JP2951052B2 - Method for producing extruded aluminum alloy for welded structure with improved weld cracking - Google Patents

Method for producing extruded aluminum alloy for welded structure with improved weld cracking

Info

Publication number
JP2951052B2
JP2951052B2 JP16592791A JP16592791A JP2951052B2 JP 2951052 B2 JP2951052 B2 JP 2951052B2 JP 16592791 A JP16592791 A JP 16592791A JP 16592791 A JP16592791 A JP 16592791A JP 2951052 B2 JP2951052 B2 JP 2951052B2
Authority
JP
Japan
Prior art keywords
extruded material
liquid nitrogen
extruded
extrusion
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16592791A
Other languages
Japanese (ja)
Other versions
JPH057927A (en
Inventor
幸裕 宮手
孝一 飯塚
久 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA ARUMINIUMU KK
Original Assignee
SHOWA ARUMINIUMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA ARUMINIUMU KK filed Critical SHOWA ARUMINIUMU KK
Priority to JP16592791A priority Critical patent/JP2951052B2/en
Publication of JPH057927A publication Critical patent/JPH057927A/en
Application granted granted Critical
Publication of JP2951052B2 publication Critical patent/JP2951052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、LNGを始めとする
タンク構造用材や、LNGタンカー、漁船用等の船体構
造材として溶接を施されて使用される溶接構造用Al合
金押出材の製造方法に関し、特に溶接割れを改善した溶
接構造用Al合金押出材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy extruded material for a welded structure used by welding as a material for a tank structure such as LNG, a hull structure for an LNG tanker, a fishing boat or the like. More particularly, the present invention relates to a method for manufacturing an extruded aluminum alloy material for welded structures with improved weld cracking.

【0002】[0002]

【従来の技術及び課題】上記のような用途に用いられる
アルミニウム合金材、特にAl−Mg系合金押出材は、
軽量であるのみならず耐食性、低温での機械的性質にも
優れているのに加え、溶接性にも優れており、一般的に
は特殊な溶接時以外溶接割れは発生しないと認識されて
いる。
2. Description of the Related Art Aluminum alloy materials used for the above applications, particularly extruded Al-Mg alloys, are:
In addition to being lightweight, it has excellent corrosion resistance and mechanical properties at low temperatures, and also has excellent weldability, and it is generally recognized that welding cracks do not occur except during special welding. .

【0003】しかるに、かかるAl−Mg系合金押出材
であっても、その製造工程において生じた表面再結晶組
織層の厚みが0.3mm程度以上にも達して厚すぎる
と、一般的な溶接を施した際に殊に溶接歪みが大きい場
合、熱影響部(HAZ部)において微少な割れが発生す
ることが発明者らの研究により判明した。
[0003] However, even with such an extruded Al-Mg alloy, if the thickness of the surface recrystallized microstructure layer generated in the manufacturing process reaches about 0.3 mm or more and is too thick, general welding can be performed. It has been found by the inventors of the present invention that microcracks occur in the heat-affected zone (HAZ zone) particularly when the welding strain is large when applied.

【0004】この発明は、かかる事情に鑑みてなされた
ものであって、表面再結晶を抑制することにより、溶接
割れを改善した溶接構造用Al合金押出材の製作提供を
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aluminum alloy extruded material for a welded structure having improved welding cracks by suppressing surface recrystallization.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、Mg:3.0〜6.0wt%を含有する
Al−Mg系合金ビレットを押出ダイスから押出したの
ち、ダイス通過直後に押出材の表面に液体窒素を吹付け
ることを特徴とし、これにより押出材の表面再結晶を抑
制して溶接割れの改善を図ろうというものである。
In order to achieve the above-mentioned object, the present invention provides an Al-Mg based alloy billet containing 3.0 to 6.0 wt% of Mg, which is extruded from an extrusion die and passed through the die. Immediately thereafter, liquid nitrogen is sprayed on the surface of the extruded material, thereby suppressing recrystallization of the surface of the extruded material and improving weld cracking.

【0006】まず、この発明の対象たるAl−Mg系合
金押出材において、Mgの含有が3.0〜6.0wt%に
規定されるのは、かかる範囲で含有されることによりA
l−Mg系合金が有する耐食性、低温での機械的性質の
良さ、溶接性等の優位性が十分に発揮されるからであ
り、Mgが3.0wt%未満ではそれらの効果に乏しく、
逆に6.0wt%を超えると押出加工性の劣化等を招くか
らである。
[0006] First, in the extruded Al-Mg alloy, which is the subject of the present invention, the content of Mg is specified to be 3.0 to 6.0 wt%.
This is because the superiority of the corrosion resistance, mechanical properties at low temperatures, and weldability of the l-Mg-based alloy is sufficiently exhibited. When the Mg content is less than 3.0 wt%, the effects are poor.
Conversely, if it exceeds 6.0% by weight, the extrusion processability is deteriorated.

【0007】上記Al−Mg系合金は、これを常法に従
いビレットに製作し、次いで要すれば均質化処理を実施
したのち押出ダイスにて押出す。押出条件は特に限定さ
れることはなく、通常の押出条件を適宜採用すれば良い
が、この発明では、押出ダイス通過直後に押出材の表面
に液体窒素を直接吹き付ける。これは、ダイス通過直後
に押出材表面を直接液体窒素で急速冷却することで、押
出材の二次的な表面再結晶を防止するためである。ここ
に、押出材表面を冷却するためには水を使用することも
可能であるが、液体窒素は安価で冷却能力が大きいう
え、水を用いた場合該水がダイスベアリングと押出材と
の間に入り込み焼き付きを生じる危険があるため、この
発明では液体窒素を用いることとした。
The above-mentioned Al-Mg alloy is manufactured into a billet according to a conventional method, and if necessary, after homogenization, is extruded with an extrusion die. The extrusion conditions are not particularly limited, and ordinary extrusion conditions may be appropriately employed. In the present invention, liquid nitrogen is directly sprayed on the surface of the extruded material immediately after passing through the extrusion die. This is because the surface of the extruded material is rapidly cooled directly with liquid nitrogen immediately after passing through the die to prevent secondary recrystallization of the extruded material. Here, it is possible to use water to cool the surface of the extruded material, but liquid nitrogen is inexpensive and has a large cooling capacity, and when water is used, the water is used between the die bearing and the extruded material. Liquid nitrogen is used in the present invention because of the danger of intrusion and seizure.

【0008】液体窒素による吹付冷却は、押出材の表面
再結晶抑制の目的のためには、押出材がダイスベアリン
グ通過直後30秒以内に実施するのが望ましい。30秒
を越えたのち冷却しても再結晶が進行して、もはや冷却
による再結晶抑制効果がなく表面再結晶組織層が厚くな
り、ひいては熱影響部における溶接割れの発生を防止す
ることができない恐れがあるからである。特に好ましく
はダイスベアリング通過後15秒以内とするのが良い。
The spray cooling with liquid nitrogen is preferably performed within 30 seconds immediately after the extruded material passes through the die bearing for the purpose of suppressing the surface recrystallization of the extruded material. Even after cooling for more than 30 seconds, the recrystallization proceeds even when cooled, and there is no longer any effect of suppressing recrystallization by cooling, the surface recrystallized structure layer becomes thicker, and thus the occurrence of welding cracks in the heat-affected zone cannot be prevented. This is because there is fear. It is particularly preferable to set the time within 15 seconds after passing through the die bearing.

【0009】液体窒素の供給方法は、特に限定されるこ
とはなく、例えば図1に示すようなものを挙げ得る。即
ち、図1では押出用ダイス(1)とボルスター(4)と
の間に、中央部に押出材通過孔(3a)を有する盤状スペ
ーサ部材(3)を介在させるとともに、該スペーサ部材
(3)の一側面に形成した溝部(5)に液体窒素送給管
(6)を嵌め合わせることにより、該送給管(6)を介
して押出ダイス通過直後の押出材(A)の表面に液体窒
素を吹付けるようにしたものである。なお、図1におい
て、(2)(7)は断熱パッキン部材である。なお、図
1に示す方法では、押出ダイス(1)とボルスター
(4)との間で押出材(A)の表面に液体窒素を吹付け
る構成としているが、液体窒素の吹付けは図示しないプ
ラテン通過時等に行うものとしても良い。
The method for supplying liquid nitrogen is not particularly limited, and may be, for example, one shown in FIG. That is, in FIG. 1, a disc-shaped spacer member (3) having an extruded material passage hole (3a) in the center is interposed between the extrusion die (1) and the bolster (4). The liquid nitrogen feed pipe (6) is fitted into the groove (5) formed on one side of the extruded material (A) immediately after passing through the extrusion die through the feed pipe (6). Nitrogen is blown. In FIG. 1, (2) and (7) are heat insulating packing members. In the method shown in FIG. 1, liquid nitrogen is sprayed on the surface of the extruded material (A) between the extrusion die (1) and the bolster (4). It may be performed at the time of passage or the like.

【0010】押出材表面に吹付ける液体窒素の量として
は、吐出量で0.5〜10kgLiqN2 /分程度に設
定するのが良い。0.5kg/分未満の吐出量では冷却
効果に乏しくひいては熱影響部における溶接割れの発生
を防止することができない恐れがあり、10kg/分を
越える吐出量では過冷却により押出しが不可能となる恐
れがある。特に好ましくは0.8〜5.0kgLiqN
2 /分の吐出量に設定するのが良い。また、液体窒素の
吐出量は、押出材の形状、押出速度、押出機の構造等に
よって変えても良い。例えば、厚さ6mmのフラットバ
ーを押出速度3〜5m/分で押出すとともに、図1に示
す装置で液体窒素を吹付ける場合は、液体窒素の吐出量
を0.8〜1.2kg/分程度とすれば良く、厚さ12
mmのT形材を押出速度1.5〜2m/分で押出すとと
もに、プラテン内で液体窒素を吹付ける場合は、吐出量
を1.0〜3.5kg/分程度とすれば良く、厚さ22
mmのT形材を押出速度1.5〜2m/分で押出すとと
もに、プラテン内で液体窒素を吹付ける場合は、吐出量
を1.5〜4.5kg/分程度とすれば良い。
The amount of liquid nitrogen sprayed on the surface of the extruded material is preferably set to about 0.5 to 10 kg LiqN 2 / min in terms of discharge rate. If the discharge rate is less than 0.5 kg / min, the cooling effect is poor, and it may not be possible to prevent the occurrence of welding cracks in the heat-affected zone. If the discharge rate exceeds 10 kg / min, extrusion becomes impossible due to supercooling. There is fear. Particularly preferably, 0.8 to 5.0 kg LiqN
It is better to set the discharge rate to 2 / min. Further, the discharge amount of liquid nitrogen may be changed depending on the shape of the extruded material, the extrusion speed, the structure of the extruder, and the like. For example, when a flat bar having a thickness of 6 mm is extruded at an extrusion speed of 3 to 5 m / min and liquid nitrogen is sprayed by the apparatus shown in FIG. 1, the discharge rate of liquid nitrogen is set to 0.8 to 1.2 kg / min. About 12 mm thick
mm T-shaped material is extruded at an extrusion speed of 1.5 to 2 m / min, and when liquid nitrogen is sprayed in the platen, the discharge rate may be about 1.0 to 3.5 kg / min. Sa22
mm T-shaped material is extruded at an extrusion speed of 1.5 to 2 m / min, and when liquid nitrogen is sprayed in the platen, the discharge rate may be about 1.5 to 4.5 kg / min.

【0011】ところで、上記の押出において、0.5m
/分以下の製品速度で押出したり、あるいは押出に際し
てのビレット加熱温度を低く設定する等によっても、押
出材表面の再結晶を抑制することは可能である。しか
し、押出速度を低くする方法では歩留生産性の低下を招
く欠点を派生する。またビレットの加熱温度を低くする
方法ではビレット全長を短くせざるを得ず、同じく生産
効率が良くないという欠点を派生する。これに対し、本
願発明のように、ダイス通過直後に押出材表面に液体窒
素を吹付ける場合には、押出速度の低下やビレットの短
尺化を要することなく、通常の押出と同様の条件を採択
しつつ、押出材表面の再結晶組織層の厚さを0.05〜
0.15mm程度以下に抑制したものとなしうる。
In the above extrusion, 0.5 m
It is also possible to suppress recrystallization of the surface of the extruded material by extruding at a product speed of not more than / min or setting a low billet heating temperature during extrusion. However, the method of lowering the extrusion speed has a disadvantage that the yield productivity is reduced. In addition, in the method of lowering the billet heating temperature, the total length of the billet must be shortened, which also has the disadvantage that the production efficiency is not good. On the other hand, when liquid nitrogen is sprayed on the surface of the extruded material immediately after passing through the die as in the present invention, the same conditions as in the normal extrusion are adopted without reducing the extrusion speed or shortening the billet. While the thickness of the recrystallized structure layer on the surface of the extruded material is 0.05 to
The thickness can be suppressed to about 0.15 mm or less.

【0012】[0012]

【作用】ダイス通過直後に押出材の表面に液体窒素を吹
付けるから、押出材表面が急冷され、押出後の押出材の
表面再結晶が抑制されたものとなり、溶接時における熱
影響部の溶接割れが抑制される。
[Function] Since liquid nitrogen is sprayed on the surface of the extruded material immediately after passing through the die, the surface of the extruded material is rapidly cooled, and the surface recrystallization of the extruded material after extrusion is suppressed. Cracks are suppressed.

【0013】[0013]

【実施例】Mg:4.5wt%を含有するA5083合金
を用いて製作した2個のビレットにつき、同一条件で均
質化処理を実施した。
EXAMPLE Homogenization treatment was performed on two billets manufactured using an A5083 alloy containing 4.5 wt% of Mg under the same conditions.

【0014】次に、一方のビレットについてはビレット
加熱温度:480℃、押出製品速度:3.2m/分の押
出条件で厚さ6mmのフラットバーに押出すとともに、
ダイス通過直後に押出材の表面に液体窒素を吹付けて急
冷した。このときの押出材の温度(プラテン出口の温
度)は420〜450℃であった。この押出材の表面再
結晶組織層の厚さを測定したところ約0.1mmであっ
た。
Next, one of the billets is extruded into a flat bar having a thickness of 6 mm at a billet heating temperature of 480 ° C. and an extrusion product speed of 3.2 m / min.
Immediately after passing through the die, the surface of the extruded material was sprayed with liquid nitrogen and rapidly cooled. At this time, the temperature of the extruded material (the temperature at the exit of the platen) was 420 to 450 ° C. When the thickness of the surface recrystallized structure layer of this extruded material was measured, it was about 0.1 mm.

【0015】また、他方のビレットについては、ビレッ
ト加熱温度:480℃、押出製品速度:2.6m/分の
押出条件で厚さ6mmのフラットバーに押出した。ダイ
ス通過直後における液体窒素の吹付けによる冷却は行わ
なかった。この押出材の温度は510〜520℃であっ
た。また、この押出材の表面再結晶組織層の厚さを測定
したところ約0.5mmであった。
The other billet was extruded into a flat bar having a thickness of 6 mm at a billet heating temperature of 480 ° C. and an extrusion product speed of 2.6 m / min. Cooling by spraying liquid nitrogen immediately after passing through the die was not performed. The temperature of this extruded material was 510-520 ° C. The thickness of the surface recrystallized structure layer of this extruded material was measured to be about 0.5 mm.

【0016】次に、各押出材につき、同一条件でMIG
溶接による衝き合わせ溶接を行ったところ、ダイス通過
直後に液体窒素の吹付けによる冷却を行った本発明実施
品については、溶接割れの発生は全く認められなかった
のに対し、ダイス通過直後の冷却操作を行わなかった比
較品については、熱影響部に微細な割れが発生してい
た。
Next, for each extruded material, MIG was performed under the same conditions.
When butt welding was performed by welding, the product of the present invention, which was cooled by spraying liquid nitrogen immediately after passing through the die, did not show any occurrence of welding cracks, whereas the product immediately after passing through the die was cooled. For the comparative product that was not operated, fine cracks occurred in the heat-affected zone.

【0017】従って、本発明によれば、表面再結晶を抑
制しえて溶接割れを改善しうることを確認しえた。
Therefore, it has been confirmed that according to the present invention, surface recrystallization can be suppressed and welding cracks can be improved.

【0018】[0018]

【発明の効果】この発明は、上述の次第で、Mg:3.
0〜6.0wt%を含有するAl−Mg系合金ビレットを
押出ダイスから押出したのち、ダイス通過直後に押出材
の表面に液体窒素を吹付けることを特徴とするものであ
るから、ダイス通過直後の押出材の表面が急冷される結
果、表面再結晶を抑制しえて押出材の表面再結晶組織層
の厚さを薄くすることができる。このため表面再結晶組
織層の厚さが厚いために従来生じていた熱影響部におけ
る溶接割れをなくすことができ、Al−Mg系合金押出
材の有する溶接構造材としての利点を存分に発揮させる
ことができる。しかも、ダイス通過直後に押出材の表面
に液体窒素を吹付けることで、押出材の表面再結晶を抑
制するものであるから、押出速度の低下やビレット長さ
の短尺化を必要とすることなく押出を行うことができ、
歩留生産性の低下を回避することができる。
According to the present invention, as described above, Mg: 3.
After extruding an Al-Mg based alloy billet containing 0 to 6.0 wt% from an extrusion die, liquid nitrogen is sprayed on the surface of the extruded material immediately after passing through the die. As a result of the rapid cooling of the surface of the extruded material, the surface recrystallization can be suppressed and the thickness of the surface recrystallized structure layer of the extruded material can be reduced. For this reason, welding cracks in the heat-affected zone, which had conventionally occurred because the thickness of the surface recrystallized structure layer was large, can be eliminated, and the advantages as a welded structural material of the extruded Al-Mg-based alloy material can be fully exhibited. Can be done. Moreover, since liquid nitrogen is sprayed on the surface of the extruded material immediately after passing through the die, the recrystallization of the surface of the extruded material is suppressed. Extrusion can be performed,
A decrease in yield productivity can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施する一例としての押出装置の断
面図である。
FIG. 1 is a cross-sectional view of an extruder as an example for embodying the present invention.

【符号の説明】[Explanation of symbols]

1…押出用ダイス 6…液体窒素送給管 1. Extrusion dies 6. Liquid nitrogen feed pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−127916(JP,A) 特公 昭47−4783(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B21C 29/00 B21C 23/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-127916 (JP, A) JP-B-47-4873 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) B21C 29/00 B21C 23/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mg:3.0〜6.0wt%を含有するA
l−Mg系合金ビレットを押出ダイスから押出したの
ち、ダイス通過直後に押出材の表面に液体窒素を吹付け
ることを特徴とする溶接割れを改善した溶接構造用Al
合金押出材の製造方法。
1. A containing Mg: 3.0 to 6.0 wt%.
After the l-Mg alloy billet is extruded from the extrusion die, liquid nitrogen is sprayed on the surface of the extruded material immediately after passing through the die, and the Al for welded structure has improved weld cracking.
Manufacturing method of alloy extruded material.
JP16592791A 1991-07-05 1991-07-05 Method for producing extruded aluminum alloy for welded structure with improved weld cracking Expired - Lifetime JP2951052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16592791A JP2951052B2 (en) 1991-07-05 1991-07-05 Method for producing extruded aluminum alloy for welded structure with improved weld cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16592791A JP2951052B2 (en) 1991-07-05 1991-07-05 Method for producing extruded aluminum alloy for welded structure with improved weld cracking

Publications (2)

Publication Number Publication Date
JPH057927A JPH057927A (en) 1993-01-19
JP2951052B2 true JP2951052B2 (en) 1999-09-20

Family

ID=15821657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16592791A Expired - Lifetime JP2951052B2 (en) 1991-07-05 1991-07-05 Method for producing extruded aluminum alloy for welded structure with improved weld cracking

Country Status (1)

Country Link
JP (1) JP2951052B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956806B2 (en) * 2012-04-03 2016-07-27 三協立山株式会社 Method for producing magnesium alloy extruded material
CN107429337B (en) * 2015-04-03 2019-06-07 株式会社Uacj The aluminium-alloy pipe and its manufacturing method of corrosion resistance and excellent in workability

Also Published As

Publication number Publication date
JPH057927A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
EP0946315B1 (en) Multilayer metal composite products obtained by compound strand casting
US6302973B1 (en) High strength Al-Mg-Zn-Si alloy for welded structures and brazing application
US7611778B2 (en) Simultaneous multi-alloy casting
US4161553A (en) Aluminum brazing sheet
EP1863613B1 (en) Method of manufacturing a consumable filler metal for use in a welding operation
US20040084119A1 (en) Method of manufacturing high-strength aluminum alloy extruded product excelling in corrosion resistance and stress corrosion cracking resistance
CN112872654B (en) TC4 titanium alloy solid welding wire for large-thickness ultra-narrow gap laser filler wire welding and preparation method thereof
EP2791378B1 (en) Aluminium fin alloy and method of making the same
JP2951052B2 (en) Method for producing extruded aluminum alloy for welded structure with improved weld cracking
US5466312A (en) Method for making aluminum foil and cast strip stock for aluminum foilmaking and products therefrom
US20070062618A1 (en) Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
JPH0289542A (en) Method for continuously casting aluminum-lithium alloy
US20040182482A1 (en) DC cast Al alloy
EP0304284B1 (en) Aluminum alloys and a method of production
JPS6152346A (en) Free cutting aluminum alloy tube for spacer ring and its manufacture
JP3479919B2 (en) Method for improving reverse bending strength of semi-finished metal ingot made of copper alloy
JPH08251B2 (en) Aluminum alloy extruded material for welded structure with improved weld cracking and method for producing the same
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JPS63313635A (en) Production of high strength al pipe stock for heat exchanger
JP2602374B2 (en) Method for producing extruded aluminum alloy for welded structure with improved weld cracking
JPH0525924B2 (en)
JPH04138846A (en) Production of quench solidified clad foil from different molten bodies
US4102709A (en) Workable nickel alloy and process for making same
CN114231862A (en) Production process and application of T4P-state aluminum alloy narrow coiled plate
JPH0114989B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11