cooling, and at the time of stoppage, the concentrated solution is cooled by natural heat radiation to prevent crystallization. Requires a dilution time. If the operation is performed with no heat load from the air conditioner AHU or the fan coil unit FC at the time of starting or stopping these, problems such as the generation of solution crystals and the inability to perform the dilution operation occur as described above.
Therefore, before the absorption chiller / heater 30 is operated, it is necessary to operate a part or all of the AHUs or FCs so as to circulate the chilled / hot water regardless of the load requirement. However, these operations were complicated and prevented ordinary users from driving. In addition, switching between the cooling / heating operation modes also requires switching the operation of the absorption chiller / heater 30 main body. That is, it is an operation of switching the refrigerant cycle and draining the cooling water from the heat exchanger of the absorber and the condenser, and these operations are also operations that cannot be performed by general users. Further, as described above, since part or all of the air conditioner AHU or the fan coil unit FC is operated before the absorption chiller / heater 30 is operated to circulate the cool / hot water regardless of the load requirement, There was a problem that useless energy was used for the starting power, the circulating power for hot and cold water, and the like.

【0008】本発明の目的は、一般ユーザーによる複数
室内からの空調要求及び冷暖房切り替え要求に合わせて
快適に空調できる使い勝手の良いマルチタイプ吸収式空
調システムを提供するにあり、また、冷房運転時の結晶
防止や冷温水流量の制御を自動的に行って負荷要求の無
い部屋の冷房などを必要としない省エネ型のマルチタイ
プ吸収式空調システムを提供するにある。
An object of the present invention is to provide an easy-to-use multi-type absorption air-conditioning system capable of comfortably air-conditioning in response to an air-conditioning request and a cooling / heating switching request from a plurality of rooms by a general user. An object of the present invention is to provide an energy-saving multi-type absorption air-conditioning system that automatically performs crystallization prevention and control of the flow rate of cold and hot water and does not require cooling in a room that does not require a load.

【0009】[0009]

【課題を解決するための手段】本発明は、循環水を加熱
または冷却する吸収冷温水機と、循環水を循環させるた
めの配管系と、この循環水と空気とが熱交換する水空気
熱交換手段を有する複数台の室内機とを備えるマルチタ
イプ吸収式空調システムにおいて、前記複数の室内機の
運転/停止および冷房運転モードと暖房運転モードの切
替えを制御する操作手段と、前記操作手段からの室内機
の運転/停止信号および冷房運転モードと暖房運転モー
ドの切替えに基づいて前記吸収冷温水機の運転/停止お
よび冷房運転モードと暖房運転モードの切替えを制御可
能にする手段とを備えたことを特徴とするマルチタイプ
吸収式空調システムを開示する。
SUMMARY OF THE INVENTION The present invention provides an absorption chiller / heater for heating or cooling circulating water, a piping system for circulating the circulating water, and a water-air heat exchanger for exchanging heat between the circulating water and air. In a multi-type absorption air-conditioning system including a plurality of indoor units having an exchange unit, an operation unit that controls operation / stop of the plurality of indoor units and switching between a cooling operation mode and a heating operation mode, and from the operation unit Means for controlling the operation / stop of the absorption chiller / heater and the switching between the cooling operation mode and the heating operation mode based on the operation / stop signal of the indoor unit and the switching between the cooling operation mode and the heating operation mode. A multi-type absorption air conditioning system is disclosed.

【0010】更に本発明は、吸収冷温水機は、冷媒で稀
釈された稀溶液を熱源により加熱して蒸気冷媒を発生す
る高温再生器と、前記高温再生器で発生した蒸気冷媒が
第1の経路を介して導かれる低温再生器と、この低温再
生器で発生した蒸気冷媒を凝縮する凝縮器と、冷房時に
この凝縮器で凝縮した液冷媒が導かれ暖房時に前記高温
再生器で発生した冷媒蒸気が冷暖切替弁を有する第2の
経路を介して導かれる蒸発器と、この蒸発器と同一容器
で形成され、蒸発器に導かれた冷媒を吸収する吸収器
と、この吸収器で発生した稀溶液を前記高温再生器へ導
く第3の経路と、冷房時の負荷変動に応じて前記吸収器
へ液冷媒を供給可能な冷媒送り制御弁を有する第4の経
路とを備えていることを特徴とするマルチタイプ吸収式
空調システムを開示する。
Further, according to the present invention, there is provided an absorption chiller-heater comprising: a high-temperature regenerator for generating a vapor refrigerant by heating a diluted solution diluted with a refrigerant by a heat source; A low-temperature regenerator guided through a path, a condenser for condensing a vapor refrigerant generated in the low-temperature regenerator, and a refrigerant generated in the high-temperature regenerator during heating, guided by a liquid refrigerant condensed in the condenser during cooling. An evaporator in which steam is guided through a second path having a cooling / heating switching valve, an absorber formed in the same container as the evaporator, and absorbing a refrigerant guided to the evaporator, and generated in the absorber. A third path for guiding the diluted solution to the high-temperature regenerator; and a fourth path having a refrigerant feed control valve capable of supplying a liquid refrigerant to the absorber in response to a load change during cooling. Disclosed multi-type absorption air conditioning system featuring That.

【0011】更に本発明は、循環水を加熱または冷却す
る吸収冷温水機と、循環水を循環させるための配管系
と、この循環水と空気とが熱交換する水空気熱交換手段
を有する複数台の室内機とを備えるマルチタイプ吸収式
空調システムにおいて、前記複数の室内機の運転/停止
および冷房運転モードと暖房運転モードの切替えを制御
する操作手段と、前記操作手段からの室内機の運転/停
止信号および冷房運転モードと暖房運転モードの切替え
に基づいて前記吸収冷温水機の運転/停止および冷房運
転モードと暖房運転モードの切替えを制御可能にする手
段と、前記操作手段に遠隔操作で室内機の運転/停止信
号を送信可能なリモートコントローラとを備えたことを
特徴とするマルチタイプ吸収式空調システムを開示す
る。
The present invention further provides an absorption chiller / heater for heating or cooling circulating water, a piping system for circulating the circulating water, and a water-air heat exchange means for exchanging heat between the circulating water and air. Operating means for controlling operation / stop of the plurality of indoor units and switching between a cooling operation mode and a heating operation mode, and operation of the indoor units from the operation means, in the multi-type absorption air conditioning system including Means for enabling control of operation / stop of the absorption chiller / heater and switching between the cooling operation mode and the heating operation mode based on a / stop signal and switching between the cooling operation mode and the heating operation mode; A multi-type absorption air-conditioning system comprising a remote controller capable of transmitting an indoor unit operation / stop signal is disclosed.

【0012】更に本発明は、閉管路内を流れる循環水を
加熱または冷却する吸収冷温水機と、前記吸収冷温水機
の運転/停止を制御する運転制御装置とを備え、前記吸
収冷温水機からの循環水を複数の室内機に供給可能にし
たマルチタイプ吸収式空調システム用の室外ユニットに
おいて、前記運転制御装置は、複数の室内機からの運転
/停止信号に基づいて吸収冷温水機の運転/停止を制御
可能に構成されていることを特徴とするマルチタイプ吸
収式空調システム用の室外ユニットを開示する。更に本
発明は、吸収冷温水機は、冷媒で稀釈された稀溶液を加
熱して蒸気冷媒を発生する高温再生器と、この高温再生
器で発生した蒸気冷媒が第1の経路を介して導かれる低
温再生器と、この低温再生器で発生した蒸気冷媒を凝縮
する凝縮器と、冷房時にこの凝縮器で凝縮した液冷媒が
導かれ暖房時に前記高温再生器で発生した冷媒蒸気が冷
暖切替弁を有する第2の経路を介して導かれる蒸発器
と、この蒸発器と同一容器で形成され、蒸発器に導かれ
た冷媒を吸収する吸収器と、この吸収器で発生した稀溶
液を前記高温再生器へ導く第3の経路とを備えることを
特徴とするマルチタイプ吸収式空調システム用の室外ユ
ニットを開示する。更に本発明は、蒸発器に配管を介し
て接続されたシスターンを備えたことを特徴とするマル
チタイプ吸収式空調システム用の室外ユニットを開示す
る。更に本発明は、吸収冷温水機に、冷房時の負荷変動
に応じて前記吸収器へ液冷媒を供給可能な冷媒送り制御
弁を有する第4の経路を備えたことを特徴とするマルチ
タイプ吸収式空調システムの室外ユニットを開示する。
The present invention further comprises an absorption chiller / heater for heating or cooling the circulating water flowing in the closed conduit, and an operation control device for controlling the operation / stop of the absorption chiller / heater. In an outdoor unit for a multi-type absorption air-conditioning system capable of supplying circulating water from the indoor unit to a plurality of indoor units, the operation control device controls the absorption chiller / heater based on operation / stop signals from the plurality of indoor units. Disclosed is an outdoor unit for a multi-type absorption air conditioning system, wherein the outdoor unit is configured to be able to control start / stop. Further, according to the present invention, the absorption chiller / heater has a high temperature regenerator that generates a vapor refrigerant by heating a dilute solution diluted with a refrigerant, and the vapor refrigerant generated by the high temperature regenerator is guided through a first path. A low-temperature regenerator, a condenser for condensing a vapor refrigerant generated in the low-temperature regenerator, and a cooling / heating switching valve for guiding the liquid refrigerant condensed in the condenser during cooling and guiding the refrigerant vapor generated in the high-temperature regenerator during heating. An evaporator guided through a second path having the same, an absorber formed of the same container as the evaporator, for absorbing the refrigerant guided to the evaporator, and a dilute solution generated by the absorber, An outdoor unit for a multi-type absorption air conditioning system, comprising: a third path leading to a regenerator. Further, the present invention discloses an outdoor unit for a multi-type absorption air conditioning system, comprising a cistern connected to the evaporator via a pipe. Further, the present invention provides the absorption type chiller / heater having a fourth path having a refrigerant feed control valve capable of supplying a liquid refrigerant to the absorber according to a load change during cooling. An outdoor unit of a type air conditioning system is disclosed.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施例により説明
する。図2は本発明のシステムの全体の概略構成を示す
見取図である。同図において、本発明のマルチタイプ吸
収式空調システムは、室外ユニットである吸収冷温水機
30と、ここから冷温水配管45を通して送られてきた
冷温水により、吸気口39から吸気ダクト38及びフィ
ルタ37経由で取り込んだ空気の温度を調整して送り出
す室内機31、室内機31から送風ダクト36を経由し
て送られてきた空気の流量を制御して吹き出しダクト3
3、吹き出し口32へ送り出す風量制御装置(VAVユ
ニット)34から成っている。各室内機31はそれぞれ
に設けられたコントローラ40により制御され、また各
VAVユニット34の風量はルームサーモスタット35
の出力によりダンパー(図示せず)の開度を制御するこ
とにより、調節される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments. FIG. 2 is a sketch drawing showing the overall schematic configuration of the system of the present invention. In the figure, the multi-type absorption type air conditioning system of the present invention uses an absorption chiller / heater 30 as an outdoor unit and chilled / hot water sent from the chilled / hot water pipe 45 through an intake port 39 and a suction duct 38 and a filter. The indoor unit 31 that regulates and sends out the temperature of the air taken in via the air duct 37, and controls the flow rate of the air sent from the indoor unit 31 via the air duct 36 to the blow-out duct 3.
3. An air volume control device (VAV unit) 34 for sending the air to the outlet 32. Each indoor unit 31 is controlled by a controller 40 provided for the indoor unit 31, and the air volume of each VAV unit 34 is controlled by a room thermostat 35.
Is controlled by controlling the degree of opening of a damper (not shown) by the output of.

【0014】更に、冷温水配管45は、吸収冷温水機3
0からの主管路45Aと、複数個の室内機31への複数
個の副管路45Cと、主管路45Aと複数個の副管路4
5Bとを結び冷温水の分岐を行う分岐管45Bと、より
成る。これによって、1個の吸収冷温水機30からの冷
温水は、各室内機31へ配分され、マルチ空調システム
を構成出来たことになる。更に、各室内機31は、水空
気熱交換機能を持つ。これは、吸気ダクト37(又は室
内機31の一部の管路)の内部に副管路45Cを配置
し、副管路45Cの冷温水の熱を吸気ダクト37内の空
気に伝達することによって達成する。尚、管路45は、
往復管路を有していることは、図から明かであろう。
Further, the cold / hot water pipe 45 is connected to the absorption cold / hot water machine 3.
0, a plurality of sub-lines 45C to a plurality of indoor units 31, a main line 45A and a plurality of sub-lines 4
5B and a branch pipe 45B for branching cold and hot water. As a result, the cold / hot water from one absorption chiller / heater 30 is distributed to each indoor unit 31, and a multi air conditioning system can be configured. Further, each indoor unit 31 has a water-air heat exchange function. This is achieved by disposing the sub-line 45C inside the intake duct 37 (or a part of the line of the indoor unit 31) and transmitting the heat of the cold / hot water in the sub-line 45C to the air in the intake duct 37. To achieve. In addition, the conduit 45 is
It will be clear from the figure that it has a reciprocating conduit.

【0015】室内機31は、フロア単位に設置されるも
のとし、各室内機15は、1個の送風ダクト36を介し
てそのフロアに属する各室内への個別吹き出しダクト3
3につながる。
The indoor units 31 are installed in units of floors, and each indoor unit 15 is connected to one of the individual blow ducts 3 to each room belonging to that floor via one air duct 36.
Leads to 3.

【0016】図1は本発明のシステムの一実施例を示す
図で、吸収冷温水機30は外部熱源を導入して吸収溶液
を加熱して冷媒蒸気を発生させる高温再生器1、低温再
生器2、発生した冷媒蒸気を冷却水で冷却して凝縮液化
させる凝縮器3、液冷媒を散布して蒸発させその蒸発潜
熱で冷水を冷却する蒸発器4、蒸発した冷媒蒸気を溶液
に吸収させるとともに冷却水で冷却する吸収器5、濃溶
液と希釈液を熱交換させる高温熱交換器6、低温熱交換
器7、溶液循環ポンプ8、冷媒ポンプ9、溶液スプレポ
ンプ13が配設されている。また、暖房時に高温再生器
1から高温の冷媒蒸気を蒸発器4に導いて管内を流れる
温水を加熱させるための冷暖房切り替え弁18及び蒸発
器4で凝縮した液冷媒を溶液系統に送る液冷媒送り制御
弁19などを動作的に配管接続するとともに、熱源入力
制御装置10が配設されている。また、図示は省略した
が、自動抽気システムAPUとそのガスを貯える貯気タ
ンクSTが配設されている。冷房運転、特に暖房から冷
房運転へ切り替えたときの冷房運転時にこの抽気システ
ムが駆動し、吸収の障害となる各種の物質の除去をはか
る。また、吸収器5及び凝縮器3の伝熱管内に冷却水を
通水させる冷却水配管21、ファン29を備えた冷却塔
CT、冷却水ポンプ22などからなる冷却水配管系統が
あり、該冷却水配管系には電動排水弁23、自動空気抜
き弁24、補給水配管25、補給水供給制御電動弁2
6、フロート弁27、液面スイッチ28が配設されてい
る。室内機31は約3台から15台程度配設され、各室
内機31には送風ファン42、冷温水が通水される熱交
換コイル43が設けられている。蒸発器4からの冷温水
は冷温水配管45、冷温水行き管47経由で各室内機3
1へ送られ、冷温水戻り管46、冷温水ポンプ50を経
由して再び冷温水配管45を通って蒸発器4へ戻ってく
る。また一部の冷温水はバイパス流量制御弁49で制御
される冷温水バイパス管48を通って戻され、またポン
プ50入口にはシスターン51からの配管が接続されて
いる。冷温水流量制御弁44は室内機31への流量制御
を行う。
FIG. 1 shows an embodiment of the system of the present invention. An absorption chiller / heater 30 is a high-temperature regenerator 1 and a low-temperature regenerator for introducing an external heat source to heat an absorbing solution to generate refrigerant vapor. 2. A condenser 3 for cooling and condensing and liquefying the generated refrigerant vapor with cooling water, an evaporator 4 for dispersing and evaporating the liquid refrigerant and cooling the cold water with the latent heat of evaporation, and absorbing the evaporated refrigerant vapor into the solution. An absorber 5 for cooling with cooling water, a high-temperature heat exchanger 6 for exchanging heat between the concentrated solution and the diluent, a low-temperature heat exchanger 7, a solution circulation pump 8, a refrigerant pump 9, and a solution spray pump 13 are provided. Further, during heating, a cooling / heating switching valve 18 for guiding high-temperature refrigerant vapor from the high-temperature regenerator 1 to the evaporator 4 to heat the hot water flowing in the pipe, and a liquid refrigerant feed for sending the liquid refrigerant condensed by the evaporator 4 to a solution system. A control valve 19 and the like are operatively connected to a pipe, and a heat source input control device 10 is provided. Although not shown, an automatic bleeding system APU and an air storage tank ST for storing the gas are provided. During the cooling operation, particularly during the cooling operation when switching from the heating operation to the cooling operation, the bleeding system is driven to remove various substances that may interfere with absorption. In addition, there is a cooling water pipe system including a cooling water pipe 21 for passing cooling water through the heat transfer pipes of the absorber 5 and the condenser 3, a cooling tower CT having a fan 29, a cooling water pump 22, and the like. The water pipe system includes an electric drain valve 23, an automatic air release valve 24, a makeup water pipe 25, and a makeup water supply control motor-operated valve 2.
6, a float valve 27 and a liquid level switch 28 are provided. About 3 to 15 indoor units 31 are provided, and each indoor unit 31 is provided with a blower fan 42 and a heat exchange coil 43 through which cold and hot water flows. The cold and hot water from the evaporator 4 is supplied to each indoor unit 3 via a cold and hot water pipe 45 and a cold and hot water pipe 47.
It is sent to 1 and returns to the evaporator 4 through the cold / hot water pipe 45 again via the cold / hot water return pipe 46 and the cold / hot water pump 50. A part of the cold / hot water is returned through a cold / hot water bypass pipe 48 controlled by a bypass flow control valve 49, and a pipe from a cistern 51 is connected to an inlet of a pump 50. The cold / hot water flow control valve 44 controls the flow to the indoor unit 31.

【0017】コントローラ40には、図6に示すように
運転スイッチ60、冷房選定スイッチ63、暖房選定ス
イッチ64、送風量設定スイッチ65、室内温度設定ス
イッチ66、運転状態表示パネル67、スピーカ68等
が設けられ、渡り配線61を介して室内機運転制御盤4
1と接続されている。運転制御装置20は信号伝達線6
2により各室内機の制御盤41と連絡されており、いづ
れかのコントローラ40でスイッチ等の操作が行われる
とその信号を該当する制御盤41を介して取り込む。そ
して各種の検出器からの入力も取り込み、操作信号及び
検出器からの入力に応じて吸収冷温水機30や各種の弁
の制御を行う。これらの動作を行うためには、運転制御
装置20は例えば、マイクロプロセッサと上記各種動作
を行うためのプログラムから構成される。
As shown in FIG. 6, the controller 40 includes an operation switch 60, a cooling selection switch 63, a heating selection switch 64, an air volume setting switch 65, an indoor temperature setting switch 66, an operation state display panel 67, a speaker 68, and the like. And the indoor unit operation control panel 4
1 is connected. The operation control device 20 includes the signal transmission line 6
2 communicates with the control panel 41 of each indoor unit, and when a switch or the like is operated by any of the controllers 40, the signal is taken in through the corresponding control panel 41. Then, inputs from various detectors are also taken in, and the absorption chiller / heater 30 and various valves are controlled according to the operation signal and the input from the detector. In order to perform these operations, the operation control device 20 includes, for example, a microprocessor and a program for performing the various operations described above.

【0018】以下、本実施例の動作を説明する。まず通
常の冷房運転について説明する。すべての室内機31の
コントローラ40では冷房選定スイッチ63が選定さ
れ、送風量設定スイッチ65、室内温度設定スイッチ6
6が設定され運転スイッチ60が入っているとする。こ
の信号は室内機運転制御盤41を介して渡り配線61、
信号伝達線62を介して運転制御装置20に送られる。
この冷房運転時には吸収冷温水機30の冷暖房切り替え
弁18は閉じられ、液冷媒送り制御弁19も閉じられて
いる。この状態で吸収冷凍サイクルは次のように動作し
ている。即ち都市ガスや灯油などの燃焼熱で高温発生器
1では吸収溶液を加熱して冷媒蒸気を発生し、溶液を濃
縮する。高温再生器1で発生した冷媒蒸気を熱源として
低温再生器2では、溶液を加熱して冷媒蒸気を発生し、
さらに濃縮する。低温発生器2で発生した冷媒蒸気及び
高温発生器1の冷媒は凝縮器3に導かれ冷却水で冷却さ
れて凝縮液化され、液冷媒は蒸発器4に送られる。蒸発
器4では液冷媒が散布されて蒸発させられ、その蒸発潜
熱で管内を流れる冷温水が冷却される。また高温再生器
で濃縮された濃溶液の一部は高温熱交換器6を通り、低
温再生器2からの濃溶液と合流して低温熱交換器7へ送
られ、溶液スプレポンプ13により吸収器5の管群上に
散布される。吸収器5では、管内を流れる冷却水によっ
て散布された濃溶液が冷却されるとともに、蒸発器4で
発生した冷媒蒸気が吸収器5に導かれ、濃溶液に吸収さ
れて低温の希溶液が生成される。この生成された希溶液
は溶液循環ポンプ8により、濃溶液と希溶液を熱交換さ
せる低温熱交換器7へ送られ、このあと2分されて一方
は低温再生器2に送られ、残りはさらに高温熱交換器
6、及び溶液循環量制御弁11を経由して高温再生器1
に送られる。以上のように吸収冷凍サイクルが構成され
ている。ここで溶液として臭化リチウム水溶液が、ま
た、冷媒としては水が用いられる。また吸収器5及び凝
縮器3では気体の冷媒を液化するため不凝縮ガスが存在
すると著しく熱物質移動性能が阻害されるために、これ
ら機器から不凝縮性ガスを抽気する自動抽気システムA
PUとそのガスを貯える貯気タンクST(これらは図示
省略)が設けられ、冷房運転時常時作動している。
The operation of this embodiment will be described below. First, normal cooling operation will be described. In the controllers 40 of all the indoor units 31, the cooling selection switch 63 is selected, the air volume setting switch 65, the indoor temperature setting switch 6
6 is set and the operation switch 60 is turned on. This signal is supplied to the crossover wiring 61 via the indoor unit operation control panel 41,
The signal is sent to the operation control device 20 via the signal transmission line 62.
During the cooling operation, the cooling / heating switching valve 18 of the absorption chiller / heater 30 is closed, and the liquid refrigerant feed control valve 19 is also closed. In this state, the absorption refrigeration cycle operates as follows. That is, the high-temperature generator 1 heats the absorbing solution with the combustion heat of city gas, kerosene, etc., generates refrigerant vapor, and concentrates the solution. In the low-temperature regenerator 2, the refrigerant vapor is generated by heating the solution using the refrigerant vapor generated in the high-temperature regenerator 1 as a heat source.
Further concentrate. The refrigerant vapor generated by the low-temperature generator 2 and the refrigerant of the high-temperature generator 1 are guided to the condenser 3, cooled by cooling water and condensed and liquefied, and the liquid refrigerant is sent to the evaporator 4. In the evaporator 4, the liquid refrigerant is sprayed and evaporated, and the cold / hot water flowing in the pipe is cooled by the latent heat of evaporation. A part of the concentrated solution concentrated in the high-temperature regenerator passes through the high-temperature heat exchanger 6, joins with the concentrated solution from the low-temperature regenerator 2, is sent to the low-temperature heat exchanger 7, and is absorbed by the solution spray pump 13 into the absorber 5. Is sprayed on the tube group. In the absorber 5, the concentrated solution sprayed by the cooling water flowing in the pipe is cooled, and the refrigerant vapor generated in the evaporator 4 is guided to the absorber 5, where it is absorbed by the concentrated solution to produce a low-temperature dilute solution. Is done. The generated dilute solution is sent by the solution circulation pump 8 to the low-temperature heat exchanger 7 for exchanging heat between the concentrated solution and the dilute solution. High-temperature regenerator 1 via high-temperature heat exchanger 6 and solution circulation amount control valve 11
Sent to The absorption refrigeration cycle is configured as described above. Here, an aqueous solution of lithium bromide is used as the solution, and water is used as the refrigerant. In addition, in the absorber 5 and the condenser 3, the presence of the non-condensable gas liquefies the gaseous refrigerant, which significantly impairs the heat mass transfer performance.
A PU and an air storage tank ST (not shown) for storing the PU are provided, and are always operated during the cooling operation.

【0019】次に冷却水系統を説明する。冷却塔CTの
水が冷却水ポンプ22によって吸収器5の伝熱管内を経
由し、ついで凝縮器3の伝熱管内を経由して熱交換し、
冷却塔CTに戻り散水される。この水は、ファン29に
より送り込まれた空気によりその一部が蒸発し、冷却さ
れる。蒸発する水分や、固形分濃縮防止のためにブロー
される水分及び飛散する水分などを補うために、上水が
補給水配管25、制御弁26、フロート弁27を介して
補給される。なお、冷却水ポンプの空転防止のために液
面スイッチ28が設けられている。冷却水温センサ58
により冷却水温度が規定値よりも低温になると、運転制
御装置20の制御によりファン29が停止されて、冷却
水温度低下を防止する。この制御により、外気条件の広
い範囲まで吸収冷房運転ができるという効果がある。
Next, the cooling water system will be described. The water in the cooling tower CT exchanges heat with the cooling water pump 22 through the heat transfer tube of the absorber 5 and then through the heat transfer tube of the condenser 3.
Water is returned to the cooling tower CT. Part of this water is evaporated by the air sent by the fan 29 and cooled. In order to supplement the evaporating water, the water blown for preventing the solid content concentration and the scattered water, etc., the tap water is supplied through the supply water pipe 25, the control valve 26, and the float valve 27. A liquid level switch 28 is provided to prevent the cooling water pump from running idle. Cooling water temperature sensor 58
When the cooling water temperature becomes lower than the specified value, the fan 29 is stopped by the control of the operation control device 20 to prevent the cooling water temperature from lowering. This control has the effect that absorption cooling operation can be performed over a wide range of outside air conditions.

【0020】次に冷温水系統を説明する。この系統で
は、シスターン51によって配管に過大な圧力がかかる
ことなく冷温水が水張りされる。冷温水はポンプ50の
運転により冷温水配管45を経て蒸発器4の伝熱管群に
導かれ、ここで前述した液冷媒の蒸発潜熱で冷却され
る。冷却された冷水は冷温水行き管47を経由して各室
内機31に分岐され、冷温水流量制御弁44を経て熱交
換コイル43に導かれて空気と熱交換する。熱交換コイ
ル43を出た冷温水は冷温水戻り管46に集められて冷
温水ポンプ50へ戻る循環経路を構成している。蒸発器
4の出口に設けられた冷温水行き温度検出器53の示す
値が規定の温度以下になると熱入力制御弁10を閉じる
ところの出口温度制御、または冷温水戻り温度検出器5
2の示す温度が規定の温度以下になると熱入力制御弁1
0を閉じるところの入口温度制御を運転制御装置20で
行い、ほぼ一定の冷水温度で室内機31に冷水が供給さ
れるようにする。また同制御装置20によってバイパス
流量制御弁49を制御し、冷温水流量制御弁44が閉じ
られた際に冷温水配管45に設けた冷温水流量検出器5
4の値が規定値になるようにバイパス流量をコントロー
ルする。このように構成したので蒸発器4の管内冷温水
流速を高い値に期待でき、熱伝達率を高くできるため熱
交換が効率良く行われ、かつ運転を必要とする室内機3
1だけに冷温水を循環できるため省エネが図れる。
Next, the cold / hot water system will be described. In this system, cold and hot water is filled with the cistern 51 without applying excessive pressure to the piping. The cold and hot water is guided to the heat transfer tube group of the evaporator 4 through the cold and hot water pipe 45 by the operation of the pump 50, where it is cooled by the above-described latent heat of vaporization of the liquid refrigerant. The cooled cold water is branched to each indoor unit 31 via a cold / hot water outflow pipe 47, guided to a heat exchange coil 43 via a cold / hot water flow control valve 44, and exchanges heat with air. The cold / hot water exiting the heat exchange coil 43 is collected in a cold / hot water return pipe 46 and forms a circulation path returning to the cold / hot water pump 50. When the value indicated by the cold / hot water temperature detector 53 provided at the outlet of the evaporator 4 falls below a specified temperature, the outlet temperature control for closing the heat input control valve 10 or the cold / hot water return temperature detector 5
When the temperature indicated by 2 falls below a specified temperature, the heat input control valve 1
The operation control device 20 controls the inlet temperature at the point where 0 is closed so that the cold water is supplied to the indoor unit 31 at a substantially constant cold water temperature. The control device 20 controls the bypass flow rate control valve 49, and the cold / hot water flow rate detector 5 provided in the cold / hot water pipe 45 when the cold / hot water flow rate control valve 44 is closed.
The bypass flow rate is controlled so that the value of 4 becomes a specified value. With such a configuration, it is possible to expect a high value of the flow rate of the cold / hot water in the pipe of the evaporator 4 and to increase the heat transfer coefficient, so that the heat exchange can be efficiently performed and the indoor unit 3 that requires operation is required.
Energy can be saved because cold and hot water can be circulated only in one.

【0021】次に送風系統を説明する。吸気口39によ
りフィルターを介して外気または室内のリターン空気が
吸い込まれ、吸気ダクト38を介して室内機31の熱交
換コイル43に導かれ、空気中の水分の一部を凝縮させ
てドレンを生成するとともに冷風が生成される。ドレン
はドレンパンに集められて凝縮水排水管(図示省略)に
より建家外に導かれ排出される。生成された冷風は送風
ファン42により送風ダクト36、VAVユニット3
4、吹き出しダクト33を経て吹き出し口32により室
内に送られ、冷房作用を行う。室内空気温度はルームサ
ーモスタット35により検出され、設定温度よりも高温
の場合はVAVユニット34が開いてその部屋への送風
量を増大する。すなわち、VAVユニット34が開くと
冷風が通過しやすくなり、空気ダクト36に設けた空気
圧力検出器(図示省略)で検出される圧力が低下し、そ
れを補うために送風ファン42の回転数が増大されるよ
うにコントロールされる。この送風ファン42の回転数
は、インバータにより電源周波数変換を行ってモータ回
転数制御を行うことにより制御され、この回転数制御は
騒音発生の減少と省エネに効果がある。また各部屋ごと
のルームサーモスタット35の制御により個別に快適な
空調ができる。また、吸気ダクト38と送風ダクト36
を設けているから室内機31は廊下の天井などに配置で
き、機械室を特に必要としないから省スペース化が図れ
る。さらに、外気導入を行うには、吸気ダクト38の途
中を分岐してシャッター及びフィルターを介して外気を
取入れればよく、そのシャッター操作は換気操作スイッ
チ73(図6)により行う。これにより空調の質を向上
できる。この場合、室内炭酸ガス濃度検出器または酸素
濃度検出器を設けてシャッターの開閉をコントロールす
れば外気取入れを自動化できる。
Next, the air blowing system will be described. Outside air or indoor return air is sucked in through the filter by the intake port 39 and guided to the heat exchange coil 43 of the indoor unit 31 through the intake duct 38 to condense a part of moisture in the air to generate drain. As well as generating cool air. The drain is collected in a drain pan, guided to the outside of the building by a condensed water drain pipe (not shown), and discharged. The generated cool air is blown by the blower fan 42 into the blower duct 36 and the VAV unit 3.
4. The air is sent into the room through the outlet 32 through the outlet duct 33, and performs a cooling operation. The room air temperature is detected by the room thermostat 35. If the room air temperature is higher than the set temperature, the VAV unit 34 opens to increase the amount of air blown into the room. That is, when the VAV unit 34 is opened, the cool air easily passes, the pressure detected by an air pressure detector (not shown) provided in the air duct 36 decreases, and the rotation speed of the blower fan 42 is reduced to compensate for the pressure. Controlled to be increased. The rotation speed of the blower fan 42 is controlled by performing power frequency conversion by an inverter to control the motor rotation speed, and this rotation speed control is effective in reducing noise generation and saving energy. Moreover, comfortable air conditioning can be performed individually by controlling the room thermostat 35 for each room. The intake duct 38 and the air duct 36
Is provided, the indoor unit 31 can be disposed on a ceiling of a corridor or the like, and a machine room is not particularly required, so that space can be saved. Further, in order to introduce outside air, it is only necessary to branch off the middle of the intake duct 38 and take in outside air through a shutter and a filter. The shutter operation is performed by a ventilation operation switch 73 (FIG. 6). Thereby, the quality of the air conditioning can be improved. In this case, the intake of outside air can be automated by providing an indoor carbon dioxide concentration detector or an oxygen concentration detector and controlling the opening and closing of the shutter.

【0022】次に、冷房モード運転中で一台の室内機3
1のコントローラ40にユーザーが運転停止を命令した
場合を説明する。このとき当該室内機31の運転制御盤
41の指令により送風ファン42の運転が停止され、ま
た冷温水流量制御弁44が閉じられ熱交換コイル43へ
の冷温水通水が止められる。こうすることによりユーザ
ーはすばやく冷房が止まったと感じられ、イライラする
ことがなく、また自然対流による熱損失を少なくでき省
エネが図られる。また運転制御装置20の制御により吸
収冷温水機30の熱入力制御弁10が閉じられて高温再
生器1の加熱が一旦停止され、一定時間経過した後に通
常の冷水温度にしたがった加熱量コントロールに戻され
る。これは、一台の室内機31が比較的大きな負荷を担
当しており、これが急に無くなると冷水温度の急低下が
起きるのを防ぐためである。とくに一台の室内機31が
運転停止になることはほかの室内機31も運転停止にな
る時期にきている可能性があり、このときは次々と室内
機が運転停止命令を受ける。このために冷水温度が下が
ってしまい、その後熱入力の制御を行うと、高温再生器
1、低温再生器2には濃縮された溶液があり、遅れて吸
収器5に送られてくるので熱負荷の少なくなった蒸発器
4では冷水の温度低下、冷媒温度低下が起こり、結晶の
危険性がまし、安全操作が行われる可能性が高まる。こ
の冷水温度低下、冷媒温度低下に対する安全操作は、熱
入力停止と溶液スプレポンプ13の停止または液冷媒送
り制御弁19の開放であり、蓄熱エネルギーの損失をも
たらす。従って上記のような加熱の一時停止の制御を行
えばこのような安全操作は行われず、省エネ運転ができ
る。
Next, in the cooling mode operation, one indoor unit 3
A case where the user instructs the first controller 40 to stop the operation will be described. At this time, the operation of the blower fan 42 is stopped by a command from the operation control panel 41 of the indoor unit 31, the cold / hot water flow control valve 44 is closed, and the cold / hot water flow to the heat exchange coil 43 is stopped. By doing so, the user feels that cooling has stopped quickly, without being irritated, reducing heat loss due to natural convection, and conserving energy. Also, under the control of the operation control device 20, the heat input control valve 10 of the absorption chiller / heater 30 is closed, the heating of the high temperature regenerator 1 is temporarily stopped, and after a certain period of time, the heating amount is controlled according to the normal chilled water temperature. Will be returned. This is because one indoor unit 31 is in charge of a relatively large load, and if the load suddenly disappears, a sudden drop in the chilled water temperature is prevented. In particular, the operation of one indoor unit 31 may be stopped at a time when the operation of the other indoor units 31 is also stopped. At this time, the indoor units are successively received the operation stop command. As a result, the temperature of the cold water drops, and when the control of the heat input is performed thereafter, the concentrated solution is present in the high-temperature regenerator 1 and the low-temperature regenerator 2 and is sent to the absorber 5 with a delay, so that the heat load is reduced. In the evaporator 4 where the temperature has decreased, the temperature of the chilled water and the temperature of the refrigerant decrease, and the risk of crystallization increases, and the possibility of safe operation increases. The safe operation against the cooling water temperature drop and the refrigerant temperature drop is the stop of the heat input and the stop of the solution spray pump 13 or the opening of the liquid coolant feed control valve 19, resulting in a loss of heat storage energy. Therefore, if the above-described control of the temporary stop of the heating is performed, such a safe operation is not performed, and the energy saving operation can be performed.

【0023】冷房運転中にすべての室内機31が冷房運
転停止命令を受けたときは、運転制御装置20の制御に
よりまず吸収冷温水機30の熱源制御弁10が閉じられ
て熱入力が停止され、冷媒送り制御弁19及び溶液バイ
パス弁12が開放されて、蒸発器4の液冷媒がブローさ
れるとともに溶液循環量が増大して溶液希釈にはいる。
蒸発器4の液冷媒が規定の液面まで低下したことが冷媒
液面スイッチ14で検出され、吸収冷温水機30の温度
または圧力の図示しない検出器による検出値が規定値に
達したら、制御装置20及び各制御盤41の制御によ
り、冷媒送り制御弁19及び溶液バイパス弁12を閉
じ、室内機送風ファン42を停止し、室内機31の冷温
水機流量制御弁44を閉じ、バイパス流量制御弁49が
開いて流量がコントロールされるようになったら冷媒ポ
ンプ9、冷温水ポンプ50、冷却水ポンプ22、溶液循
環ポンプ8、溶液スプレポンプ13を止める。このよう
に、全停止の場合のみ、室内機31の運転がただちに停
止されず、負荷をかけながら溶液濃度を希釈均一化して
停止する。以上のように室内機31のコントローラ40
からの運転停止操作により、当該室内機31が運転制御
されるだけでなく、吸収冷温水機30、冷却塔CT、冷
却水ポンプ22、冷温水ポンプ50などが安全確実に運
転制御されて停止され、専門的な操作を必要としない。
When all the indoor units 31 receive the cooling operation stop command during the cooling operation, the heat source control valve 10 of the absorption chiller / heater 30 is first closed by the control of the operation control unit 20 to stop the heat input. Then, the refrigerant feed control valve 19 and the solution bypass valve 12 are opened, and the liquid refrigerant in the evaporator 4 is blown, and the circulation amount of the solution increases to start the solution dilution.
When the refrigerant liquid level switch 14 detects that the liquid refrigerant in the evaporator 4 has dropped to a prescribed liquid level, and the detected value of the temperature or pressure of the absorption chiller / heater 30 by a detector (not shown) reaches a prescribed value, control is performed. Under the control of the device 20 and each control panel 41, the refrigerant feed control valve 19 and the solution bypass valve 12 are closed, the indoor unit blower fan 42 is stopped, and the chilled / heated water unit flow control valve 44 of the indoor unit 31 is closed, thereby controlling the bypass flow rate. When the valve 49 is opened to control the flow rate, the refrigerant pump 9, the cold / hot water pump 50, the cooling water pump 22, the solution circulation pump 8, and the solution spray pump 13 are stopped. As described above, only in the case of the complete stop, the operation of the indoor unit 31 is not immediately stopped, but is stopped while applying the load to make the solution concentration uniform. As described above, the controller 40 of the indoor unit 31
Not only the operation of the indoor unit 31 is controlled, but also the absorption chiller / heater 30, the cooling tower CT, the cooling water pump 22, the chilled / heated water pump 50, etc., are safely and reliably operated and stopped. No need for professional operation.

【0024】次に冷房運転起動時の動作を説明する。ま
ず、ある室内機31のコントローラ40からの運転信号
が入力されると、運転制御装置20により冷却水ポンプ
22、冷温水ポンプ50、冷却塔CTのファン29が運
転される。また、当該室内機31の冷温水流量制御弁4
4が当該制御盤41の制御により開かれ、送風ファン4
2も運転されて室内に送風される。一方、この時、冷却
水温が規定の温度範囲か、冷温水の温度と流量が規定値
になっているかが冷却水温センサ58、冷温水行き温度
検出器53または冷温水戻り温度検出器52等によりチ
ェックされる。冷却水が低温の場合はCTファン29が
停止され、それでも規定値より低温の場合は運転不能の
表示が出され、運転しない。また、冷温水流量が規定流
量以上無い場合も運転しない。これらがOKの場合は、
溶液循環ポンプ8、冷媒ポンプ9、溶液スプレポンプ1
3が運転され、熱入力制御弁10が開いて高温再生器1
が加熱される。また冷却水温が低温の場合は溶液バイパ
ス弁12が開放されて液冷媒が高温再生器1を循環しや
すいように制御される。以上のようにして、ユーザーの
運転指令のみで安全確実に冷房運転が起動される。
Next, the operation at the time of starting the cooling operation will be described. First, when an operation signal from the controller 40 of a certain indoor unit 31 is input, the operation control device 20 operates the cooling water pump 22, the cooling / heating water pump 50, and the fan 29 of the cooling tower CT. In addition, the cold / hot water flow control valve 4 of the indoor unit 31
4 is opened under the control of the control panel 41, and the blower fan 4
2 is also driven and blown into the room. On the other hand, at this time, whether the cooling water temperature is within a specified temperature range, or whether the temperature and flow rate of the cold and hot water are at specified values, is determined by the cooling water temperature sensor 58, the cold / hot water temperature detector 53, the cold / hot water return temperature detector 52, and the like. Checked. When the temperature of the cooling water is low, the CT fan 29 is stopped. Also, the operation is not performed when the flow rate of the cold / hot water is not higher than the specified flow rate. If these are OK,
Solution circulation pump 8, refrigerant pump 9, solution spray pump 1
3 is operated, the heat input control valve 10 is opened, and the high temperature regenerator 1 is opened.
Is heated. When the cooling water temperature is low, the solution bypass valve 12 is opened so that the liquid refrigerant is controlled so as to easily circulate through the high temperature regenerator 1. As described above, the cooling operation is started safely and reliably only by the user's operation command.

【0025】以上が冷房運転の起動、通常運転、一部及
び全部の室内機停止時の各動作であり、いづれもユーザ
ーの室内からの操作だけにより安全かつ効率よく冷房運
転とその停止が行える。
The above is the start-up operation of the cooling operation, the normal operation, and the operation when all or some of the indoor units are stopped. In any case, the cooling operation and the stop operation can be performed safely and efficiently only by the user's operation from inside the room.

【0026】次に暖房運転の諸動作を述べる。ある室内
機31のコントローラ40(図6)でユーザーが暖房選
定スイッチ64を選定して運転スイッチ60を入れたと
する。この場合は、(1)システムが冷房運転中、
(2)システムが冷房運転モードで停止中、(3)シス
テムが暖房運転に切り替え終了している場合の3ケース
がある。(1)の場合は切り替えできない旨をコントロ
ーラ40からスピーカ68より合成音声でまたは運転表
示パネル67から文字表示でユーザーに伝える。(3)
の場合は通常の暖房運転であり、あとで説明する。
(2)の場合は、冷房運転モードから暖房への切り替え
可能な場合であり、その動作は次の通りである。
Next, various operations of the heating operation will be described. It is assumed that a user selects the heating selection switch 64 and turns on the operation switch 60 with the controller 40 (FIG. 6) of a certain indoor unit 31. In this case, (1) the system is in cooling operation,
There are three cases: (2) the system is stopped in the cooling operation mode, and (3) the system has been switched to the heating operation. In the case of (1), the controller 40 informs the user that switching cannot be performed by a synthesized voice from the speaker 68 or by a character display from the operation display panel 67. (3)
Is the normal heating operation, which will be described later.
The case (2) is a case where switching from the cooling operation mode to the heating is possible, and the operation is as follows.

【0027】この時は1つの室内器31のコントローラ
40でユーザーが暖房選定スイッチ64を一定時間内に
複数回押す。この複数回の信号は運転制御装置20で演
算されて各室内器31のコントローラ40の運転表示を
暖房にする。次に同じ制御装置20により冷温水ポンプ
50、溶液循環ポンプ8、冷媒ポンプ9が運転され、熱
源制御弁10が開いて高温再生器1が加熱される。ま
た、冷暖房切り替え弁18及び冷媒送り制御弁19が開
かれ液冷媒が溶液に混合されるとともに、高温再生器1
の発生蒸気が切り替え弁18を介して蒸発器4に送られ
管内を流れる温水と熱交換して凝縮加熱する。液化した
冷媒は冷媒ポンプ9により吸収器5の溶液に送られる。
また、その間に、冷却水の水抜き排水電動弁23が開
き、補給水電動弁25が閉じられる。冷温水の温度が検
出器52または53で検出され、その温度が規定値を越
えると制御盤41により室内器31の送風ファン42の
運転が行われ、吸気口39、吸気ダクト38を経て導入
された空気は熱交換コイル43で加熱されて温風とな
り、フィルター37、送風ダクト36、VAVユニット
34、吹き出しダクト33、吹き出し口32を経て室内
に温風が供給され暖房される。送風量は室内サーモスタ
ット35と設定温度66との比較でなされる。このよう
に、コントローラ40の操作だけで一般ユーザー自身で
冷房から暖房への切り替えが行え、ユーザーにとって快
適である。
At this time, the user presses the heating selection switch 64 a plurality of times within a predetermined time by the controller 40 of one indoor unit 31. The signals of the plural times are calculated by the operation control device 20 and the operation display of the controller 40 of each indoor unit 31 is set to heating. Next, the cold / hot water pump 50, the solution circulation pump 8, and the refrigerant pump 9 are operated by the same controller 20, the heat source control valve 10 is opened, and the high temperature regenerator 1 is heated. Further, the cooling / heating switching valve 18 and the refrigerant feed control valve 19 are opened to mix the liquid refrigerant with the solution,
The generated steam is sent to the evaporator 4 via the switching valve 18 and exchanges heat with the hot water flowing in the pipe to condense and heat. The liquefied refrigerant is sent to the solution in the absorber 5 by the refrigerant pump 9.
In the meantime, the electric valve 23 for draining and draining the cooling water is opened and the electric valve 25 for makeup water is closed. The temperature of the cold or hot water is detected by the detector 52 or 53, and when the temperature exceeds a specified value, the control panel 41 operates the blower fan 42 of the indoor unit 31 and is introduced through the intake port 39 and the intake duct 38. The heated air is heated by the heat exchange coil 43 to become warm air, and warm air is supplied to the room through the filter 37, the air duct 36, the VAV unit 34, the air outlet duct 33, and the air outlet 32 to be heated. The air volume is determined by comparing the indoor thermostat 35 with the set temperature 66. In this way, switching from cooling to heating can be performed by the general user himself / herself only by operating the controller 40, which is comfortable for the user.

【0028】上記した(3)の場合、即ち、システムが
暖房に設定されている場合は、冷暖房切り替え弁18及
び冷媒送り弁19が開かれており、また冷却水系統の水
抜きも完了しているから、運転指令でただちに冷温水ポ
ンプ50、溶液循環ポンプ8、冷媒ポンプ9が運転さ
れ、熱源制御弁10が開いて高温再生器1が加熱され、
以下上記と同様にして暖房が行われる。
In the case of the above (3), that is, when the system is set to heating, the cooling / heating switching valve 18 and the refrigerant feed valve 19 are opened, and draining of the cooling water system is completed. Therefore, the cold / hot water pump 50, the solution circulation pump 8, and the refrigerant pump 9 are immediately operated by the operation command, the heat source control valve 10 is opened, and the high temperature regenerator 1 is heated.
Thereafter, heating is performed in the same manner as described above.

【0029】最後に、暖房運転から冷房運転に切り替え
る場合を説明する。ある室内機31のコントローラ40
から冷房信号がでる場合は、(4)システムが暖房運転
中、(5)システムが暖房運転モードで停止中、(6)
システムが冷房運転に切り替え終了している場合の3ケ
ースがある。(4)の場合は切り替えができないことを
コントローラ40からユーザーに伝える。また、(6)
の場合は通常の冷房運転であり、前述した動作をする。
(5)の場合が暖房→冷房への切り替え可能な場合であ
る。この場合に、室内機31のコントローラ40の冷房
選定スイッチ63が入れられると、当該室内機31に冷
房運転が設定されるが、残り全部の室内機31はまだ暖
房運転に設定されている。そこで冷房から暖房への切り
替え時と同様に冷房選定スイッチ63を一定時間内に複
数回押すと、この複数回の信号が運転制御装置20で演
算されて各室内機31のコントローラ40の運転表示が
冷房に切り替えられる。こうして全室内機に冷房運転モ
ードが設定されると運転制御装置20によりまず、電動
排水弁23が閉じられ冷却塔CTへの補給水を止めてい
た水供給制御電動弁が開かれて、フロート弁27を介し
て冷却塔CTに水が張られる。水が十分供給されてその
液面スイッチ28が作動すると冷却水ポンプ22が運転
され、またサイクル内の冷暖房切り替え弁18及び冷媒
送り制御弁19が冷房運転モードに切り替えられる(閉
じる)。ついで冷温水ポンプ50の運転、吸収冷温水機
30の運転がシーケンシャルにスタートすると、同時に
自動抽気装置APUの貯気タンクSTにより、締切弁、
電磁弁、逆止弁を経由して冷水駆動アスピレータにより
排気が行われ、機内の不凝縮ガスが排出される。このよ
うにして本実施例の最初に説明した冷房運転を、ユーザ
ーのコントローラ操作だけで開始することができ、専門
的運転員による操作がなくても効率よくかつ冷水凍結な
どのない安全な運転が行える。
Finally, a case where the operation is switched from the heating operation to the cooling operation will be described. Controller 40 of a certain indoor unit 31
When the cooling signal is output from (4), the system is in the heating operation, (5) the system is stopped in the heating operation mode, (6)
There are three cases where the system has finished switching to cooling operation. In the case of (4), the controller 40 informs the user that switching cannot be performed. Also, (6)
Is a normal cooling operation, and the operation described above is performed.
The case (5) is a case where switching from heating to cooling is possible. In this case, when the cooling selection switch 63 of the controller 40 of the indoor unit 31 is turned on, the cooling operation is set to the indoor unit 31, but all the remaining indoor units 31 are still set to the heating operation. Then, when the cooling selection switch 63 is pressed a plurality of times within a predetermined time as in the case of switching from cooling to heating, the signals of the plurality of times are calculated by the operation control device 20 and the operation display of the controller 40 of each indoor unit 31 is displayed. Switching to cooling. When the cooling operation mode is set for all the indoor units in this way, the operation control device 20 first closes the electric drain valve 23 and opens the water supply control electric valve that has stopped the supply of water to the cooling tower CT, and opens the float valve. The cooling tower CT is filled with water via 27. When water is sufficiently supplied and the liquid level switch 28 is operated, the cooling water pump 22 is operated, and the cooling / heating switching valve 18 and the refrigerant feed control valve 19 in the cycle are switched to the cooling operation mode (closed). Next, when the operation of the chilled / hot water pump 50 and the operation of the absorption chilled / hot water heater 30 are sequentially started, at the same time, the shutoff valve,
Exhaust is performed by a chilled water driven aspirator via a solenoid valve and a check valve, and non-condensable gas in the machine is discharged. In this way, the cooling operation described at the beginning of the present embodiment can be started only by the user's controller operation, and efficient and safe operation without chilled water freezing and the like can be performed without operation by a specialized operator. I can do it.

【0030】以上、図1の実施例の動作とその効果を述
べたが、運転制御装置20とコントローラ40とが備え
る機能を上記以外にも、例えば吸収冷温水機30の冷房
運転モードあるいは暖房運転モードの運転モ−ド切替え
機能を運転制御装置20に備え、その他の機能具体的に
は吸収冷温水機30の運転/停止機能をコントローラ4
0に備えるようにしても同様の効果が得られる。また、
上記実施例で用いる吸収冷温水機30に同一の配管すな
わち冷温水配管45から冷水及び温水の両方が取出せる
構造のものを採用しているので配管が簡単になり、また
冷暖房のモ−ドを切替える際の弁の開閉制御が簡単にな
る利点がある。さらに、本実施例では室内機31に対す
る冷温水配管46及び47をリバースリターン方式で配
管したため、冷温水循環系の圧力損失が均一化される。
そのため、一部の室内機31の熱交換コイル43に多量
の冷温水が循環して振動や通水音が発生したり、熱交換
コイル43が高速の通水によって壊食する不具合が起こ
らない利点がある。
The operation of the embodiment shown in FIG. 1 and its effects have been described above. The functions provided by the operation control device 20 and the controller 40 are not limited to those described above. For example, the cooling operation mode of the absorption chiller / heater 30 or the heating operation The operation control device 20 is provided with an operation mode switching function of the operation mode, and the other functions, specifically, the operation / stop function of the absorption chiller / heater 30 are provided by the controller 4.
The same effect can be obtained even if the value is set to 0. Also,
The absorption chiller / heater 30 used in the above embodiment employs the same piping, that is, a structure in which both cold water and hot water can be taken out from the cooling / heating water piping 45, so that the piping is simplified, and the cooling / heating mode is improved. There is an advantage that opening and closing control of the valve at the time of switching is simplified. Furthermore, in this embodiment, since the cold / hot water pipes 46 and 47 for the indoor unit 31 are piped in a reverse return manner, the pressure loss in the cold / hot water circulation system is made uniform.
Therefore, there is an advantage that a large amount of cold and hot water circulates in the heat exchange coils 43 of some of the indoor units 31 to generate vibrations and noises, and that the heat exchange coils 43 are not eroded by high-speed water flow. There is.

【0031】以下、本発明の別の実施例を説明する。図
7は本発明の他の実施例を示すもので、図1の実施例と
以下の点が異なる。即ち(1)吸収器5で生成された希
溶液を低温熱交換器7を経由して2分せずに高温熱交換
器6に送り、さらに溶液循環量制御弁11を介して高温
再生器1に送り、高温再生器1で生成した濃溶液を高温
熱交換器6で希溶液と熱交換させた後溶液ポンプ13b
により低温再生器2に送ってさらに濃縮させてから、低
温熱交換器7を経由して溶液スプレポンプ13により吸
収器5に戻す循環経路とした点、(2)冷温水ポンプ5
0を吸収冷温水機30の蒸発器4を出た個所に設置した
点である。以上の構成によれば溶液バイパス弁12を省
略できること、溶液循環経路変更により、溶液スプレポ
ンプ13及び溶液ポンプ13bをインバータなどで回転
数制御して循環流量を運転状態に合わせて制御できる利
点がある。なお図7の空気系は、図1と同じであり、図
示を省略した。
Hereinafter, another embodiment of the present invention will be described. FIG. 7 shows another embodiment of the present invention, which differs from the embodiment of FIG. 1 in the following points. That is, (1) the dilute solution generated in the absorber 5 is sent to the high-temperature heat exchanger 6 without being divided into two via the low-temperature heat exchanger 7, and is further transmitted through the solution circulation amount control valve 11. And heat-exchanges the concentrated solution generated in the high-temperature regenerator 1 with the dilute solution in the high-temperature heat exchanger 6.
And then further concentrated by sending to the low-temperature regenerator 2, and then returned to the absorber 5 by the solution spray pump 13 via the low-temperature heat exchanger 7.
0 is set at a place where the evaporator 4 of the absorption chiller / heater 30 exits. According to the above configuration, there is an advantage that the solution bypass valve 12 can be omitted, and the solution circulation path is changed, so that the solution spray pump 13 and the solution pump 13b can be controlled in rotation speed by an inverter or the like to control the circulation flow rate according to the operation state. Note that the air system in FIG. 7 is the same as that in FIG. 1 and is not shown.

【0032】図8は本発明の他の実施例を示すもので、
図7の実施例と以下の点が異なる。即ち、吸収器5で生
成された希溶液を低温熱交換器7を経由して2分せずに
低温再生器2に送り加熱濃縮し、その一部をポンプ13
aで高温熱交換器6、制御弁11を介して高温再生器1
に送り、高温再生器1で生成した濃溶液を高温熱交換器
6で希溶液と熱交換させ、低温熱交換器7を経由して溶
液スプレポンプ13により吸収器5に戻す循環経路とし
た点である。以上の構成によれば冷房運転時低圧で動作
する利点がある。なお図8の空気系は図1と同じで、図
示を省略した。
FIG. 8 shows another embodiment of the present invention.
The following points are different from the embodiment of FIG. That is, the dilute solution generated in the absorber 5 is sent to the low-temperature regenerator 2 without being divided into two via the low-temperature heat exchanger 7 and concentrated by heating.
a, the high-temperature regenerator 1 via the high-temperature heat exchanger 6 and the control valve 11
And the concentrated solution generated in the high-temperature regenerator 1 is heat-exchanged with the dilute solution in the high-temperature heat exchanger 6, and returned to the absorber 5 by the solution spray pump 13 via the low-temperature heat exchanger 7. is there. According to the above configuration, there is an advantage of operating at a low pressure during the cooling operation. The air system in FIG. 8 is the same as that in FIG. 1 and is not shown.

【0033】図9は本発明の他の実施例を示すもので、
吸収冷温水機30の構成は図1と同じであり、簡略化し
て示している。本実施例は図1の実施例と以下の点が異
なる。即ち、冷温水のバッファタンク55が新たに設け
られ、冷温水配管45は吸収冷温水機30の蒸発器4と
バッファタンク55と冷温水ポンプ50とを連絡して循
環させる経路を構成する。また、バッファタンク55の
蒸発器4で冷却された冷水が流入する付近に配管接続さ
れた2次冷温水ポンプ56が設けられて、その吐出側で
ある冷温水行き管47に複数台の室内機31の熱交換コ
イル43及び流量制御弁44が接続され、冷温水戻り管
46は前記バッファタンク55の冷温水ポンプ50の吸
い込みに近い方に接続されている。このように配置構成
したので、冷温水バイパス流量制御弁49を省略でき、
代わりに2次冷温水ポンプ56をインバータ制御してポ
ンプ回転数を変化させて冷温水行き戻りの水量をコント
ロールできるので省エネが図れる。また、吸収冷温水機
30には冷温水ポンプ50で常に一定の冷温水を循環で
きるため、冷温水の出入口温度を検出して熱負荷を知る
ことができる。従って、冷温水温度の目標値を設定して
その温度と実際の温度に従って熱入力をコントロールす
るPID制御ができるため、制御が簡単になる利点があ
る。しかも、バッファタンク55が複数台の室内機31
及びファンコイルユニットFCの運転停止に伴う冷温水
温度変動を緩和させるため、前記制御範囲を広げるとと
もに快適な冷暖房を提供できる効果がある。
FIG. 9 shows another embodiment of the present invention.
The configuration of the absorption chiller / heater 30 is the same as that of FIG. 1 and is simplified. This embodiment differs from the embodiment of FIG. 1 in the following points. That is, a cold / hot water buffer tank 55 is newly provided, and the cold / hot water pipe 45 forms a path for circulating the evaporator 4 of the absorption cold / hot water machine 30, the buffer tank 55, and the cold / hot water pump 50. Further, a secondary cold / hot water pump 56 is provided near the flow of the cold water cooled by the evaporator 4 of the buffer tank 55, and a plurality of indoor units are connected to the cold / hot water outgoing pipe 47 on the discharge side. The heat exchange coil 43 and the flow control valve 44 are connected, and the cold / hot water return pipe 46 is connected to the buffer tank 55 closer to the suction of the cold / hot water pump 50. With this arrangement, the cold / hot water bypass flow control valve 49 can be omitted,
Instead, the secondary cold / hot water pump 56 can be inverter-controlled to change the pump rotation speed and control the amount of water going back and forth in the cold / hot water, thereby saving energy. Further, since constant cold and hot water can be constantly circulated to the absorption cold and hot water machine 30 by the cold and hot water pump 50, the heat load can be known by detecting the inlet and outlet temperature of the cold and hot water. Accordingly, PID control for setting a target value of the cold / hot water temperature and controlling the heat input in accordance with the temperature and the actual temperature can be performed, so that there is an advantage that the control is simplified. Moreover, the buffer tank 55 has a plurality of indoor units 31.
In addition, in order to alleviate the temperature fluctuation of the hot and cold water due to the stoppage of the operation of the fan coil unit FC, there is an effect that the control range is widened and comfortable air conditioning is provided.

【0034】また、本実施例には3種類の室内機31及
びファンコイルユニットFCの機器配置構成が開示され
ている。即ち、(a)冷温水行き管47より流量制御弁
44、室内機31の熱交換コイル43を経て戻り管46
に戻るシステム(図10左上)。この時、各コントロー
ラ40は吹き出し口32が設置されている室内ごとに配
置されVAVユニット34の制御も兼用し、運転信号が
室内機運転制御盤41に送られて流量制御弁44の開閉
を制御するとともに、吸収冷温水機システムの運転制御
盤20に渡り配線61、信号伝達線62を介して送られ
る。このように配線構成することにより、各個別の部屋
から吸収冷温水機システムを運転できるとともに各部屋
ごとの空調のコントロールも個別に対応できる。
In this embodiment, three types of indoor units 31 and the arrangement of the fan coil units FC are disclosed. That is, (a) the return pipe 46 from the cold / hot water supply pipe 47 through the flow control valve 44 and the heat exchange coil 43 of the indoor unit 31
(Figure 10 upper left). At this time, each controller 40 is arranged in each room where the outlet 32 is installed, and also controls the VAV unit 34, and an operation signal is sent to the indoor unit operation control panel 41 to control the opening and closing of the flow control valve 44. At the same time, it is sent to the operation control panel 20 of the absorption chiller / heater system via the wiring 61 and the signal transmission line 62. With such a wiring configuration, the absorption chiller / heater system can be operated from each individual room, and the air conditioning control for each room can be individually handled.

【0035】(b)冷温水行き管47から流量制御弁4
4を経由して複数台のファンコイルユニットFCが枝管
を介して分岐接続され、冷温水戻り管46に接続されて
いるシステム。それぞれのファンコイルユニットFCの
運転信号はファンコイルユニット運転スイッチ108に
よりファンコイルユニット群集中制御盤81を介して渡
り配線61より運転制御盤20に伝送され、該運転信号
を受けて吸収冷温水機システムが動作する。このように
構成することにより、小さな部屋の個別冷暖房要求に対
応できるとともに、従来のフロンガスを使った冷暖房マ
ルチシステムでは冷媒漏れ時の窒息事故防止のために必
要な換気装置を、本システムでは冷温水を供給するため
省略できる利点がある。なお、小さなファンコイルユニ
ットFCも数多く集めればその負荷は室内機31と同じ
程度の容量にでき、極端に小さな部分負荷での運転を必
要とせず、吸収冷温水機システムの円滑な運転を阻害す
ることが無い。
(B) Flow control valve 4 from cold / hot water outgoing pipe 47
4, a system in which a plurality of fan coil units FC are branched and connected via branch pipes and connected to a cold / hot water return pipe 46. The operation signal of each fan coil unit FC is transmitted to the operation control panel 20 from the crossover wiring 61 via the fan coil unit group centralized control panel 81 by the fan coil unit operation switch 108 and receives the operation signal to receive the absorption chiller / heater. The system works. With this configuration, it is possible to meet the individual cooling and heating requirements of small rooms, and in the conventional cooling and heating multi-system using chlorofluorocarbon gas, the ventilation system necessary to prevent suffocation accidents at the time of refrigerant leakage is provided. Has the advantage that it can be omitted. If a large number of small fan coil units FC are also collected, the load can be set to the same capacity as the indoor unit 31, and the operation at an extremely small partial load is not required, which hinders the smooth operation of the absorption chiller / heater system. There is nothing.

【0036】(c)冷温水行き管47より流量制御弁4
4を経て室内機31の熱交換コイル43を経て戻り管4
6に戻るシステム。このシステムは図1で説明したもの
で説明を省略する。
(C) Flow control valve 4 from cold / hot water going pipe 47
4 and the return pipe 4 via the heat exchange coil 43 of the indoor unit 31.
System to return to 6. This system has been described with reference to FIG.

【0037】以上述べたように3種類の機器構成のいづ
れの場合でも、各室内機31またはファンコイルユニッ
トFCからの運転信号が吸収冷温水機システムの運転制
御盤20に渡り配線61、信号伝達線62を介して送ら
れ、冷房運転停止時にただちに熱入力を制限させるので
溶液の結晶析出などの危険性がなく、各部屋ごとの空調
のコントロールに個別に対応できる安全確実な運転制御
ができる吸収冷温水機システムを提供できる効果があ
る。
As described above, in any of the three types of device configurations, the operation signal from each indoor unit 31 or fan coil unit FC is transferred to the operation control panel 20 of the absorption chiller / heater system by the wiring 61 and the signal transmission. It is sent via the line 62 and immediately limits the heat input when the cooling operation is stopped, so there is no danger of crystal precipitation of the solution, etc., and safe and reliable operation control that can respond individually to air conditioning control in each room There is an effect that a water / water heater system can be provided.

【0038】図10は本発明の他の実施例を示すもの
で、吸収冷温水機30の部分が簡略化されているのは図
9の実施例と同じである。本実施例は図1の実施例と以
下の点が異なる。即ち、冷温水行き管47と冷温水戻り
管46を一端で連絡し、その接合部467の付近から分
岐して冷温水ポンプ50を取り付けて蒸発機4に冷温水
を送り、冷温水行き管47の他端に配管接続した。ま
た、複数台の2次冷温水ポンプ56a〜56cが運転さ
れていない場合は蒸発器4で熱交換した冷温水は冷温水
行き管47、接合部467付近を経て冷温水ポンプ50
に戻る循環経路を取る。以上のように構成したので、冷
温水ポンプ50には配管の通水抵抗だけが加わり、図1
の実施例の場合よりも小型のポンプで良く、各2次ポン
プも小型で良い。従って、設置性に優れているという効
果がある。また、1つの室内機31で空調要求がある場
合にその系統の2次温水ポンプ(例えば56a)を運転
すれば、その系統だけに冷温水を循環できるので各室内
機31の流量制御弁44を省略できる利点がある。以上
のようにそれぞれの空調要求に応じて対応する2次冷温
水ポンプを作動させるために省エネが図れるという効果
がある。
FIG. 10 shows another embodiment of the present invention, in which the absorption chiller / heater 30 is simplified as in the embodiment shown in FIG. This embodiment differs from the embodiment of FIG. 1 in the following points. That is, the cold / hot water outgoing pipe 47 and the cold / hot water returning pipe 46 are connected at one end. Was connected to the other end of the pipe. When the plurality of secondary cold / hot water pumps 56a to 56c are not operated, the cold / hot water subjected to heat exchange in the evaporator 4 passes through the cold / hot water going pipe 47 and the vicinity of the joint 467, and the cold / hot water pump 50
Take the circulation route back to. With the configuration described above, only the water flow resistance of the piping is added to the cold / hot water pump 50, and FIG.
In this embodiment, a smaller pump may be used, and each secondary pump may be smaller. Therefore, there is an effect that the installation property is excellent. In addition, when the air conditioning request is issued by one indoor unit 31, if the secondary hot water pump (for example, 56a) of the system is operated, the cold / hot water can be circulated only to the system, so that the flow control valve 44 of each indoor unit 31 is set. There are advantages that can be omitted. As described above, there is an effect that energy can be saved by operating the secondary chilled / hot water pump corresponding to each air conditioning request.

【0039】図11は本発明の他の実施例を示すもの
で、図1の実施例と以下の点が異なる。即ち、冷暖房切
り替え弁18と蒸発器4とを連絡する蒸気管が2股に分
岐され、一方は気泡ポンプ59の底部に連絡され、他方
はそのまま蒸発器4に連絡されている。気泡ポンプ59
には蒸発器4底部と連絡する液冷媒導管78が配設さ
れ、その吐き出し部は吸収器5に冷媒液が排出されるよ
うに構成されている。暖房運転指令が信号伝達線62を
介して制御盤20に連絡されると、冷暖房切り替え弁1
8が開かれて冷媒蒸気の力で気泡ポンプ59が作動し、
蒸発器4下部の液冷媒タンクの液冷媒を冷媒蒸気ととも
に吸収器5に排出する。本実施例によれば暖房運転中に
冷媒ポンプ9を運転する必要がなく、小電力で運転でき
る効果がある。また、複数台のファンコイルユニットF
Cとその運転スイッチ108とこれらスイッチを集中管
理するファンコイルユニット群集中制御盤81を設けて
渡り信号線61を介して他の室内機制御盤41と連絡し
た。これによって各ファンコイルユニットFCからの運
転信号がファンコイルユニット群集中制御盤81に集め
られ、運転時や停止時の冷温水流量制御弁44の制御シ
ステム制御盤20への冷暖房選択や運転の信号伝達が行
われる。このように本実施例では、個別のファンコイル
ユニット運転スイッチ108からの空調要求の運転信号
を統合するファンコイルユニット群集中制御盤81を設
けたので、渡り信号線61に過剰な信号を入れる必要が
無いため全体の信号量を少なくでき、システム全体を迅
速に制御できる効果がある。
FIG. 11 shows another embodiment of the present invention, which differs from the embodiment of FIG. 1 in the following points. That is, a steam pipe connecting the cooling / heating switching valve 18 and the evaporator 4 is branched into two branches, one of which is connected to the bottom of the bubble pump 59 and the other of which is connected to the evaporator 4 as it is. Bubble pump 59
Is provided with a liquid refrigerant conduit 78 communicating with the bottom of the evaporator 4, and the discharge portion thereof is configured to discharge the refrigerant liquid to the absorber 5. When the heating operation command is transmitted to the control panel 20 via the signal transmission line 62, the cooling / heating switching valve 1
8 is opened and the bubble pump 59 is operated by the power of the refrigerant vapor,
The liquid refrigerant in the liquid refrigerant tank below the evaporator 4 is discharged to the absorber 5 together with the refrigerant vapor. According to the present embodiment, there is no need to operate the refrigerant pump 9 during the heating operation, and there is an effect that the refrigerant pump 9 can be operated with small electric power. In addition, a plurality of fan coil units F
C and its operation switches 108 and a fan coil unit group centralized control panel 81 for centrally managing these switches were provided and communicated with the other indoor unit control panels 41 via the crossover signal lines 61. As a result, the operation signals from each fan coil unit FC are collected by the fan coil unit group centralized control panel 81, and the cooling / heating selection and operation signals to the control system control panel 20 of the chilled / hot water flow control valve 44 at the time of operation or stop are transmitted. Communication takes place. As described above, in this embodiment, since the fan coil unit group centralized control panel 81 that integrates the operation signal of the air conditioning request from the individual fan coil unit operation switch 108 is provided, it is necessary to input an excessive signal to the crossover signal line 61. Since there is no signal, the total signal amount can be reduced, and the whole system can be quickly controlled.

【0040】図12は本発明の他の実施例を示すもの
で、図11の実施例と以下の点が異なる。即ち、高温再
生器1は貫流ボイラ型再生器80と気液分離器79とか
ら構成されている。このようにしたので溶液の保留量を
少なくでき、負荷応答性の高い吸収冷温水機を実現でき
る。また、低温再生器2は満液式となっていて、その上
部に凝縮器3が配置されている。以上のように、高温再
生器1と低温再生器2の溶液面を高い位置にしたので、
濃溶液は吸収器5に液ヘッド差により循環でき、溶液ス
プレポンプ13を省略できる効果がある。また、蒸発器
4から吸収器5へ液冷媒を送る液冷媒送り弁19が配置
され、蒸発器4の液冷媒タンクには冷媒ポンプ9の空転
防止のための冷媒液面スイッチ14の他に第2の液冷媒
液面スイッチ14aが配置されている。冷房運転停止
時、この液冷媒液面スイッチ14aが検出する液冷媒液
面まで冷媒送り弁19を開放して蒸発器4より吸収器5
へ液冷媒を排出して溶液を希釈する。このようにするこ
とにより、過剰な希釈を防止して再起動時の冷房立ち上
がり時間を短縮する効果がある。また、運転停止時に液
冷媒液面スイッチ14aが検出する液面よりも液冷媒液
面が低い場合には、液冷媒排出による溶液希釈を行わ
ず、溶液バイパス弁12を開くことにより高濃度の高温
再生器1の溶液を希溶液ですばやく希釈でき、より希釈
時間を短縮する効果がある。なお、図11、図12にお
いて空気系の図示を省略したが、この部分は図9と同じ
であるとする。
FIG. 12 shows another embodiment of the present invention, which differs from the embodiment of FIG. 11 in the following points. That is, the high temperature regenerator 1 includes a once-through boiler type regenerator 80 and a gas-liquid separator 79. With this configuration, the amount of retained solution can be reduced, and an absorption chiller / heater with high load response can be realized. The low-temperature regenerator 2 is of a liquid-filled type, and a condenser 3 is disposed above the low-temperature regenerator 2. As described above, since the solution levels of the high-temperature regenerator 1 and the low-temperature regenerator 2 were set at high positions,
The concentrated solution can be circulated to the absorber 5 due to the difference in the liquid head, so that the solution spray pump 13 can be omitted. In addition, a liquid refrigerant feed valve 19 for sending liquid refrigerant from the evaporator 4 to the absorber 5 is provided, and a liquid refrigerant tank of the evaporator 4 is provided with a second refrigerant liquid level switch 14 for preventing the refrigerant pump 9 from running idle. Two liquid refrigerant level switches 14a are disposed. When the cooling operation is stopped, the refrigerant feed valve 19 is opened to the liquid refrigerant liquid level detected by the liquid refrigerant liquid level switch 14a and the evaporator 4 sends the absorber 5
The liquid refrigerant is discharged to dilute the solution. This has the effect of preventing excessive dilution and shortening the cooling rise time at restart. If the liquid refrigerant liquid level is lower than the liquid level detected by the liquid refrigerant liquid level switch 14a when the operation is stopped, the solution is not diluted by discharging the liquid refrigerant, and the solution bypass valve 12 is opened. The solution in the regenerator 1 can be quickly diluted with a dilute solution, which has the effect of further reducing the dilution time. Although illustration of the air system is omitted in FIGS. 11 and 12, it is assumed that this portion is the same as FIG.

【0041】図13は本発明の他の実施例を示すもの
で、図12の実施例と以下の点が異なる。即ち、低温再
生器2を散布式とした点と室内器31の運転操作をリモ
ートコントローラRCで行う点である。低温再生器2が
散布式のために濃溶液の機内滞留量が少なく、そのため
熱容量が小さく負荷応答性の優れた吸収マルチシステム
を提供できる。また、室内機の運転操作にリモートコン
トローラRCを使うから、部屋の壁面にコントローラ4
0を配置する必要がなく、部屋を自由に間仕切りできる
利点がある。
FIG. 13 shows another embodiment of the present invention, which differs from the embodiment of FIG. 12 in the following points. That is, the low-temperature regenerator 2 is a spray type and the operation of the indoor unit 31 is performed by the remote controller RC. Since the low-temperature regenerator 2 is a spray type, the amount of concentrated solution retained in the apparatus is small, and therefore, an absorption multi-system having a small heat capacity and excellent load response can be provided. Also, since the remote controller RC is used for the operation operation of the indoor unit, the controller 4 is mounted on the wall of the room.
There is no need to arrange 0, and there is an advantage that the room can be partitioned freely.

【0042】図14は本発明の他の実施例を示すもの
で、図13の実施例と以下の点が異なる。即ち、2台の
吸収冷温水機30a、30b及びそれに付属する形で冷
却塔CTa、CTb、冷却水ポンプ22a、22b、冷
温水ポンプ50a、50bが配置されている。また、こ
れら冷温水ポンプ50a、、50bは冷温水戻り管46
に吸い込み部が接続されており、冷温水は吸収冷温水機
30a、30bをそれぞれ経由して冷温水行き管47に
流れるように配置されている。冷温水行き管47には複
数台の2次冷温水ポンプ83が接続され冷温水流量制御
弁44を介して室内機31または複数台のファンコイル
ユニットFCが接続され、冷温水戻り管46に冷温水が
戻るように配管接続されている。各室内機31の運転制
御盤41及びファンコイルユニット群集中制御盤81と
は渡り配線61で接続され、信号伝達線62を介して台
数制御盤84及び各吸収冷温水機30a、30bの運転
制御盤20a、20bに連絡される。本実施例によれ
ば、吸収冷温水機を2台用いて大規模な空調システムに
対応できる。
FIG. 14 shows another embodiment of the present invention, which differs from the embodiment of FIG. 13 in the following points. That is, the two absorption chiller / heaters 30a and 30b and the cooling towers CTa and CTb, the cooling water pumps 22a and 22b, and the chill / heat water pumps 50a and 50b are provided in a manner attached thereto. The cold / hot water pumps 50a, 50b are connected to the cold / hot water return pipe 46.
The cold / hot water is arranged to flow to the cold / hot water outgoing pipe 47 via the absorption cold / hot water heaters 30a and 30b, respectively. A plurality of secondary cold / hot water pumps 83 are connected to the cold / hot water pipe 47, the indoor unit 31 or a plurality of fan coil units FC are connected via the cold / hot water flow control valve 44, and the cold / hot water return pipe 46 is connected to the cold / hot water return pipe 46. The pipe is connected so that the water returns. The operation control panel 41 of each indoor unit 31 and the fan coil unit group centralized control panel 81 are connected by a crossover wiring 61, and the operation control of the number control panel 84 and each of the absorption chiller / heater 30a, 30b via a signal transmission line 62. The boards 20a and 20b are notified. According to this embodiment, it is possible to cope with a large-scale air conditioning system by using two absorption chillers / heaters.

【0043】以上の実施例は、パラレルフロー式の吸収
暖房機の例であったが、シリーズフロー式やリバースフ
ロー方式等の他の形式の吸収形装置にも適用できる。こ
こで、シリーズフロー式とは、吸収器→高温再生器→低
温再生器 →吸収器の経路で再生するやり方であり、リ
バースフロー方式とは吸収器→低温再生器→高温再生器
→吸収器の経路で再生するやり方である。また、低温、
高温再生例の他に一個の再生器の例にも適用できる。
Although the above embodiment is an example of a parallel flow type absorption heater, it can be applied to other types of absorption type devices such as a series flow type and a reverse flow type. Here, the series flow method is a method of regenerating in the path of the absorber → high temperature regenerator → low temperature regenerator → absorber, and the reverse flow method is the method of absorbing → low temperature regenerator → high temperature regenerator → absorber It is a way to play on the route. Also, low temperature,
In addition to the high-temperature regeneration example, the present invention can be applied to an example of a single regenerator.

【0044】[0044]

【発明の効果】本発明によれば次の効果が得られる。 (1)吸収冷温水機に同一の配管すなわち冷温水配管か
ら冷水及び温水の両方が取出せる構造のものを採用して
いるので配管が簡単になり、また冷暖房のモ−ドを切替
える際の弁の開閉制御などが簡単な吸収式空調システム
が実現できる。 (2)吸収冷温水機によって冷温水をつくり、この冷温
水を冷却または加熱された空気に変換する複数個の水空
気熱交換手段に導き、空気系によって冷却または加熱さ
れた空気を各室へ吹き出し、コントロ−ラで吸収冷温水
機の運転/停止をし、運転制御手段によって吸収冷温水
機の冷房あるいは暖房の運転モードを切替えるようにし
たので、各部屋(もしくはフロア)毎にユ−ザ−の希望
に合わせた空調ができ、また各部屋(もしくはフロア)
から吸収冷温水機の運転/停止が可能になったので、わ
ざわざ室外の吸収冷温水機設置場所に行って運転/停止
をする必要がなく、使い勝手が良い。 (3)複数台の冷温水2次ポンプを配置することにより
室内機の負荷に応じて運転台数を制御でき、省エネを図
ることができる。 (4)冷房運転時に室内機からの信号でただちに加熱を
停止するので、省エネが図れるとともに、溶液希釈を早
くできるため、溶液結晶固化の危険性がない。
According to the present invention, the following effects can be obtained. (1) The absorption chiller / heater uses the same piping, that is, a structure that allows both cold water and hot water to be taken out from the cold / hot water piping, so the piping is simplified, and a valve for switching the cooling / heating mode is used. It is possible to realize an absorption type air conditioning system that can easily control the opening and closing of the system. (2) Cooling / heating water is produced by an absorption chiller / heater, and guided to a plurality of water-air heat exchange means for converting the cooling / heating water to cooled or heated air, and the air cooled or heated by the air system to each chamber. The operation of the absorption chiller / heater is started / stopped by a blower and a controller, and the operation mode of cooling or heating of the absorption chiller / heater is switched by the operation control means, so that the user is provided for each room (or floor). -Air conditioning can be performed according to the wishes of each room (or floor)
Since the operation of the absorption chiller / heater can be started / stopped from the beginning, there is no need to go to the absorption chiller / heater installation location outside the room to perform the operation / stop, which is convenient. (3) By arranging a plurality of cold / hot water secondary pumps, the number of operating units can be controlled according to the load of the indoor unit, and energy can be saved. (4) Since the heating is immediately stopped by a signal from the indoor unit during the cooling operation, energy can be saved, and the solution can be diluted quickly, so there is no danger of solution solidification.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】本発明のシステムの全体の概略構成を示す見取
図である。
FIG. 2 is a sketch drawing showing the overall schematic configuration of the system of the present invention.

【図3】従来の全空気方式のシステム系統図である。FIG. 3 is a system diagram of a conventional all-air system.

【図4】従来の水−空気方式の空調システム系統図であ
る。
FIG. 4 is a system diagram of a conventional water-air type air conditioning system.

【図5】従来の全水方式の空調システム系統図である。FIG. 5 is a system diagram of a conventional all-water air conditioning system.

【図6】室内器コントローラの外観図である。FIG. 6 is an external view of an indoor unit controller.

【図7】本発明の他の実施例を示す図である。FIG. 7 is a diagram showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す図である。FIG. 8 is a diagram showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す図である。FIG. 9 is a diagram showing another embodiment of the present invention.

【図10】本発明の他の実施例を示す図である。FIG. 10 is a diagram showing another embodiment of the present invention.

【図11】本発明の他の実施例を示す図である。FIG. 11 is a diagram showing another embodiment of the present invention.

【図12】本発明の他の実施例を示す図である。FIG. 12 is a diagram showing another embodiment of the present invention.

【図13】本発明の他の実施例を示す図である。FIG. 13 is a view showing another embodiment of the present invention.

【図14】本発明の他の実施例を示す図である。FIG. 14 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 高温熱交換器 7 低温熱交換器 8 溶液循環ポンプ 9 冷媒ポンプ 10 熱源入力制御弁 20 運転制御装置 30 吸収冷温水機 31 室内機 32 吹き出し口 34 風量制御装置(VAVユニット) 35 ルームサーモスタット 40 コントローラ 41 室内機運転制御盤 45 冷温水配管 46 冷温水戻り管 47 冷温水行き管 48 冷温水バイパス管 49 バイパス流量制御弁 50 冷温水ポンプ 55 冷温水バッファタンク 56 2次冷温水ポンプ 59 気泡ポンプ 61 渡り配線 62 信号伝達線 63 冷房選定スイッチ 64 暖房選定スイッチ 65 送風量設定スイッチ 66 室内温度設定スイッチ 67 運転状態表示パネル 68 スピーカ 79 気液分離器 80 貫流ボイラ型再生器部 81 ファンコイルユニット群集中制御盤 83 二次冷却水ポンプ 89 台数制御盤 108 ファンコイルユニット運転スイッチ 467 接合部 CT 冷却塔 FC ファンコイルユニット RC リモートコントローラ DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 High temperature heat exchanger 7 Low temperature heat exchanger 8 Solution circulation pump 9 Refrigerant pump 10 Heat source input control valve 20 Operation control device 30 Absorption chiller / heater 31 Indoor Machine 32 outlet 34 air volume control device (VAV unit) 35 room thermostat 40 controller 41 indoor unit operation control panel 45 cold / hot water piping 46 cold / hot water return pipe 47 cold / hot water pipe 48 cold / hot water bypass pipe 49 bypass flow control valve 50 cold / hot water Pump 55 Cold / hot water buffer tank 56 Secondary cold / hot water pump 59 Bubble pump 61 Transition wiring 62 Signal transmission line 63 Cooling selection switch 64 Heating selection switch 65 Ventilation amount setting switch 66 Indoor temperature setting switch 67 Operating state display panel 68 Speaker 79 Gas liquid Separator 80 Once-through boiler type regenerator 81 Fan coil unit group centralized control panel 83 Secondary cooling water pump 89 Number of units control panel 108 Fan coil unit operation switch 467 Joint CT cooling tower FC Fan coil unit RC Remote controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久島 大資 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 相沢 道彦 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 中尾 剛 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 小関 康雄 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 河野 恭二 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (56)参考文献 特開 昭62−73054(JP,A) 特開 昭56−940(JP,A) 特開 昭60−33464(JP,A) 特開 平4−340066(JP,A) 実開 昭58−20869(JP,U) 実開 昭57−68420(JP,U) (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 306 F24F 5/00 101 F24F 11/02 102 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taisuke Kushima 502, Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. (72) Michihiko Aizawa 603, Kanda-cho, Tsuchiura-shi, Ibaraki Prefecture Tsuchiura, Hitachi, Ltd. Inside the factory (72) Inventor Tsuyoshi Nakao 603 Kandamachi, Tsuchiura-city, Ibaraki Pref. Inside the Tsuchiura factory, Hitachi, Ltd. (72) Inventor Yasuo Koseki 4026, Kuji-cho, Hitachi-shi, Ibaraki Pref. Person Kyoji Kono 4-6-1 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Hitachi, Ltd. (56) References JP-A-62-73054 (JP, A) JP-A-56-940 (JP, A) JP-A 60-1985 33464 (JP, A) JP-A-4-340066 (JP, A) JP-A-58-20869 (JP, U) JP-A-57-68420 (JP, U) Field (Int.Cl. 6 , DB name) F25B 15/00 306 F24F 5/00 101 F24F 11/02 102

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 循環水を加熱または冷却する吸収冷温水
機と、循環水を循環させるための配管系と、この循環水
と空気とが熱交換する水空気熱交換手段を有する複数台
の室内機とを備えるマルチタイプ吸収式空調システムに
おいて、前記複数の室内機の運転/停止および冷房運転
モードと暖房運転モードの切替えを制御する操作手段
と、前記操作手段からの室内機の運転/停止信号および
冷房運転モードと暖房運転モードの切替えに基づいて前
記吸収冷温水機の運転/停止および冷房運転モードと暖
房運転モードの切替えを制御可能にする手段とを備えた
ことを特徴とするマルチタイプ吸収式空調システム。
1. A plurality of indoor units having an absorption chiller / heater for heating or cooling circulating water, a piping system for circulating the circulating water, and a water / air heat exchange means for exchanging heat between the circulating water and air. Means for controlling operation / stop of the plurality of indoor units and switching between a cooling operation mode and a heating operation mode, and an operation / stop signal of the indoor unit from the operation unit. Means for enabling control of operation / stop of the absorption chiller / heater and switching between the cooling operation mode and the heating operation mode based on switching between the cooling operation mode and the heating operation mode. Air conditioning system.
【請求項2】 前記吸収冷温水機は、冷媒で稀釈された
稀溶液を熱源により加熱して蒸気冷媒を発生する高温再
生器と、前記高温再生器で発生した蒸気冷媒が第1の経
路を介して導かれる低温再生器と、この低温再生器で発
生した蒸気冷媒を凝縮する凝縮器と、冷房時にこの凝縮
器で凝縮した液冷媒が導かれ暖房時に前記高温再生器で
発生した冷媒蒸気が冷暖切替弁を有する第2の経路を介
して導かれる蒸発器と、この蒸発器と同一容器で形成さ
れ、蒸発器に導かれた冷媒を吸収する吸収器と、この吸
収器で発生した稀溶液を前記高温再生器へ導く第3の経
路と、冷房時の負荷変動に応じて前記吸収器へ液冷媒を
供給可能な冷媒送り制御弁を有する第4の経路とを備え
ていることを特徴とする請求項1に記載のマルチタイプ
吸収式空調システム。
2. The high-temperature regenerator for generating a vapor refrigerant by heating a dilute solution diluted with a refrigerant by a heat source, wherein the vapor refrigerant generated by the high-temperature regenerator passes through a first path. A low-temperature regenerator guided through the low-temperature regenerator, a condenser for condensing the vapor refrigerant generated in the low-temperature regenerator, and a refrigerant vapor generated in the high-temperature regenerator during heating and guided by the liquid refrigerant condensed in the condenser during cooling. An evaporator guided through a second path having a cooling / heating switching valve, an absorber formed of the same container as the evaporator and absorbing a refrigerant guided to the evaporator, and a dilute solution generated by the absorber And a fourth path having a refrigerant feed control valve capable of supplying a liquid refrigerant to the absorber according to a load change during cooling. 2. The multi-type absorption air conditioning system according to claim 1, .
【請求項3】 循環水を加熱または冷却する吸収冷温水
機と、循環水を循環させるための配管系と、この循環水
と空気とが熱交換する水空気熱交換手段を有する複数台
の室内機とを備えるマルチタイプ吸収式空調システムに
おいて、前記複数の室内機の運転/停止および冷房運転
モードと暖房運転モードの切替えを制御する操作手段
と、前記操作手段からの室内機の運転/停止信号および
冷房運転モードと暖房運転モードの切替えに基づいて前
記吸収冷温水機の運転/停止および冷房運転モードと暖
房運転モードの切替えを制御可能にする手段と、前記操
作手段に遠隔操作で室内機の運転/停止信号を送信可能
なリモートコントローラとを備えたことを特徴とするマ
ルチタイプ吸収式空調システム。
3. A plurality of indoor units having an absorption chiller / heater for heating or cooling circulating water, a piping system for circulating the circulating water, and a water / air heat exchange means for exchanging heat between the circulating water and air. Means for controlling operation / stop of the plurality of indoor units and switching between a cooling operation mode and a heating operation mode, and an operation / stop signal of the indoor unit from the operation unit. Means for enabling the control of the operation / stop of the absorption chiller / heater and switching between the cooling operation mode and the heating operation mode based on the switching between the cooling operation mode and the heating operation mode; A multi-type absorption air conditioning system, comprising: a remote controller capable of transmitting a start / stop signal.
【請求項4】 閉管路内を流れる循環水を加熱または冷
却する吸収冷温水機と、前記吸収冷温水機の運転/停止
を制御する運転制御装置とを備え、前記吸収冷温水機か
らの循環水を複数の室内機に供給可能にしたマルチタイ
プ吸収式空調システム用の室外ユニットにおいて、 前記運転制御装置は、複数の室内機からの運転/停止信
号に基づいて吸収冷温水機の運転/停止を制御可能に構
成されていることを特徴とするマルチタイプ吸収式空調
システム用の室外ユニット。
4. An absorption chiller / heater for heating or cooling circulating water flowing in a closed pipe, and an operation control device for controlling operation / stop of the absorption chiller / heater, and circulating from the absorption chiller / heater. In an outdoor unit for a multi-type absorption air conditioning system capable of supplying water to a plurality of indoor units, the operation control device operates / stops the absorption chiller / heater based on operation / stop signals from the plurality of indoor units. An outdoor unit for a multi-type absorption air-conditioning system, characterized in that the outdoor unit is configured to be controllable.
【請求項5】 前記吸収冷温水機は、冷媒で稀釈された
稀溶液を加熱して蒸気冷媒を発生する高温再生器と、こ
の高温再生器で発生した蒸気冷媒が第1の経路を介して
導かれる低温再生器と、この低温再生器で発生した蒸気
冷媒を凝縮する凝縮器と、冷房時にこの凝縮器で凝縮し
た液冷媒が導かれ暖房時に前記高温再生器で発生した冷
媒蒸気が冷暖切替弁を有する第2の経路を介して導かれ
る蒸発器と、この蒸発器と同一容器で形成され、蒸発器
に導かれた冷媒を吸収する吸収器と、この吸収器で発生
した稀溶液を前記高温再生器へ導く第3の経路とを備え
ることを特徴とする請求項4に記載のマルチタイプ吸収
式空調システム用の室外ユニット。
5. A high-temperature regenerator for heating a dilute solution diluted with a refrigerant to generate a vapor refrigerant, and the vapor refrigerant generated by the high-temperature regenerator passes through a first path. A guided low-temperature regenerator, a condenser for condensing a vapor refrigerant generated in the low-temperature regenerator, and a liquid refrigerant condensed in the condenser during cooling to be guided and switching between cooling and heating of the refrigerant vapor generated in the high-temperature regenerator during heating. An evaporator guided through a second path having a valve, an absorber formed of the same container as the evaporator, for absorbing a refrigerant guided to the evaporator, and a dilute solution generated in the absorber. The outdoor unit for a multi-type absorption air conditioning system according to claim 4, further comprising a third path leading to a high-temperature regenerator.
【請求項6】 前記蒸発器に配管を介して接続されたシ
スターンを備えたことを特徴とする請求項5に記載のマ
ルチタイプ吸収式空調システム用の室外ユニット。
6. The outdoor unit for a multi-type absorption air conditioning system according to claim 5, further comprising a cistern connected to the evaporator via a pipe.
【請求項7】 前記吸収冷温水機に、冷房時の負荷変動
に応じて前記吸収器へ液冷媒を供給可能な冷媒送り制御
弁を有する第4の経路を備えたことを特徴とする請求項
5に記載のマルチタイプ吸収式空調システムの室外ユニ
ット。
7. The absorption chiller / heater is provided with a fourth path having a refrigerant feed control valve capable of supplying a liquid refrigerant to the absorber according to a load change during cooling. 6. The outdoor unit of the multi-type absorption air conditioning system according to 5.
JP8278432A 1996-10-21 1996-10-21 Multi-type absorption air conditioning system and outdoor unit Expired - Lifetime JP2955241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8278432A JP2955241B2 (en) 1996-10-21 1996-10-21 Multi-type absorption air conditioning system and outdoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8278432A JP2955241B2 (en) 1996-10-21 1996-10-21 Multi-type absorption air conditioning system and outdoor unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3093045A Division JP2968079B2 (en) 1991-03-29 1991-03-29 Multi-type absorption air conditioning system

Publications (2)

Publication Number Publication Date
JPH09119682A JPH09119682A (en) 1997-05-06
JP2955241B2 true JP2955241B2 (en) 1999-10-04

Family

ID=17597271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8278432A Expired - Lifetime JP2955241B2 (en) 1996-10-21 1996-10-21 Multi-type absorption air conditioning system and outdoor unit

Country Status (1)

Country Link
JP (1) JP2955241B2 (en)

Also Published As

Publication number Publication date
JPH09119682A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JP2968079B2 (en) Multi-type absorption air conditioning system
JP2575970B2 (en) Absorption chiller / heater and individual decentralized air conditioning system
US5363668A (en) Absorption air conditioning system and cooling/heating changing-over method
JP3187015B2 (en) Absorption air conditioning system
JP2955241B2 (en) Multi-type absorption air conditioning system and outdoor unit
JP3189822B2 (en) Multi-type absorption air conditioning system
JPH1089797A (en) Absorption air conditioner system
JP2900996B2 (en) Absorption air conditioning system
JPH0552441A (en) Method and device for controlling absorption type heater cooler
JP3614775B2 (en) Heat pump air conditioner
JP3318505B2 (en) Control device for absorption air conditioner
JP3189470B2 (en) Multi-type absorption air conditioning system
JP3209212B2 (en) Absorption chiller / heater
JP3481818B2 (en) Absorption cooling and heating system and cooling and heating system
JPH08166178A (en) Air-conditioning system as well as equipment and method for controlling dehumidifying operation thereof
JP2972374B2 (en) Air conditioning system using absorption chiller / heater
JP7528345B1 (en) Hot and cold water type latent and sensible separation air conditioning system
JP3614774B2 (en) Heat pump air conditioner
JP3582755B2 (en) Heat source device, heat recovery device and heat supply method
JP3096603B2 (en) Air conditioning system
JP3617623B2 (en) Heat pump air conditioner
JP2022126422A (en) Air conditioning system and air conditioning method
JPH07151359A (en) Refrigerant circulation type air conditioning system
JP3048109B2 (en) Air heat source type individual air conditioning system
SU1276882A1 (en) Air-conditioning unit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11