JP2951051B2 - Cooling device and cooling device control method based on fuzzy inference - Google Patents

Cooling device and cooling device control method based on fuzzy inference

Info

Publication number
JP2951051B2
JP2951051B2 JP3164461A JP16446191A JP2951051B2 JP 2951051 B2 JP2951051 B2 JP 2951051B2 JP 3164461 A JP3164461 A JP 3164461A JP 16446191 A JP16446191 A JP 16446191A JP 2951051 B2 JP2951051 B2 JP 2951051B2
Authority
JP
Japan
Prior art keywords
deviation
input variable
degree
rule
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3164461A
Other languages
Japanese (ja)
Other versions
JPH0510603A (en
Inventor
恵 大谷
弘司 玉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3164461A priority Critical patent/JP2951051B2/en
Priority to US07/803,493 priority patent/US5259210A/en
Priority to CA002057304A priority patent/CA2057304C/en
Publication of JPH0510603A publication Critical patent/JPH0510603A/en
Application granted granted Critical
Publication of JP2951051B2 publication Critical patent/JP2951051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機、冷凍・冷
蔵庫、冷凍・冷蔵ショ−ケ−ス等の冷凍装置に採用さ
れ、膨張弁の開度を調整することによって過熱度を制御
する冷却装置及びファジイ推論によるその制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a refrigerating apparatus such as an air conditioner, a freezer / refrigerator, and a freezer / refrigerator case, and controls the degree of superheat by adjusting the opening of an expansion valve. The present invention relates to a cooling device and a control method thereof by fuzzy inference.

【0002】[0002]

【従来の技術】従来この種冷却装置においては、例えば
特開昭60−196569号公報に示されるように、冷
媒回路の凝縮器と蒸発器の間にパルスモ−タ−によって
駆動されて、弁開度を調節される膨張弁を介設し、蒸発
器での冷媒の蒸発温度と出口温度の差から過熱度を得
て、この過熱度を一定に保持するよう膨張弁の開度を調
節し、それによって圧縮機への液戻りを防止するように
している。
2. Description of the Related Art Conventionally, in this type of cooling apparatus, as disclosed in Japanese Patent Application Laid-Open No. 60-196569, for example, a valve is driven by a pulse motor between a condenser and an evaporator in a refrigerant circuit to open a valve. An expansion valve whose degree is adjusted is interposed, the degree of superheat is obtained from the difference between the evaporation temperature of the refrigerant in the evaporator and the outlet temperature, and the degree of opening of the expansion valve is adjusted to maintain this degree of superheat constant. This prevents the liquid from returning to the compressor.

【0003】ここで前記公報の制御方式としては、所謂
PID制御が採用されている。このPID制御は、設定
過熱度と測定過熱度の偏差に基づき、これに比例した出
力からこの偏差を無くすように制御するP制御と、偏差
の変化、即ち微分値に基づきいてこれをなくすよう制御
するD制御と、定常偏差、即ち積分値に基づいてこれを
なくすように制御するI制御から成る。
Here, as the control method in the above publication, so-called PID control is adopted. This PID control is based on a deviation between a set superheat degree and a measured superheat degree, and is controlled so as to eliminate this deviation from an output proportional thereto, and is controlled based on a change in the deviation, that is, a differential value to eliminate the deviation. D control, and I control, which performs control based on the steady-state deviation, that is, the integrated value, so as to eliminate it.

【0004】[0004]

【発明が解決しようとする課題】このようなPID制御
では、特に除霜後等の過渡的な変動に対して追従が悪
く、その為、圧縮機への液戻り現象または過熱状態が長
く続くこともあった。これを解消する為に比例定数の可
変等の手段を講じたが、今度は敏感になり過ぎ、制御の
安定性が悪化する問題があった。
In such a PID control, it is difficult to follow a transient fluctuation, especially after defrosting, and therefore, the phenomenon of liquid return to the compressor or an overheating state continues for a long time. There was also. In order to solve this problem, measures such as changing the proportionality constant have been taken, but this time there has been a problem that the sensitivity becomes too sensitive and the stability of the control deteriorates.

【0005】本発明は、係る課題を解決し、過渡的な変
動及び定常的な偏差に対して的確且つ迅速な対応を可能
とした冷却装置及びその制御方法を提供することを目的
とする。
[0005] It is an object of the present invention to solve the above-mentioned problems, and to provide a cooling apparatus and a control method thereof capable of appropriately and quickly responding to a transient fluctuation and a steady deviation.

【0006】[0006]

【課題を解決するための手段】本発明は、圧縮機、凝縮
器、膨張弁及び蒸発器を順次接続してなる冷媒回路と、
冷媒の蒸発温度を検出する手段と、蒸発器の出口温度を
検出する手段と、冷媒の蒸発温度と蒸発器の出口温度と
に基づいて膨張弁の開度を調整する制御手段を備え、こ
の制御手段における開度調整出力の決定に際して、冷媒
回路の過熱度の偏差と、この偏差の定常偏差と、偏差の
変化を入力変数としたファジイ推論を用いたものであ
る。
According to the present invention, there is provided a refrigerant circuit comprising a compressor, a condenser, an expansion valve, and an evaporator connected in sequence,
Means for detecting the evaporation temperature of the refrigerant, means for detecting the outlet temperature of the evaporator, and control means for adjusting the opening of the expansion valve based on the evaporation temperature of the refrigerant and the outlet temperature of the evaporator. When the opening degree adjustment output is determined by the means, a fuzzy inference using a deviation of the degree of superheat of the refrigerant circuit, a steady state deviation of the deviation, and a change in the deviation as input variables is used.

【0007】本発明は又、冷媒回路の過熱度の偏差を入
力変数Aとし、前記偏差の定常偏差を入力変数Bとし、
偏差の変化を入力変数Cとして複数の推論規則の各入力
変数に対応するメンバ−シップ関数から各入力変数に応
じたメンバ−シップ値を求めた後、当該推論規則の出力
変数Yをファジイ合成し、その重心をとることにより推
論結果を得て、これを蒸発器の入口に接続した膨張弁の
開度調整をするための出力に利用する、ファジイ推論に
よる冷却装置の制御方法である。
In the present invention, the deviation of the degree of superheat of the refrigerant circuit is set as an input variable A, and the steady-state deviation of the deviation is set as an input variable B,
The change of the deviation is used as an input variable C to determine a membership value corresponding to each input variable from a membership function corresponding to each input variable of a plurality of inference rules, and then the output variable Y of the inference rule is fuzzy synthesized. This is a method of controlling a cooling device by fuzzy inference, in which an inference result is obtained by taking its center of gravity, and this is used as an output for adjusting the opening of an expansion valve connected to the inlet of the evaporator.

【0008】[0008]

【作用】本発明によれば、過熱度の変動に対して迅速に
対応でき、更に、定常的な偏差にも対処して的確に液戻
り状態や過熱の状態をなくすことができる。
According to the present invention, it is possible to quickly cope with fluctuations in the degree of superheat, and further to cope with steady-state deviations to accurately eliminate the liquid return state and the overheat state.

【0009】[0009]

【実施例】次に図面において実施例を説明する。図1は
冷却装置1の冷媒回路図を示し、この冷却装置1は、圧
縮機2、凝縮器3、膨張弁4、蒸発器5を配管で環状に
接続することにより構成され、冷媒を圧縮、凝縮液化、
減圧(膨張)、蒸発気化させる周知の冷凍サイクルを形
成する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows a refrigerant circuit diagram of a cooling device 1. The cooling device 1 is configured by connecting a compressor 2, a condenser 3, an expansion valve 4, and an evaporator 5 in a ring shape with a pipe to compress the refrigerant. Liquefaction,
A well-known refrigeration cycle for reducing pressure (expansion) and evaporating is formed.

【0010】一点鎖線で囲まれる6は前記蒸発器5で熱
交換された冷気で冷却される被冷却空間で、蒸発器5か
ら供給される冷気A1と、蒸発器5に帰還する帰還冷気
A2とを強制循環させる送風機7を備えている。
A space 6 surrounded by a dashed line is a space to be cooled which is cooled by the cold air heat-exchanged by the evaporator 5, and includes a cool air A1 supplied from the evaporator 5 and a return cool air A2 returning to the evaporator 5. Is provided.

【0011】8は前記膨張弁4の開閉動作を制御する制
御器で、この制御器8は図2に示す如く、目標値となる
設定過熱度とフィ−ドバック信号とを比較する第1比較
部9と、調節部となる内部アルゴリズム部10と、操作
部となる弁駆動部11と、蒸発器5の温度を検出する蒸
発器温度測定部12と、被冷却空間6の温度を検出する
被冷却空間温度測定部13と、設定温度と被冷却空間温
度とを比較する第2比較部14と、弁全閉信号発生部1
5とからなるものである。
Reference numeral 8 denotes a controller for controlling the opening / closing operation of the expansion valve 4. As shown in FIG. 2, the controller 8 compares a set superheat degree, which is a target value, with a feedback signal. 9, an internal algorithm unit 10 serving as an adjustment unit, a valve drive unit 11 serving as an operation unit, an evaporator temperature measuring unit 12 detecting the temperature of the evaporator 5, and a cooled unit detecting the temperature of the space 6 to be cooled. A space temperature measuring unit 13, a second comparing unit 14 for comparing the set temperature with the cooled space temperature, and a valve fully closed signal generating unit 1
5.

【0012】この制御器8には、蒸発器入口温度測定用
の第1センサ16と、蒸発器出口温度測定用の第2セン
サ17と、供給冷気温度測定用の第3センサ18と、帰
還冷気温度測定用の第4センサ19と、膨張弁4とが、
各信号ライン20〜24を介して接続されている。
The controller 8 includes a first sensor 16 for measuring the evaporator inlet temperature, a second sensor 17 for measuring the evaporator outlet temperature, a third sensor 18 for measuring the supply cool air temperature, and a feedback cool air. The fourth sensor 19 for measuring temperature and the expansion valve 4
They are connected via signal lines 20 to 24.

【0013】前記膨張弁4としては、本発明では図3に
示すパルス駆動式膨張弁を用いており、該弁4はコイル
25、ロ−タ26、ギヤ−27、駆動シャフト28から
なるパルスモ−タ−29と、前記駆動シャフト28にて
押圧される弁部30、ベロ−ズ31、冷媒入口管32、
冷媒出口管33から成る弁本体34とにより構成されて
おり、前記弁駆動部からの弁開度調節信号(パルス信
号)によって適当な過熱度を維持するようにパルスモ−
タ−29を駆動する。又、パルスモ−タ−29の回転力
は、駆動シャフト28の上下運動に変換され、弁開度を
調節する。
In the present invention, a pulse drive type expansion valve shown in FIG. 3 is used as the expansion valve 4. The valve 4 is a pulse motor comprising a coil 25, a rotor 26, a gear 27 and a drive shaft 28. A valve part 30, a bellows 31, a refrigerant inlet pipe 32, which is pressed by the drive shaft 28,
A valve body 34 comprising a refrigerant outlet pipe 33, and a pulse motor for maintaining an appropriate degree of superheat by a valve opening control signal (pulse signal) from the valve driving section.
Drive the motor 29; Further, the rotational force of the pulse motor 29 is converted into a vertical movement of the drive shaft 28 to adjust the valve opening.

【0014】次に、膨張弁4の開閉動作について説明す
る。
Next, the opening and closing operation of the expansion valve 4 will be described.

【0015】尚、図2においてSHSは、あらかじめ設
定された設定過熱度、SHは蒸発器出口温度ST−蒸発
器の入口乃至中間における冷媒温度、即ち蒸発温度ET
から算出される測定過熱度、DVはSH−SHSから算
出される偏差、HSSは後述するファジイ制御に従って
偏差修正を行う調節信号、BKCはこの調節信号に基づ
いて操作量を制御、即ち膨張弁4を開閉させるパルス数
を与える弁開度調節信号、GAは膨張弁4で減圧され制
御量となる冷媒流量、DTは凝縮圧力の変化、外気の温
湿度の変化、供給冷気A1と帰還冷気A2との温度差及
びエンタルピィ差等蒸発器5に対する外乱である。
In FIG. 2, SHS is a preset superheat degree, SH is an evaporator outlet temperature ST-refrigerant temperature from the inlet to the middle of the evaporator, that is, an evaporation temperature ET.
, DV is a deviation calculated from SH-SHS, HSS is an adjustment signal for correcting deviation according to fuzzy control described later, and BKC controls an operation amount based on the adjustment signal. Opening control signal giving the number of pulses for opening and closing the valve, GA is a refrigerant flow rate which is reduced by the expansion valve 4 and becomes a control amount, DT is a change in condensing pressure, a change in temperature and humidity of outside air, a supply cold air A1 and a return cold air A2. Is a disturbance to the evaporator 5 such as a temperature difference and an enthalpy difference.

【0016】まず、圧縮機2への冷媒液戻り所謂液バッ
ク或るいは過熱状態を発生させない過熱度制御、即ち弁
開動作について説明する。
First, a description will be given of the degree of superheat control that does not generate a so-called liquid back or overheat state, that is, a valve opening operation, in which the refrigerant liquid returns to the compressor 2.

【0017】今、設定過熱度SHSを5℃とした場合
に、この設定過熱度SHSと、蒸発器温度測定部12か
らの測定過熱度SHとを第1比較部9で比較してその偏
差DVを内部アルゴリズム部10に入力する。
When the set superheat degree SHS is set to 5 ° C., the set superheat degree SHS is compared with the superheat degree SH measured by the evaporator temperature measuring section 12 by the first comparing section 9 and the deviation DV is calculated. Is input to the internal algorithm unit 10.

【0018】内部アルゴリズム部10ではファジイ推論
を用いて調節信号HSSを決定する。
The internal algorithm unit 10 determines the adjustment signal HSS using fuzzy inference.

【0019】入力、即ちル−ルの条件部の変数(ファジ
イ変数)としては前記偏差DVを入力変数Aとし、所定
期間に渡り前記偏差DVを積分して求められる積分値、
即ち定常偏差IDVを入力変数Bとし、所定サンプリン
グ周期前から現在までの偏差の微分値、即ち偏差の変化
変化分DDVを入力変数Cとする。
As an input, that is, as a variable (fuzzy variable) of the condition part of the rule, the deviation DV is set as an input variable A, and an integral value obtained by integrating the deviation DV over a predetermined period;
That is, the steady-state error IDV is set as an input variable B, and the differential value of the error from before the predetermined sampling period to the present, that is, the change DDV of the error is set as an input variable C.

【0020】出力、即ちル−ルの結論部の出力変数Yと
しては、調節信号HSSをとる。
The output, ie the output variable Y at the conclusion of the rule, takes the control signal HSS.

【0021】ファジイラベルとしてはPB(正で大き
い)、PM(正で中くらい)、ZR(ゼロ)、NM(負
で中くらい)及びNB(負で大きい)の5つを用いる。
また、推論規則としては、次の7つのル−ルを使用す
る。更に、正は乾き状態、負は湿り状態を意味する。
Five fuzzy labels are used: PB (positive and large), PM (positive and medium), ZR (zero), NM (negative and medium), and NB (negative and large).
The following seven rules are used as inference rules. Furthermore, positive means a dry state and negative means a wet state.

【0022】第1ル−ルは「if入力変数AがNBan
d入力変数BがNMand入力変数CがZRthenY
はNM」、第2ル−ルは「if入力変数AがNBand
入力変数BがZRand入力変数CがNMthenYは
NB」、第3ル−ルは「if入力変数AがNMand入
力変数BがNMand入力変数CがZRthenYはZ
R」、第4ル−ルは「if入力変数AがZRand入力
変数BがZRand入力変数CがNMthenYはN
M」、第5ル−ルは「if入力変数AがPMand入力
変数BがZRand入力変数CがZRthenYはP
M」、第6ル−ルは「if入力変数AがPBand入力
変数BがZRand入力変数CがPMthenYはP
B」、第7ル−ルは「if入力変数AがPBand入力
変数BがPMand入力変数CがZRthenYはP
M」をそれぞれ表している。
The first rule is that if the input variable A is NBa
d input variable B is NMand input variable C is ZRthenY
Is NM "and the second rule is" if input variable A is NBand
Input variable B is ZRand input variable C is NMthenY is NB ", and the third rule is" if input variable A is NMand input variable B is NMand input variable C is ZRthenY is Z
R ", the fourth rule is" if input variable A is ZRand input variable B is ZRand input variable C is NMthenY is N
M ", the fifth rule is" if input variable A is PMand input variable B is ZRand input variable C is ZRthenY is P
M ", the sixth rule is" if input variable A is PBand input variable B is ZRand input variable C is PMthenY is P
B ", the seventh rule is" if input variable A is PBand input variable B is PMand input variable C is ZRthenY is P
M ”respectively.

【0023】次に、各ル−ルについて詳述する。Next, each rule will be described in detail.

【0024】各ル−ルのメンバ−シップ関数は図4に示
されており、各ル−ルの左端のメンバ−シップ関数は測
定過熱度SHが設定過熱度SHSにどの程度近いかを示
す近さの度合を判断するためのもので、−は湿り状態、
+は渇き状態を示し、偏差DVを入力変数Aとしてい
る。左から2番目のメンバ−シップ関数は偏差DVを所
定期間積分し、湿り状態が続いているか渇き状態が続い
ているかの定常偏差を判断するためのもので、−は湿り
状態が続いている、+は渇き状態が続いていることを示
しており、偏差の積分値である定常偏差IDVを入力変
数Bとしている。右から2番目のメンバ−シップ関数は
偏差DVが湿り方向に変化しているか、変化がないか若
しくは乾き方向に変化しているかの変化の度合を判断す
るためのもので、−は湿り方向へ変化、+は乾き方向に
変化していることを示しており、偏差の微分値である変
化分DDVを入力変数Cとしている。また、右端のメン
バ−シップ関数は結論部として膨張弁4の開度調節の度
合を判断するためのもので、前述のHSSに相当し、−
は弁閉方向、+は弁開方向を示す。
The membership function of each rule is shown in FIG. 4, and the membership function at the left end of each rule indicates how close the measured superheat SH is to the set superheat SHS. It is for judging the degree of salinity,-is wet,
+ Indicates a thirst state, and the deviation DV is set as an input variable A. The second membership function from the left is for integrating the deviation DV for a predetermined period of time to determine the steady-state deviation of whether the wet state or the thirst state continues, and-indicates that the wet state continues. + Indicates that the thirst state continues, and the steady-state deviation IDV, which is the integral value of the deviation, is set as the input variable B. The second membership function from the right is for judging the degree of change whether the deviation DV changes in the wet direction, does not change, or changes in the dry direction. The change, +, indicates that the change is in the drying direction, and the change DDV, which is the differential value of the deviation, is used as the input variable C. The membership function at the right end is used to determine the degree of adjustment of the opening of the expansion valve 4 as a conclusion, and corresponds to the above-described HSS.
Indicates a valve closing direction, and + indicates a valve opening direction.

【0025】第1ル−ルは、「冷媒回路の状態が圧縮機
2にかなり液冷媒が戻る湿り状態で、定常偏差が少し湿
り状態であり、過熱度の偏差に変化がなければ、膨張弁
4を少し閉じる」と云う条件の成立度を示す。
The first rule is that the state of the refrigerant circuit is a wet state in which the liquid refrigerant returns to the compressor 2 considerably, the steady state deviation is a little wet, and if there is no change in the superheat degree deviation, the expansion valve 4 is slightly closed ".

【0026】即ち、左端は過熱度の偏差DVがかなり湿
り状態(−6)であるときに極大値(1)となる山型の
メンバ−シップ関数であり、これに入力変数Aを代入す
ることによりメンバ−シップ値M11が求まる。左から
2番目は定常偏差IDVが少し湿り状態(−3)である
ときに極大値(0.75)となる山型のメンバ−シップ
関数であり、これに入力変数Bを代入することによりメ
ンバ−シップ値M12が求まる。右から2番目は偏差の
変化DDVが無いとき(=0)に極大値(1)となる山
型のメンバ−シップ関数であり、これに入力変数Cを代
入することによりメンバ−シップ値M13が求まる。前
記メンバ−シップ値M11、M12、M13はそれぞれ
の内の最小メンバ−シップ値が第1ルールの成立度M1
として選択される。結論部の右端は弁4を少し閉じる方
向(−3)を極大値(1)とする山型のメンバ−シップ
関数であり、前記成立度M1より下方の面積(図中斜線
部分)が第1ルールでの調節信号HSS1として出力さ
れる。
That is, the left end is a mountain-shaped membership function that has a maximum value (1) when the superheat degree deviation DV is considerably wet (−6). Obtains the membership value M11. The second from the left is a mountain-shaped membership function that has a maximum value (0.75) when the steady-state error IDV is slightly wet (−3). -The ship value M12 is obtained. The second from the right is a mountain-shaped membership function that has a maximum value (1) when there is no change in deviation DDV (= 0). By substituting the input variable C into this, the membership value M13 is obtained. I get it. The minimum membership value of each of the membership values M11, M12 and M13 is the degree of establishment M1 of the first rule.
Is selected as The right end of the conclusion is a mountain-shaped membership function with the maximum value (1) in the direction (-3) in which the valve 4 is slightly closed, and the area below the satisfaction degree M1 (the hatched portion in the figure) is the first. It is output as an adjustment signal HSS1 according to the rule.

【0027】第2ルールは、「冷媒回路の状態が圧縮機
2にかなり液冷媒が戻る湿り状態で、定常偏差が無く、
過熱度の偏差が湿り方向に少し変化していれば、膨張弁
4をかなり閉じる」と云う条件の成立度を示す。
The second rule is that the refrigerant circuit state is a wet state in which the liquid refrigerant returns to the compressor 2 considerably, there is no steady state deviation,
If the deviation of the degree of superheat slightly changes in the wet direction, the expansion valve 4 is considerably closed. "

【0028】即ち、左端は過熱度の偏差DVが同様に−
6であるときに極大値(1)となる山型のメンバ−シッ
プ関数であり、これに入力変数Aを代入することにより
メンバ−シップ値M21が求まる。左から2番目は定常
偏差IDVが無い(0)ときに極大値(0.75)とな
る山型のメンバ−シップ関数であり、これに入力変数B
を代入することによりメンバ−シップ値M22が求ま
る。右から2番目は偏差の変化DDVが少し湿り方向の
とき(−3)に極大値(1)となる山型のメンバ−シッ
プ関数であり、これに入力変数Cを代入することにより
メンバ−シップ値M23が求まる。同様にメンバ−シッ
プ値M21、M22、M23の内の最小値が第2ルール
の成立度M2として選択される。結論部の右端は弁4を
かなり閉じる方向(−6)を極大値(1)とする山型の
メンバ−シップ関数であり、前記成立度M2より下方の
面積(図中斜線部分)が第2ルールでの調節信号HSS
2として出力される。
That is, at the left end, the deviation DV of the superheat degree is similarly-
This is a mountain-shaped membership function that has a local maximum value (1) when it is 6, and the membership value M21 is obtained by substituting the input variable A into this function. The second from the left is a mountain-shaped membership function that has a maximum value (0.75) when there is no steady-state error IDV (0), and the input variable B
Is substituted to obtain the membership value M22. The second from the right is a mountain-shaped membership function that has a maximum value (1) when the deviation change DDV is slightly wet (-3), and the membership function is obtained by substituting the input variable C into this function. The value M23 is obtained. Similarly, the minimum value among the membership values M21, M22, M23 is selected as the degree of establishment M2 of the second rule. The right end of the conclusion is a mountain-shaped membership function with the maximum value (1) in the direction (-6) in which the valve 4 is substantially closed, and the area below the degree of establishment M2 (the hatched portion in the figure) is the second. Adjustment signal HSS with rules
Output as 2.

【0029】第3ルールは、「冷媒回路の状態が圧縮機
2に少し液冷媒が戻る湿り状態で、定常偏差が少し湿り
状態であり、過熱度の偏差がなければ、膨張弁4をを変
化させない」と云う条件の成立度を示す。
The third rule is that the refrigerant circuit state is a wet state in which the liquid refrigerant returns to the compressor 2 a little, the steady state deviation is a little wet, and if there is no deviation in the degree of superheat, the expansion valve 4 is changed. Is not satisfied. "

【0030】即ち、左端は過熱度の偏差DVが少し湿り
状態(−3)であるときに極大値(1)となる山型のメ
ンバ−シップ関数であり、これに入力変数Aを代入する
ことによりメンバ−シップ値M31が求まる。左から2
番目は定常偏差IDVが少し湿り状態(−3)のときに
極大値(0.75)となる山型のメンバ−シップ関数で
あり、これに入力変数Bを代入することによりメンバ−
シップ値M32が求まる。右から2番目は偏差の変化D
DVが無いとき(0)に極大値(1)となる山型のメン
バ−シップ関数であり、これに入力変数Cを代入するこ
とによりメンバ−シップ値M33が求まる。同様にメン
バ−シップ値M31、M32、M33は最小値が第3ル
ールの成立度M3として選択される。結論部の右端は弁
4の開度を変化させない(0)ときを極大値(1)とす
る山型のメンバ−シップ関数であり、前記成立度M3よ
り下方の面積(図中斜線部分)が第3ルールでの調節信
号HSS3として出力される。
That is, the left end is a mountain-shaped membership function having a maximum value (1) when the superheat degree deviation DV is slightly wet (-3), and the input variable A is substituted into this. Obtains the membership value M31. 2 from left
The third is a mountain-shaped membership function that has a maximum value (0.75) when the steady-state deviation IDV is slightly wet (−3).
The ship value M32 is obtained. The second from the right is the change in deviation D
This is a mountain-shaped membership function that has a local maximum value (1) when there is no DV (0), and a membership value M33 is obtained by substituting an input variable C into this function. Similarly, the minimum value of the membership values M31, M32, and M33 is selected as the degree of establishment M3 of the third rule. The right end of the conclusion part is a mountain-shaped membership function having a maximum value (1) when the opening degree of the valve 4 is not changed (0), and the area below the satisfaction degree M3 (shaded area in the figure) is It is output as the adjustment signal HSS3 in the third rule.

【0031】第4ルールは、「冷媒回路の過熱度が設定
値で、定常偏差が無く、過熱度の偏差が湿り方向に少し
変化していれば、膨張弁4を少し閉じる」と云う条件の
成立度を示す。
A fourth rule is that the expansion valve 4 is slightly closed if the superheat degree of the refrigerant circuit is a set value, there is no steady-state deviation, and the deviation of the superheat degree slightly changes in the wet direction. Indicates the degree of establishment.

【0032】即ち、左端は過熱度の偏差DVが無い
(0)ときに極大値(1)となる山型のメンバ−シップ
関数であり、これに入力変数Aを代入することによりメ
ンバ−シップ値M41が求まる。左から2番目は定常偏
差IDVが無い(0)ときに極大値(0.75)となる
山型のメンバ−シップ関数であり、これに入力変数Bを
代入することによりメンバ−シップ値M42が求まる。
右から2番目は偏差の変化DDVが少し湿り方向のとき
(−3)に極大値(1)となる山型のメンバ−シップ関
数であり、これに入力変数Cを代入することによりメン
バ−シップ値M43が求まる。同様にメンバ−シップ値
M41、M42、M43は最小値が第4ルールの成立度
M4として選択される。結論部の右端は弁4を少し閉じ
る方向(−3)を極大値(1)とする山型のメンバ−シ
ップ関数であり、前記成立度M4より下方の面積(図中
斜線部分)が第4ルールでの調節信号HSS4として出
力される。
That is, the left end is a mountain-shaped membership function which has a maximum value (1) when there is no superheat degree deviation DV (0). M41 is obtained. The second from the left is a mountain-shaped membership function that has a local maximum value (0.75) when there is no steady-state error IDV (0). By substituting the input variable B into this, the membership value M42 is obtained. I get it.
The second from the right is a mountain-shaped membership function that has a maximum value (1) when the deviation change DDV is slightly wet (-3), and the membership function is obtained by substituting the input variable C into this function. The value M43 is obtained. Similarly, the minimum value of the membership values M41, M42, and M43 is selected as the degree of establishment M4 of the fourth rule. The right end of the conclusion is a mountain-shaped membership function with the maximum value (1) in the direction (-3) in which the valve 4 is slightly closed, and the area below the degree of establishment M4 (the hatched portion in the figure) is the fourth. It is output as the regulation signal HSS4 in the rule.

【0033】第5ルールは、「冷媒回路の過熱度が少し
乾いた状態で、定常偏差が無く、過熱度の偏差の変化が
なければ、膨張弁4を少し開く」と云う条件の成立度を
示す。
The fifth rule is the degree of satisfaction of the condition that "the refrigerant valve is slightly dried, the expansion valve 4 is slightly opened if there is no steady-state error and there is no change in the superheat error". Show.

【0034】即ち、左端は過熱度の偏差DVが少し乾き
方向(+3)であるときに極大値(1)となる山型のメ
ンバ−シップ関数であり、これに入力変数Aを代入する
ことによりメンバ−シップ値M51が求まる。左から2
番目は定常偏差IDVが無い(0)ときに極大値(0.
75)となる山型のメンバ−シップ関数であり、これに
入力変数Bを代入することによりメンバ−シップ値M5
2が求まる。右から2番目は偏差の変化DDVに変化が
ないとき(0)に極大値(1)となる山型のメンバ−シ
ップ関数であり、これに入力変数Cを代入することによ
りメンバ−シップ値M53が求まる。同様にメンバ−シ
ップ値M51、M52、M53は最小値が第5ルールの
成立度M5として選択される。結論部の右端は弁4を少
し開く方向(+3)を極大値(1)とする山型のメンバ
−シップ関数であり、前記成立度M5より下方の面積
(図中斜線部分)が第5ルールでの調節信号HSS5と
して出力される。
That is, the left end is a mountain-shaped membership function that has a maximum value (1) when the superheat degree deviation DV is slightly in the drying direction (+3). The membership value M51 is obtained. 2 from left
The maximum is the local maximum value (0. 0) when there is no steady-state error IDV (0).
75) is a mountain-shaped membership function. By substituting the input variable B into the function, the membership value M5 is obtained.
2 is found. The second from the right is a mountain-shaped membership function which becomes a local maximum value (1) when there is no change in the variation DDV of the deviation (0). By substituting the input variable C into this, the membership value M53 is obtained. Is found. Similarly, the minimum value of the membership values M51, M52, and M53 is selected as the degree of establishment M5 of the fifth rule. The right end of the conclusion is a mountain-shaped membership function having a maximum value (1) in the direction (+3) in which the valve 4 is slightly opened, and the area below the satisfaction degree M5 (the hatched portion in the figure) is the fifth rule. Is output as the adjustment signal HSS5.

【0035】第6ルールは、「冷媒回路の過熱度がかな
り乾いた状態で、定常偏差が無く、過熱度の偏差が乾き
方向に少し変化していれば、膨張弁4をかなり開く」と
云う条件の成立度を示す。
The sixth rule states that "if the degree of superheat of the refrigerant circuit is considerably dry, there is no steady-state error, and if the deviation of the degree of superheat slightly changes in the drying direction, the expansion valve 4 is considerably opened." Indicates the degree of satisfaction of the condition.

【0036】即ち、左端は過熱度の偏差DVがかなり乾
き方向(+6)であるときに極大値(1)となる山型の
メンバ−シップ関数であり、これに入力変数Aを代入す
ることによりメンバ−シップ値M61が求まる。左から
2番目は定常偏差IDVが無い(0)ときに極大値
(0.75)となる山型のメンバ−シップ関数であり、
これに入力変数Bを代入することによりメンバ−シップ
値M62が求まる。右から2番目は偏差の変化DDVが
少し乾き方向の変化のとき(+3)に極大値(1)とな
る山型のメンバ−シップ関数であり、これに入力変数C
を代入することによりメンバ−シップ値M63が求ま
る。同様にメンバ−シップ値M61、M62、M63は
最小値が第6ルールの成立度M6として選択される。結
論部の右端は弁4をかなり開く方向(+6)を極大値
(1)とする山型のメンバ−シップ関数であり、前記成
立度M6より下方の面積(図中斜線部分)が第6ルール
での調節信号HSS6として出力される。
That is, the left end is a chevron-shaped membership function that has a maximum value (1) when the superheat degree deviation DV is considerably dry (+6), and the input variable A is substituted into this. The membership value M61 is obtained. The second from the left is a mountain-shaped membership function that has a maximum value (0.75) when there is no steady-state error IDV (0),
By substituting the input variable B into this, the membership value M62 is obtained. The second from the right is a chevron-shaped membership function that reaches a local maximum value (1) when the change in deviation DDV changes slightly in the drying direction (+3).
Is substituted to obtain the membership value M63. Similarly, the minimum value of the membership values M61, M62, and M63 is selected as the degree of establishment M6 of the sixth rule. The right end of the conclusion is a mountain-shaped membership function having the maximum value (1) in the direction (+6) in which the valve 4 is considerably opened, and the area below the satisfaction degree M6 (the hatched portion in the figure) is the sixth rule. As the adjustment signal HSS6.

【0037】第7ルールは、「冷媒回路の過熱度がかな
り乾いた状態で、定常偏差が少し渇き状態であり、過熱
度の偏差の変化がなければ、膨張弁4を少し開く」と云
う条件の成立度を示す。
The seventh rule is that the condition is that the superheat degree of the refrigerant circuit is considerably dry, the steady-state deviation is a little dry, and if there is no change in the superheat degree, the expansion valve 4 is slightly opened. Is shown.

【0038】即ち、左端は過熱度の偏差DVがかなり乾
き方向(+6)であるときに極大値となる山型のメンバ
−シップ関数であり、これに入力変数Aを代入すること
によりメンバ−シップ値M71が求まる。左から2番目
は定常偏差IDVが少し渇き状態(+3)のときに極大
値(0.75)となる山型のメンバ−シップ関数であ
り、これに入力変数Bを代入することによりメンバ−シ
ップ値M72が求まる。右から2番目は偏差の変化DD
Vに変化がないとき(0)に極大値(1)となる山型の
メンバ−シップ関数であり、これに入力変数Cを代入す
ることによりメンバ−シップ値M73が求まる。同様に
メンバ−シップ値M71、M72、M73は最小値が第
7ルールの成立度M7として選択される。結論部の右端
は弁4を少し開く方向(+3)を極大値(1)とする山
型のメンバ−シップ関数であり、前記成立度M7より下
方の面積(図中斜線部分)が第7ルールでの調節信号H
SS7として出力される。
That is, the left end is a mountain-shaped membership function which has a maximum value when the deviation DV of the superheat degree is considerably in the drying direction (+6). The membership function is obtained by substituting the input variable A into this function. The value M71 is obtained. The second from the left is a mountain-shaped membership function that has a maximum value (0.75) when the steady state error IDV is a little thirst (+3), and the membership is obtained by substituting the input variable B into this function. The value M72 is obtained. The second from the right is the change in deviation DD
This is a mountain-shaped membership function that becomes a local maximum value (1) when V does not change (0), and a membership value M73 is obtained by substituting an input variable C into this function. Similarly, the minimum value of the membership values M71, M72, M73 is selected as the degree of establishment M7 of the seventh rule. The right end of the conclusion is a mountain-shaped membership function having the maximum value (1) in the direction (+3) in which the valve 4 is slightly opened, and the area below the degree of establishment M7 (shaded area in the figure) is the seventh rule. Adjustment signal H at
Output as SS7.

【0039】以上の全ル−ルで求められた調節信号HS
S1から7を加重平均によりファジイ合成し、その重心
を求めることによって調節信号HSSを得る。ここで、
入力変数A及び入力変数Cのメンバ−シップ関数の極大
値は1であるのに対して、入力変数Bのメンバ−シップ
関数の極大値は0.75と小さくなっている。これによ
って定常偏差IDVは、偏差DV及び偏差の変化DDV
よりも重み付けが重くなっており、積分値のファクター
がより良く効くようになされている。
The control signal HS obtained by the above-described rules
The control signals HSS are obtained by fuzzy combining S1 to S7 by weighted averaging and obtaining the center of gravity. here,
The maximum value of the membership function of the input variable A and the input variable C is 1, whereas the maximum value of the membership function of the input variable B is as small as 0.75. As a result, the steady-state deviation IDV becomes the deviation DV and the variation of the deviation DDV.
The weight is heavier than that, and the factor of the integral value is made to work better.

【0040】次に実際の状況を想定して前記動作を実行
してみる。
Next, the above operation will be executed assuming an actual situation.

【0041】第1の例として今、偏差DV=−4の湿り
状態(即ち、入力変数A=−4)、定常偏差IDV=−
2の少し湿り状態が続いている(即ち、入力変数B=−
2)、偏差の変化DDV=−2の少し湿り方向に変化し
て湿り状態が拡大傾向(即ち、入力変数C=−2)であ
るとすると、図4の如く左端のメンバ−シップ関数は第
1から第3ル−ルのみがヒットし、左から2番目のメン
バ−シップ関数は第7ル−ル以外の全ての関数がヒット
し、右から2番目のメンバ−シップ関数では第6ルール
以外の全ての関数でヒットする。即ち、メンバーシップ
値M11=0.5、M12=0.5、M13=0.5で
あり、M21=0.5、M22=0.25、M23=
0.75であり、M31=0.75、M32=0.5、
M33=0.5であり、M41=0、M42=0.2
5、M43=0.75であり、M51=0、M52=
0.25、M53=0.5であり、M61=M63=
0、M62=0.25であり、M71=M72=0、M
73=0.5となる。
As a first example, a wet state with a deviation DV = -4 (that is, an input variable A = -4) and a steady-state deviation IDV =-
2 (ie, the input variable B = −
2), change in deviation If the wet state changes slightly in the direction of wetness of DDV = -2 and the wet state tends to expand (that is, the input variable C = -2), the membership function at the left end as shown in FIG. Only the first to third rules are hit, the second membership function from the left hits all functions except the seventh rule, and the second membership function from the right is other than the sixth rule Hits all functions. That is, the membership values M11 = 0.5, M12 = 0.5, M13 = 0.5, M21 = 0.5, M22 = 0.25, M23 =
0.75, M31 = 0.75, M32 = 0.5,
M33 = 0.5, M41 = 0, M42 = 0.2
5, M43 = 0.75, M51 = 0, M52 =
0.25, M53 = 0.5, M61 = M63 =
0, M62 = 0.25, M71 = M72 = 0, M
73 = 0.5.

【0042】これらのメンバ−シップ値により各ルール
の結論として得られるル−ルは第1から第3ル−ルのみ
で、第1ルールではメンバ−シップ値M11=M12=
M13=0.5が選ばれ、M1=0.5から下の面積が
HSS1とされる。第2ルールではメンバ−シップ値M
22=0.25が選ばれ、M2=0.25から下の面積
がHSS2とされる。第3ルールではメンバ−シップ値
M32=M33=0.5が選ばれ、M3=0.5から下
の面積がHSS3とされる。
The rules obtained from these membership values as the conclusion of each rule are only the first to third rules. In the first rule, the membership values M11 = M12 =
M13 = 0.5 is selected, and the area below M1 = 0.5 is set to HSS1. In the second rule, the membership value M
22 = 0.25 is selected, and the area below M2 = 0.25 is taken as HSS2. In the third rule, the membership value M32 = M33 = 0.5 is selected, and the area below M3 = 0.5 is set to HSS3.

【0043】これらのHSS1から3を重ね合わせた値
が図5に示され、この重心は−1.38となってHSS
=−1.38(弁4を少し閉じる方向)が決定される。
FIG. 5 shows a value obtained by superimposing these HSS1 to HSS3.
= -1.38 (direction for slightly closing the valve 4).

【0044】以上の如きファジイ推論によって得られた
調節信号HSSは弁駆動部11に入力され、弁駆動部1
1は調節信号HSSに基づき、−1.38に相当するス
テップ分膨張弁4を閉じる弁開度調節信号BKCを膨張
弁4に対して与え、弁開度の減少により冷媒流量GAを
減少させ、液戻りを解消する。特に、上記例では第2ル
−ルで定常偏差IDVのメンバ−シップ関数のメンバ−
シップ値M22が成立度M2として選択されており、入
力変数Bを取らない場合よりも弁4を閉じる度合いが小
さくなっている。即ち、少し湿り状態が続いている(入
力変数B=−2)だけの時には、弁4を閉じる度合いを
少しだけ小さくし、過熱度の変動をできるだけ小さくす
る。この弁開閉のステップは図5の出力変数の−6〜+
6を分解能相当の200分の1、256分の1或るいは
そのてい倍で決定する。
The control signal HSS obtained by the fuzzy inference as described above is input to the valve driving unit 11 and the valve driving unit 1
1 is based on the control signal HSS, and provides a valve opening control signal BKC for closing the expansion valve 4 for a step corresponding to -1.38 to the expansion valve 4 to reduce the refrigerant flow rate GA by reducing the valve opening, Eliminate liquid return. In particular, in the above example, in the second rule, the members of the membership function of the steady-state deviation IDV
The ship value M22 is selected as the establishment degree M2, and the degree of closing the valve 4 is smaller than when the input variable B is not taken. That is, when the wet state is slightly continued (input variable B = −2), the degree of closing the valve 4 is slightly reduced, and the fluctuation of the superheat degree is reduced as much as possible. This valve opening / closing step is performed by changing the output variable of FIG.
6 is determined by a factor of 200/256 or 256 times the resolution.

【0045】次に、第2の例として偏差DV=+1の乾
き状態(即ち、入力変数A=+1)で、定常偏差IDV
=+2で少し渇き状態が続いており(即ち、入力変数B
=+2)、偏差の変化DDV=0で変化が無い状況(即
ち、入力変数C=0)であるとすると、図6の如く左端
のメンバ−シップ関数は第4と第5ル−ルのみがヒット
し、左から2番目のメンバ−シップ関数は第4から第7
ル−ルでヒットし、右から2番目のメンバ−シップ関数
は全てヒットする。即ち、メンバーシップ値M11=M
12=0、M13=1であり、M21=M22=0、M
23=0.25であり、M31=M32=0、M33=
1であり、M41=0.75、M42=M43=0.2
5であり、M51=0.5、M52=0.25、M53
=1であり、M61=0、M62=M63=0.25で
あり、M71=0、M72=0.5、M73=1とな
る。
Next, as a second example, in a dry state where the deviation DV = + 1 (that is, the input variable A = + 1), the steady-state deviation IDV
= + 2 and the thirst continues a little (that is, the input variable B
= + 2) and a change in deviation DDV = 0 and no change (ie, input variable C = 0), as shown in FIG. 6, the membership function at the left end has only the fourth and fifth rules. Hit, the second membership function from the left is the fourth to seventh
The rule hits, and the second membership function from the right hits. That is, the membership value M11 = M
12 = 0, M13 = 1, M21 = M22 = 0, M
23 = 0.25, M31 = M32 = 0, M33 =
1, M41 = 0.75, M42 = M43 = 0.2
5, M51 = 0.5, M52 = 0.25, M53
= 1, M61 = 0, M62 = M63 = 0.25, and M71 = 0, M72 = 0.5, and M73 = 1.

【0046】これらのメンバ−シップ値により各ルール
の結論として得られるル−ルは第4と第5ル−ルのみ
で、第4ルールではメンバ−シップ値M42=M43=
0.25が選ばれ、M4=0.25から下の面積がHS
S4とされる。第5ルールではメンバ−シップ値M52
=0.25が選ばれ、M5=0.25から下の面積がH
SS5とされる。
The rules obtained as the conclusion of each rule from these membership values are only the fourth and fifth rules. In the fourth rule, the membership values M42 = M43 =
0.25 is selected, and the area under M4 = 0.25 is HS
S4 is set. In the fifth rule, the membership value M52
= 0.25, and the area below M5 = 0.25 is H
SS5.

【0047】これらのHSS4と5を重ね合わせた値が
図7に示され、この重心は0となってHSS=0(弁4
の開度を変更しない)が決定される。この場合も、第5
ル−ルで定常偏差IDVのメンバ−シップ関数のメンバ
−シップ値M52が成立度M5として選択されており、
入力変数Bを取らない場合よりも弁4を開く度合いが小
さくなっている(実際には開けない)。。即ち、少し渇
き状態が続いている(入力変数B=+2)だけの時に
は、弁4を開く度合いを少し小さくし、過熱度の変動を
できるだけ小さくする。
FIG. 7 shows a value obtained by superimposing these HSSs 4 and 5, and the center of gravity becomes 0, and HSS = 0 (valve 4).
Is not changed). Also in this case, the fifth
In the rule, the membership value M52 of the membership function of the steady-state error IDV is selected as the satisfaction degree M5,
The degree to which the valve 4 opens is smaller than when the input variable B is not taken (it does not actually open). . In other words, when the thirst state continues only a little (input variable B = + 2), the degree of opening of the valve 4 is slightly reduced, and the fluctuation of the degree of superheat is minimized.

【0048】尚、上記実施例では推論規則としては実験
結果から第1ルール〜第7ルールを設定したが、それに
限らず更に多い若しくは少ないル−ルを設定しても良
い。
In the above-described embodiment, the first to seventh rules are set as inference rules based on experimental results, but the present invention is not limited thereto, and more or fewer rules may be set.

【0049】以上の如きファジイ推論によって得られた
調節信号HSSは同様に弁駆動部11に入力され、弁駆
動部11は調節信号HSSに基づき、+3に相当するス
テップ分膨張弁4を開く弁開度調節信号BKCを膨張弁
4に対して与え、弁開度の増大〜開口面積〜冷媒流量G
Aの増大と云う機械作用によって設定過熱度SHSの5
℃に冷媒流量GAを保つべく弁開度を調節する。
The control signal HSS obtained by the fuzzy inference as described above is similarly input to the valve drive section 11, and the valve drive section 11 opens the expansion valve 4 for a step corresponding to +3 based on the control signal HSS. Degree control signal BKC to the expansion valve 4 to increase the valve opening degree ~ opening area ~ refrigerant flow rate G
The superheat degree SHS is set to 5 by the mechanical action of increasing A.
The valve opening is adjusted to maintain the refrigerant flow rate GA at ° C.

【0050】ここで、一般のサ−モサイクルと称される
被冷却空間6の温度制御を説明すると、図2において測
定温度TMは供給冷気A1及び帰還冷気A2の両温度の
平均値を加工した値で算出され、第2比較部14で設定
温度TSと比較される。この第2比較部14において、
TM>TSの温度信号が出力された場合、即ち測定温度
TMが設定温度TSより高い場合には、前記過熱度制御
が行われ、TM≦TSの温度信号が出力された場合、即
ち測定温度TMが設定温度TSより低い場合及び等しい
場合には被冷却空間6の温度制御が行われる。
Here, the temperature control of the space 6 to be cooled, which is generally called a thermocycle, will be described. In FIG. 2, the measured temperature TM is a value obtained by processing the average value of the temperatures of both the supply cool air A1 and the return cool air A2. Is calculated by the second comparison unit 14 with the set temperature TS. In the second comparison unit 14,
When the temperature signal of TM> TS is output, that is, when the measured temperature TM is higher than the set temperature TS, the superheat control is performed, and when the temperature signal of TM ≦ TS is output, that is, the measured temperature TM Is lower than or equal to the set temperature TS, the temperature of the cooled space 6 is controlled.

【0051】即ち、被冷却空間6の測定温度TMが設定
温度TSに到達すると、第2比較部14からTM≦TS
の信号が弁全閉信号発生部15に入力され、この弁全閉
信号発生部15から弁閉信号BPが弁駆動部11に出力
され、膨張弁4は全閉状態になり、蒸発器5への冷媒供
給は停止される。
That is, when the measured temperature TM of the space to be cooled 6 reaches the set temperature TS, the second comparator 14 outputs TM ≦ TS
Is input to the valve fully-closed signal generator 15, the valve-closed signal BP is output from the valve fully-closed signal generator 15 to the valve driver 11, the expansion valve 4 is fully closed, and the Is stopped.

【0052】この全閉状態は設定温度TSより高い上限
温度に達するまで続く。上限温度に達すると、膨張弁4
は再び開かれ、前述のファジイ推論による開閉動作が行
われることになり、以上の動作により被冷却空間6の温
度制御と、冷媒回路の過熱度制御が行われる。
This fully closed state continues until the upper limit temperature higher than the set temperature TS is reached. When the temperature reaches the upper limit, the expansion valve 4
Is opened again, and the opening / closing operation based on the above-described fuzzy inference is performed. With the above operation, the temperature control of the cooled space 6 and the superheat degree control of the refrigerant circuit are performed.

【0053】[0053]

【発明の効果】以上の如く本発明によれば、冷却装置の
膨張弁の開度調整にファジイ推論を用いることによっ
て、冷媒回路の過渡的な変動に対して迅速に対応し、更
に、定常偏差に対しても対処して、過熱度の変動を的確
に抑えることができる。従って、圧縮機への液戻りや過
熱の状態を円滑に解消し、信頼性の向上が図れる。
As described above, according to the present invention, by using fuzzy inference for adjusting the opening degree of the expansion valve of the cooling device, it is possible to quickly respond to transient fluctuations in the refrigerant circuit, , And the variation in the degree of superheat can be accurately suppressed. Therefore, the state of liquid return to the compressor and the state of overheating are smoothly eliminated, and the reliability can be improved.

【0054】特に、過熱度の偏差と、定常偏差と、偏差
の変化に基づいてファジイ推論を行うので、過熱度制御
を迅速且つ安定的に行え、しかも実験的に決定されたル
−ルに基づいて制御されるので、定性的な関係だけを決
定すれば良く、数式モデルが不要となると共に、操作量
の決定にも制約が少なく、また、制御が飽和しにくい利
点がある。
In particular, since the fuzzy inference is performed based on the deviation of the superheat degree, the steady-state deviation, and the change of the deviation, the superheat degree control can be performed quickly and stably, and based on the rules determined experimentally. Therefore, only a qualitative relationship needs to be determined, and there is an advantage that a mathematical model is not required, and there is little restriction on determination of an operation amount, and control is hardly saturated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷媒回路図である。FIG. 1 is a refrigerant circuit diagram.

【図2】制御器のブロック図ある。FIG. 2 is a block diagram of a controller.

【図3】膨張弁の縦断面図である。FIG. 3 is a longitudinal sectional view of an expansion valve.

【図4】ル−ル(推論規則)の説明図である。FIG. 4 is an explanatory diagram of rules (inference rules).

【図5】ル−ルの結論の合成の説明図である。FIG. 5 is an explanatory diagram of synthesis of rule conclusions.

【図6】ル−ル(推論規則)の説明図である。FIG. 6 is an explanatory diagram of rules (inference rules).

【図7】ル−ルの結論の合成の説明図である。FIG. 7 is an explanatory diagram of synthesis of rule conclusions.

【符号の説明】[Explanation of symbols]

2 圧縮機 4 膨張弁 5 蒸発器 8 制御器 16 第1センサ 17 第2センサ 2 Compressor 4 Expansion valve 5 Evaporator 8 Controller 16 First sensor 17 Second sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 1/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、膨張弁及び蒸発器を順
次接続してなる冷媒回路と、冷媒の蒸発温度を検出する
手段と、前記蒸発器の出口温度を検出する手段と、前記
冷媒の蒸発温度と蒸発器の出口温度とに基づいて前記膨
張弁の開度を調整する制御手段を備え、該制御手段にお
ける開度調整出力の決定に際して、前記冷媒回路の過熱
度の偏差と、定常偏差と、偏差の変化を入力変数とした
ファジイ推論を用いることを特徴とする冷却装置。
1. A refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected, a unit for detecting a refrigerant evaporation temperature, a unit for detecting an outlet temperature of the evaporator, and the refrigerant Control means for adjusting the degree of opening of the expansion valve based on the evaporation temperature of the evaporator and the outlet temperature of the evaporator. A cooling device characterized by using fuzzy inference using a deviation and a change in the deviation as input variables.
【請求項2】 冷媒回路の過熱度の偏差を入力変数Aと
し、前記定常偏差を入力変数Bとし、前記偏差の変化を
入力変数Cとして複数の推論規則の各入力変数に対応す
るメンバ−シップ関数から各入力変数に応じたメンバ−
シップ値を求めた後、当該推論規則の出力変数Yをファ
ジイ合成し、その重心をとることにより推論結果を得
て、これを蒸発器の入口に接続した膨張弁の開度調整を
するための出力に利用することを特徴とするファジイ推
論による冷却装置の制御方法。
2. A membership corresponding to each input variable of a plurality of inference rules, wherein a deviation of the degree of superheat of the refrigerant circuit is an input variable A, the steady-state deviation is an input variable B, and a change of the deviation is an input variable C. Member according to each input variable from function
After obtaining the ship value, the output variable Y of the inference rule is fuzzy-synthesized, and the center of gravity is obtained to obtain an inference result, which is used to adjust the opening of an expansion valve connected to the inlet of the evaporator. A method of controlling a cooling device by fuzzy inference, wherein the method is used for output.
JP3164461A 1991-01-10 1991-07-04 Cooling device and cooling device control method based on fuzzy inference Expired - Lifetime JP2951051B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3164461A JP2951051B2 (en) 1991-07-04 1991-07-04 Cooling device and cooling device control method based on fuzzy inference
US07/803,493 US5259210A (en) 1991-01-10 1991-12-02 Refrigerating apparatus and method of controlling refrigerating apparatus in accordance with fuzzy reasoning
CA002057304A CA2057304C (en) 1991-01-10 1991-12-09 Refrigerating apparatus and method of controlling refrigerating apparatus in accordance with fuzzy reasoning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164461A JP2951051B2 (en) 1991-07-04 1991-07-04 Cooling device and cooling device control method based on fuzzy inference

Publications (2)

Publication Number Publication Date
JPH0510603A JPH0510603A (en) 1993-01-19
JP2951051B2 true JP2951051B2 (en) 1999-09-20

Family

ID=15793616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164461A Expired - Lifetime JP2951051B2 (en) 1991-01-10 1991-07-04 Cooling device and cooling device control method based on fuzzy inference

Country Status (1)

Country Link
JP (1) JP2951051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560159B2 (en) 1999-11-25 2010-10-13 キヤノン株式会社 IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD

Also Published As

Publication number Publication date
JPH0510603A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US5259210A (en) Refrigerating apparatus and method of controlling refrigerating apparatus in accordance with fuzzy reasoning
US4674292A (en) System for controlling flow rate of refrigerant
US4745767A (en) System for controlling flow rate of refrigerant
KR100339869B1 (en) Refrigeration unit controlling the fluid level using fuzzy logic
JP4022202B2 (en) Self-regulated pull-down fuzzy logic temperature control for cooling system
Li et al. A new method for controlling refrigerant flow in automobile air conditioning
JP4711852B2 (en) Temperature adjusting device and refrigeration cycle
JP2951051B2 (en) Cooling device and cooling device control method based on fuzzy inference
JPH09159284A (en) Expansion valve control device for air conditioner
JP2889791B2 (en) Vapor compression refrigerator
JP3489281B2 (en) Air conditioner expansion valve controller
JPH04244556A (en) Cooling device and method of controlling cooling device with fuzzy inference
JPH04244555A (en) Cooling device
JPH06201198A (en) Refrigerating cycle control device
JPH02197776A (en) Electronic expansion valve control method for refrigerating show case
JPH0386620A (en) Air conditioner for vehicle
JP2646874B2 (en) Refrigeration equipment
JP2001201198A (en) Method for controlling air conditioner
JP2000088363A (en) Heat pump type air conditioner
JP2853977B2 (en) Refrigeration cycle device
JPH08285383A (en) Fast cooling control method and device in freezing system
JPH11201561A (en) Heat pump type air conditioner
JP2781160B2 (en) Refrigeration system controller
JPH035681A (en) Method of sensing lack of refrigerant
Tian et al. A self-tuning fuzzy logic controller for superheat of evaporator by using electronic expansion valve