JP2945502B2 - Continuous electrolytic surface roughening method of aluminum support for offset printing plate - Google Patents

Continuous electrolytic surface roughening method of aluminum support for offset printing plate

Info

Publication number
JP2945502B2
JP2945502B2 JP10863191A JP10863191A JP2945502B2 JP 2945502 B2 JP2945502 B2 JP 2945502B2 JP 10863191 A JP10863191 A JP 10863191A JP 10863191 A JP10863191 A JP 10863191A JP 2945502 B2 JP2945502 B2 JP 2945502B2
Authority
JP
Japan
Prior art keywords
electrolytic
aluminum
treatment
surface roughening
printing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10863191A
Other languages
Japanese (ja)
Other versions
JPH04314595A (en
Inventor
旬 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP10863191A priority Critical patent/JP2945502B2/en
Publication of JPH04314595A publication Critical patent/JPH04314595A/en
Application granted granted Critical
Publication of JP2945502B2 publication Critical patent/JP2945502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はオフセット印刷版用アル
ミニウム支持体の製造方法に関するものであり、特に、
複数の電解槽のインピーダンスを略一定にコントロール
して、電解粗面化を行うことを特徴とするオフセット印
刷版用アルミニウム支持体の連続電解粗面化方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum support for an offset printing plate,
The present invention relates to a method for continuous electrolytic surface roughening of an aluminum support for an offset printing plate, wherein the electrolytic surface roughening is performed by controlling the impedance of a plurality of electrolytic cells to be substantially constant.

【0002】[0002]

【従来の技術】従来、オフセット印刷版用の支持体には
アルミニウム板が広く使用されており、その上に感光層
組成物を薄層状に塗布した、いわゆるPS版が実用に供
されている。上記アルミニウム板には通常、感光層の接
着性、非画像部の保水性或は耐摩耗性を増すために表面
処理するのが一般的である。このような表面処理では、
表面洗浄するために脱脂処理された後、表面に凹凸を付
けるために粗面化(砂目立てともいう)処理され、その
後表面硬度を増すために陽極酸化処理を施した後、必要
に応じて親水化処理されて、オフセット印刷版用支持体
とされる。
2. Description of the Related Art Conventionally, an aluminum plate has been widely used as a support for an offset printing plate, and a so-called PS plate in which a photosensitive layer composition is applied thereon in a thin layer has been put to practical use. The aluminum plate is generally subjected to a surface treatment to increase the adhesiveness of the photosensitive layer, the water retention of the non-image area or the abrasion resistance. In such a surface treatment,
After being degreased to clean the surface, it is roughened (also called graining) to make the surface uneven, and then anodized to increase the surface hardness, and then hydrophilic if necessary. After that, a support for an offset printing plate is obtained.

【0003】これらの処理のなかで粗面化処理は印刷版
の上記要求を満たすため各種の方法が実用化されてい
る。即ち、ブラシグレイニング、ボールグレイニング、
液体ホーニング等、機械的粗面化方法、塩酸或は硝酸等
による化学的エッチングによる化学的粗面化方法、或は
これらの酸による電気化学的エッチングによる電解粗面
化方法、或はこれらを組合せて粗面化する方法が知られ
ている。これらの中で電解粗面化方法は他の方法に比較
して電解液組成及び電解条件によって、砂目の形状及び
表面粗さを微妙に調整する事が可能であって、近年では
粗面化方法の中心となっている。例えば、ブラシグレイ
ニングと電解粗面化(特開昭53-123204号公報)、化学
エッチングと電解粗面化(特開昭60-208294号公報)、
液体ホーニングと電解粗面化(特開昭60-18390号公報)
等の組合せが知られている。電解粗面化法では、アルミ
ニウム表面にピットを形成され、電解時の電流密度、液
濃度、液組成、液温度等によってピットの大きさ、深
さ、ピットの分布状態を変えることが出来る。このよう
にして作られた表面の形状がオフセット印刷版用支持体
の特性に大きな影響を与えることは広く知られており、
一般には中心線表面粗さ;Raの値で0.3〜1.0μに
調整される。しかし実用上はRaの値のみでは表わせな
い複合した砂目がより好ましく、さらにより複雑な粗面
得るために電流密度を変化させて2段階に分けて電解粗
面化を行う方法も考案されている(特公昭56-51119号公
報)。
[0003] Among these treatments, various methods have been put to practical use for the surface roughening treatment in order to satisfy the above requirements of the printing plate. That is, brush graining, ball graining,
Mechanical surface roughening method such as liquid honing, chemical surface roughening method by chemical etching with hydrochloric acid or nitric acid, or electrolytic surface roughening method by electrochemical etching with these acids, or a combination of these A method for roughening the surface is known. Among these methods, the electrolytic surface roughening method can finely adjust the grain shape and surface roughness depending on the electrolytic solution composition and electrolytic conditions as compared with other methods. At the heart of the method. For example, brush graining and electrolytic surface roughening (JP-A-53-123204), chemical etching and electrolytic surface roughening (JP-A-60-208294),
Liquid honing and electrolytic surface roughening (JP-A-60-18390)
Are known. In the electrolytic surface roughening method, pits are formed on the aluminum surface, and the pit size, depth, and pit distribution can be changed depending on current density, liquid concentration, liquid composition, liquid temperature, and the like during electrolysis. It is widely known that the shape of the surface produced in this way greatly affects the properties of the offset printing plate support,
Generally, the center line surface roughness; Ra is adjusted to 0.3 to 1.0 μm. However, in practice, a composite grain that cannot be expressed only by the value of Ra is more preferable, and a method of performing electrolytic surface roughening in two stages by changing the current density in order to obtain a more complicated rough surface has been devised. (Japanese Patent Publication No. 56-51119).

【0004】一般に電解粗面化方法では、塩酸叉は硝酸
を主体とする電解液を使用し、直流或は交流電流(単相
或は3相)を流して電解される。電解粗面化処理では連
続的に移動するアルミニウム板帯に大電流を供給する必
要がある為その給電法に工夫が凝らされ、直接アルミニ
ウム板に給電端子を接触することなく、例えば単相交流
電流の場合には処理槽を2つに分けて、その両方の電極
の間に電源を接続し、3相交流の場合にはその3相の各
端子を3つの槽に分けて接続し(金属表面技術Vol30,N
o.10,1979,P541〜P546)電解液を供給して通電する、い
わゆる間接給電法が採用される。
In general, in the electrolytic surface roughening method, an electrolytic solution mainly containing hydrochloric acid or nitric acid is used, and electrolysis is performed by flowing a direct current or an alternating current (single phase or three phases). In the electrolytic surface roughening treatment, it is necessary to supply a large current to a continuously moving aluminum plate strip, so the power supply method has been devised, and without directly contacting the power supply terminal to the aluminum plate, for example, a single-phase AC current In the case of (1), the processing tank is divided into two, and a power supply is connected between both electrodes. In the case of three-phase AC, each terminal of the three phases is divided into three tanks and connected (metal surface). Technology Vol30, N
o. 10, 1979, P541 to P546) A so-called indirect power supply method in which an electrolytic solution is supplied and energized is adopted.

【0005】間接給電法による電解処理槽では一般に各
処理槽の電極と被処理アルミニウム板の間のインピーダ
ンスの整合性を得るため、同一の電解液が2槽或は3槽
に供給されて、電解処理される。この場合には電解液が
同一であるため、電流値、温度は一定とし、処理時間の
み変えて処理される。各槽に異なる電解液を供給した場
合はインピーダンスが異なり、電解はインピーダンスの
高い方に制限されて、インピーダンスの低い方の電解液
による適正な処理効果を得ることは出来ず、複合砂目を
得ることは出来ない。又、細かい砂目を得る場合には一
般に電流密度を低くしなければならないが、この場合に
は短時間処理では均一な砂目を得ることはできず、処理
速度を下げるか、処理槽を長くすることが必要となり、
生産性に乏しいのが現状である。更に、連続処理では、
一度装置を建設すると、電解槽の大きさが決まり、その
大きさに制限されて電解液改良の自由度が小さくなる。
[0005] In the electrolytic treatment tank by the indirect power supply method, the same electrolytic solution is generally supplied to two or three tanks and subjected to electrolytic treatment in order to obtain impedance matching between the electrode of each treatment tank and the aluminum plate to be treated. You. In this case, since the electrolytic solution is the same, the current value and the temperature are fixed, and the process is performed while changing only the process time. If different electrolytes are supplied to each tank, the impedance will be different, electrolysis will be limited to the higher impedance, and the proper treatment effect of the electrolyte with the lower impedance cannot be obtained, and a composite grain will be obtained. I can't do that. In addition, in order to obtain fine grain, generally the current density must be lowered, but in this case, a uniform grain cannot be obtained in a short time treatment, and the treatment speed is reduced or the treatment tank is lengthened. It is necessary to
At present, productivity is poor. Furthermore, in continuous processing,
Once the apparatus is constructed, the size of the electrolytic cell is determined, and the size is limited, and the degree of freedom in improving the electrolytic solution is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は間接給電法に
より同一電源を2槽叉は3槽の電解槽の電極に接続した
電解粗面化処理において、各処理槽に異なる電解液を供
給して、オフセット印刷版用アルミニウム支持体の複合
砂目を安定に得るための連続電解処理方法を提供するも
のである。
SUMMARY OF THE INVENTION According to the present invention, in an electrolytic graining treatment in which the same power source is connected to the electrodes of two or three electrolytic cells by an indirect power supply method, different electrolytic solutions are supplied to each of the electrolytic cells. Accordingly, the present invention provides a continuous electrolytic treatment method for stably obtaining a composite grain of an aluminum support for an offset printing plate.

【0007】[0007]

【課題を解決するための手段】本発明はアルミニウム板
帯を2槽又は3槽の電解槽を通過させて間接給電法によ
り連続電解処理する方法であって、前記2槽叉は3槽の
電解槽に同一電源を接続した電極を配し、各電解槽に異
なる電解液を供給し、該電極と被処理アルミ板帯の間の
インピーダンスを電解液の濃度、組成、温度或は電極間
距離によってコントロールし、略一定インピーダンスの
下で電解処理することを特徴とするオフセット印刷版用
アルミニウム支持体の連続電解粗面化方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for continuously electrolyzing an aluminum plate strip by an indirect power supply method by passing it through two or three electrolytic baths. Electrodes connected to the same power supply are arranged in the tank, and different electrolytic solutions are supplied to the respective electrolytic cells, and the impedance between the electrodes and the aluminum plate to be treated is determined by the concentration, composition, temperature, or distance between the electrodes of the electrolytic solution. A continuous electrolytic surface roughening method for an aluminum support for an offset printing plate, characterized in that the aluminum support for an offset printing plate is controlled and subjected to electrolytic treatment under substantially constant impedance.

【0008】本発明に使用するアルミニウム板としては
純アルミニウム及び各種の金属、例えば、珪素、マグネ
シウム、鉄、銅、亜鉛、マンガン、クロム、チタン等を
少量含むアルミニウム合金が適当である。アルミニウム
に含まれる微量の不純物金属或は任意に添加された少量
の金属は電解により得られる砂目のピットの大きさ、形
状、分布に大きな影響を与え、さらにはアルミニウム板
の強度にも大きな影響を与える為、多数の特許が出願さ
れている。本発明の連続処理方法では脱脂、粗面化、デ
スマット、陽極酸化の各処理が行われ、各処理の間で適
宜、水洗される。
As the aluminum plate used in the present invention, pure aluminum and various metals, for example, an aluminum alloy containing a small amount of silicon, magnesium, iron, copper, zinc, manganese, chromium, titanium and the like are suitable. A trace amount of impurity metal contained in aluminum or a small amount of metal added arbitrarily has a large effect on the size, shape and distribution of pits obtained by electrolysis, and also on the strength of the aluminum plate A number of patents have been filed to provide In the continuous treatment method of the present invention, each treatment of degreasing, surface roughening, desmutting and anodic oxidation is performed, and washing is appropriately performed between each treatment.

【0009】脱脂処理ではアルミニウム表面の圧延油を
除去し清浄なアルミニウム板の表面を露出させる。脱脂
処理の方法としては、例えばトリクロロエチレン、パー
クロロエチレン、等による溶剤脱脂、水酸化ナトリウ
ム、炭酸ナトリウム、メタ珪酸ナトリウム、燐酸三ナト
リウム、ピロ燐酸四ナトリウム、石鹸等、或はこれらの
混合物によるアルカリ脱脂、界面活性剤、ケロシン、ト
リエタノールアミン、水酸化ナトリウム等を組合せたエ
マルジョン脱脂、さらに上記の化学脱脂では取れない汚
染を除く仕上げ脱脂と呼ばれる電解脱脂、等の方法があ
る。叉超音波洗浄も有効である。
In the degreasing treatment, the rolling oil on the aluminum surface is removed to expose a clean aluminum plate surface. Examples of the degreasing method include solvent degreasing with, for example, trichloroethylene, perchlorethylene, etc., alkali degreasing with sodium hydroxide, sodium carbonate, sodium metasilicate, trisodium phosphate, tetrasodium pyrophosphate, soap, or a mixture thereof. Emulsion degreasing using a combination of a surfactant, kerosene, triethanolamine, sodium hydroxide, etc .; and electrolytic degreasing called finishing degreasing, which removes contamination that cannot be removed by the above chemical degreasing. Also, ultrasonic cleaning is effective.

【0010】次に本発明において粗面化処理としては電
解粗面化処理がピット状の砂目を得る上で好適である
が、補助的にさらに機械的或は化学的粗面化処理を電解
粗面化の前或は後或は前後に加えてもよい。電解粗面化
処理に使用する電流としては単相或は3相の商業用交流
或はこれらを含めた10〜100Hzの範囲内の正弦波、サイ
リスター等により交流の波形の一部がカットされた波形
の電流、正負の電流比が等しくない非対称形、対称形正
弦波、及び非正弦波、対称形非正弦波などが使用出来
る。
Next, in the present invention, as the surface roughening treatment, electrolytic surface roughening treatment is suitable for obtaining a pit-like grain, but additional mechanical or chemical surface roughening treatment is carried out. It may be added before, after or before or after roughening. The current used in the electrolytic surface roughening treatment was a single-phase or three-phase commercial AC or a part of the AC waveform cut by a sine wave, thyristor, etc. in the range of 10 to 100 Hz including these. Asymmetric current, symmetric sine wave, non-sinusoidal wave, non-sinusoidal wave, symmetrical non-sinusoidal wave, etc. in which the current of the waveform and the positive / negative current ratio are not equal can be used.

【0011】本発明の電解粗面化処理には間接給電が好
ましい。即ち、間接給電では2又は3槽の電解槽の各電
極に電源が接続され、電解液を通して被処理アルミニウ
ム板に電流が流れる。従って、この1個の電源に対する
2又は3槽の電解槽には異なる電解液を供給して、異な
る処理を行うことが可能である。即ち、1個の電源で複
合粗面化処理が可能である。しかし従来はインピーダン
スの整合性を得るため、同一の電解液が供給されてき
た。一般に電解液は化学的組成例えば塩酸と硝酸ではイ
ンピーダンスが異なり、さらに同じ化学組成でも液濃度
或は温度が上がる(或は下がり)と、インピーダンスは
下がる(或は上がる)。本発明では間接給電による電解
処理において各処理槽に異なる電解液を供給、各々循環
し、しかも各槽のインピーダンスが等しくなるように、
電解液の組成、液濃度、温度或は電極間距離を変えて調
整し、電解処理を行い、1個の電源で連続的に複合粗面
化処理を行うことを特徴とする。
In the electrolytic surface roughening treatment of the present invention, indirect power supply is preferable. That is, in the indirect power supply, a power source is connected to each electrode of two or three electrolytic cells, and a current flows to the aluminum plate to be processed through the electrolytic solution. Therefore, it is possible to supply different electrolytic solutions to the two or three electrolytic cells for one power supply to perform different processing. That is, composite roughening processing can be performed with one power supply. However, conventionally, the same electrolytic solution has been supplied to obtain impedance matching. In general, the electrolytic solution has a different impedance depending on the chemical composition, for example, hydrochloric acid and nitric acid, and the impedance decreases (or increases) as the solution concentration or the temperature increases (or decreases) even with the same chemical composition. In the present invention, in the electrolytic treatment by indirect power supply, a different electrolytic solution is supplied to each treatment tank and circulated, so that the impedance of each tank is equal,
The electrolytic solution is adjusted by changing the composition, the solution concentration, the temperature, or the distance between the electrodes of the electrolytic solution, and the composite surface roughening process is continuously performed by one power supply.

【0012】間接給電に於ける電解槽には槽間でアルミ
板帯を一度液外上方のロールに持ち上げて次の槽に通す
2槽或は3槽式と、処理面の高さを変えることなく槽間
を間隔の狭いスリットで仕切り、電解液の漏出を極力少
なくし、更にスキージロールで電解液を絞り取りながら
ストレートに電解処理するスリット式があるが、槽間に
於て前後の電解液の分離が出来れば、どちらでも使用可
能である。前後の異なる電解液が混入するのを防止する
為、必要に応じて槽間で水洗をくわえてもよい。アルミ
ニウム板に供給される電力は電解液の組成、温度、電極
間距離等により変わるが、印刷版として適切な砂目を得
るためには、一般に、電圧では、1〜60V、電流密度
では5〜60A/dm2、電気量では50〜4000クーロンの
範囲で使われる。又電解液の温度は0〜60℃、電極と
アルミニウム板との距離は1〜10cmの範囲が好まし
い。
In the indirect power supply, the height of the treated surface is changed to a two- or three-tank type in which an aluminum plate band is once lifted by an upper roll outside the liquid and passed to the next tank. There is a slit type that separates the tanks with narrow gaps, minimizes leakage of the electrolyte, and squeezes the electrolyte with a squeegee roll to straighten the electrolytic treatment. Either can be used as long as it can be separated. In order to prevent mixing of different electrolyte solutions before and after, washing between the tanks may be added as necessary. The power supplied to the aluminum plate varies depending on the composition of the electrolytic solution, the temperature, the distance between the electrodes, and the like. However, in order to obtain an appropriate grain for the printing plate, generally, the voltage is 1 to 60 V and the current density is 5 to 60 V. It is used in the range of 50-4000 coulombs in terms of electricity at 60 A / dm 2 . The temperature of the electrolytic solution is preferably 0 to 60 ° C., and the distance between the electrode and the aluminum plate is preferably 1 to 10 cm.

【0013】電解液としては硝酸或はその塩、塩酸或は
その塩、或はそれらの1種或は2種以上の混合物の水溶
液が使用出来る。さらに必要に応じて硫酸、燐酸、クロ
ム酸、ほう酸、有機酸、或はそれらの塩、硝酸塩、塩化
物、アンモニウム塩、アミン類、界面活性剤、その他の
腐食促進剤、腐食抑制剤、安定化剤等を加えて使用して
もよい。電解液の濃度としては上記の酸類の濃度が0.
1〜10重量%であり、電解液中のアルミニウムイオン
の濃度を0〜10g/リットルの範囲に維持したものが好ま
しい。電解祖面化処理では電解の進行により、アルミニ
ウムがとけ込み、酸類が消費されるので、電解液の組成
が所定の設定範囲をはずれないように、電解液の一部を
廃棄しながら、酸類を補給していく、電解液の液管理の
ための補充装置の設置が好ましい。
As the electrolyte, an aqueous solution of nitric acid or a salt thereof, hydrochloric acid or a salt thereof, or one or a mixture of two or more thereof can be used. If necessary, sulfuric acid, phosphoric acid, chromic acid, boric acid, organic acids or their salts, nitrates, chlorides, ammonium salts, amines, surfactants, other corrosion promoters, corrosion inhibitors, stabilization An agent or the like may be added for use. As the concentration of the electrolytic solution, the concentration of the above-mentioned acids was set at 0.1.
Preferably, the concentration is 1 to 10% by weight, and the concentration of aluminum ions in the electrolyte is maintained in the range of 0 to 10 g / liter. In the electrolytic surface roughening treatment, aluminum is melted and acids are consumed by the progress of electrolysis, so that a part of the electrolyte is discarded while removing a part of the electrolyte so that the composition of the electrolyte does not deviate from a predetermined set range. It is preferable to provide a replenishing device for replenishing the electrolyte solution.

【0014】上記のようにして電解粗面化処理されたア
ルミニウム板帯は充分に水洗されるが、その表面には通
常スマットが付着して、水洗のみでは取れず、ピットを
塞いでいる。そのスマットを除去するため、デスマット
処理が施される。デスマット処理には、通常、脱脂処理
に使用される、アルカリ剤が使用できる。デスマット処
理ではスマットが溶解し、ピット面が現われる。その溶
解量は前記電解液による処理条件によって異なるが、
0.1〜1g/m2が適当である。デスマットされた粗面化
されたアルミニウム板帯は、通常次に陽極酸化処理が施
される。陽極酸化処理ではアルミ表面にアルミの酸化膜
が生成し、表面の変性を防止するだけでなく、表面硬度
が著しく向上し、印刷時の耐刷性が向上する。酸化膜は
陽極にのみ生成するので、電流は通常直流電流が使用さ
れる。電解液としては、硫酸、蓚酸、クロム酸、燐酸等
の生成酸化膜の溶解性の低い酸が使用される。陽極酸化
の条件としては、液濃度1〜40%、電流密度0.1〜
10A/dm2の範囲で使用され、必要な膜厚を得るまで陽
極酸化される。温度は酸化膜の硬度に影響を与え、低温
の方が硬度は高くなるが、脆くなるため、通常は常温付
近の温度で陽極酸化される。陽極酸化膜の厚みは印刷版
の耐刷グレードによって適宜調整されるが、0.1〜2
μm で充分である。
The aluminum plate strip which has been subjected to the electrolytic surface roughening treatment as described above is sufficiently washed with water. However, smut usually adheres to the surface of the strip, and the pits cannot be removed only by washing with water, but are closed. In order to remove the smut, a desmutting process is performed. For the desmutting treatment, an alkali agent usually used for a degreasing treatment can be used. In the desmut treatment, the smut dissolves and a pit surface appears. The amount of the dissolution varies depending on the treatment conditions with the electrolytic solution,
0.1 to 1 g / m 2 is appropriate. The desmutted roughened aluminum strip is then usually anodized. In the anodizing treatment, an aluminum oxide film is formed on the aluminum surface, not only preventing the surface from being denatured, but also significantly improving the surface hardness and improving the printing durability during printing. Since an oxide film is formed only on the anode, a direct current is usually used as the current. As the electrolyte, an acid having low solubility of the formed oxide film, such as sulfuric acid, oxalic acid, chromic acid, or phosphoric acid, is used. The conditions of the anodic oxidation were as follows: solution concentration 1 to 40%, current density 0.1 to 0.1%.
Used in the range of 10 A / dm 2 and anodized until the required film thickness is obtained. The temperature affects the hardness of the oxide film, and the lower the temperature, the higher the hardness. The thickness of the anodic oxide film is appropriately adjusted depending on the printing durability of the printing plate.
μm is sufficient.

【0015】このようにして得られたオフセット印刷版
用支持体には、従来より知られている感光層を設けて、
オフセット印刷版、或は感光性平版印刷版とし、実用に
供せられる。感光層としては、例えばポリビニルアルコ
ールと重クロム酸塩類、ジアゾ樹脂とアクリル酸エステ
ル類、o−キノンジアジド化合物とノボラック型フェノ
ール又はクレゾール樹脂、フェニレンジアクリル酸型光
架橋性ポリマー、付加重合性エチレン化合物とアルカリ
可溶性樹脂から成る光重合型フォトポリマー、等があ
る。さらに、光導電性感光層として、無機或は有機の光
導電性物質とアルカリ可溶性樹脂から成る感光層を設け
ることが出来る。さらにハロゲン化銀感光層も設けるこ
ともできる。このようにして得られた平版印刷版はポジ
あるいはネガのフィルム原稿を密着露光したり、レーザ
ーによる画像露光により、画像形成され、アルカリ、ア
ルコール等の溶出液により非画像部を溶出して、製版さ
れ、印刷機に供給される。以下、実施例によって本発明
の連続電解粗面化方法をさらに詳しく説明する。
The support for offset printing plate thus obtained is provided with a conventionally known photosensitive layer,
It is used as an offset printing plate or a photosensitive lithographic printing plate for practical use. As the photosensitive layer, for example, polyvinyl alcohol and dichromates, diazo resin and acrylates, o-quinonediazide compound and novolak-type phenol or cresol resin, phenylenediacrylic acid-type photocrosslinkable polymer, and addition-polymerizable ethylene compound There is a photopolymerizable photopolymer composed of an alkali-soluble resin, and the like. Further, as the photoconductive photosensitive layer, a photosensitive layer composed of an inorganic or organic photoconductive substance and an alkali-soluble resin can be provided. Further, a silver halide photosensitive layer may be provided. The lithographic printing plate thus obtained is subjected to close exposure of a positive or negative film original or image formation by image exposure with a laser, and the non-image portion is eluted with an eluate such as an alkali or alcohol to make a plate. And supplied to the printing press. Hereinafter, the continuous electrolytic surface roughening method of the present invention will be described in more detail with reference to examples.

【0016】[0016]

【実施例】【Example】

実施例1 幅300mm、厚み0.3mmのA1050タイプアルミニ
ウム板帯を2m/min の処理速度で移動させ、50℃、4
%苛性ソーダに30秒間浸漬した後、水洗し、下記の条
件で2槽タイプの液体間接給電方式の電解槽に通しなが
ら、675A、50Hzの単相交流電流で45秒間交流
電解粗面化し、水洗し、その後25℃、4%苛性ソーダ
に30秒間浸漬してデスマットし、水洗し、その後25
℃、15%硫酸中に45秒間通して135Aの直流電流
で陽極酸化し、水洗し、その後乾燥して、オフセット印
刷版用アルミニウム支持体を得た。 第1槽 電解液:1.5% 塩酸 温度:25℃ アルミ−電極間 5cm 第2槽 電解液:2.0% 硝酸 温度:20℃ アルミ−電極間 5cm
Example 1 An A1050 type aluminum plate strip having a width of 300 mm and a thickness of 0.3 mm was moved at a processing speed of 2 m / min.
Immersion in 30% caustic soda for 30 seconds, rinsed with water, passed through a two-cell type liquid indirect power supply type electrolytic cell under the following conditions, roughened with an 675 A, 50 Hz single-phase AC current for 45 seconds, and rinsed with water. And then immersed in 4% caustic soda for 30 seconds at 25 ° C., desmutted, washed with water,
Anodized with a direct current of 135 A through a 45 ° C., 15% sulfuric acid for 45 seconds, washed with water, and then dried to obtain an aluminum support for offset printing plates. First tank Electrolyte: 1.5% hydrochloric acid Temperature: 25 ° C Aluminum-electrode 5cm Second tank Electrolyte: 2.0% Nitric acid Temperature: 20 ° C Aluminum-electrode 5cm

【0017】電解中各槽のインピーダンスを別個に管理
するため、モニター電極を設置して監視したところ、両
槽のインピーダンスは常に同じ値を示した。このように
して得られた支持体にフタロシアニンとアルカリ可溶性
アクリル樹脂よりなる電子写真感光層を塗布し、電子写
真方式によりトナー画像を形成し、非画像部を溶出除去
して製版したところ良好な平版印刷版適性を示した。比
較のため第1槽および第2槽の各電解液を両槽とも同じ
電解液を満たし、電解粗面化処理したところ、いずれも
表面が粗く不均一で電流密度、温度を変えても、実施例
1のような細かい均一な粗面は得られなかった。
In order to separately control the impedance of each tank during electrolysis, a monitor electrode was installed and monitored, and the impedance of both tanks always showed the same value. An electrophotographic photosensitive layer composed of phthalocyanine and an alkali-soluble acrylic resin was applied to the support thus obtained, and a toner image was formed by an electrophotographic method. The printing plate suitability was shown. For comparison, each of the first and second tanks was filled with the same electrolyte and subjected to electrolytic surface-roughening treatment. A fine uniform rough surface as in Example 1 was not obtained.

【0018】実施例2 幅300mm、厚み0.3mmのA1100タイプアルミニ
ウム板帯を2m/min の処理速度で移動させながら、50
℃、4%苛性ソーダ に30秒間浸漬した後、水洗し、
下記の条件で2槽タイプの液体間接給電方式の電解槽に
45秒間通して、400Aの単相交流電流で交流電解粗
面化し、水洗し、その後25℃、4%苛性ソーダに30
秒間浸漬してデスマットし、水洗し、その後25℃、1
5%硫酸中に通して、135Aの直流電流で陽極酸化
し、水洗し、その後乾燥してアルミニウム平版印刷版用
支持体を得た。 第1槽 電解液:1.4% 塩酸 温度:35℃ アルミ−電極間 5cm 第2槽 電解液:2.0% 塩酸 温度:5℃ アルミ−電極間 5cm 電解中各槽のインピーダンスは常に同じ値を示した。こ
のようにして得られた支持体は実施例1と同様良好な平
版印刷版適性を示した。
Example 2 An A1100 type aluminum plate strip having a width of 300 mm and a thickness of 0.3 mm was moved at a processing speed of 2 m / min.
After immersing in 4% caustic soda for 30 seconds, wash with water,
Under the following conditions, the solution is passed through a two-cell type liquid indirect power supply type electrolytic cell for 45 seconds, subjected to AC electrolytic surface roughening with a single-phase AC current of 400 A, washed with water, and then washed at 25 ° C with 4% caustic soda for 30 minutes.
Immersed for 2 seconds, desmutted, washed with water, then 25 ° C, 1
The solution was passed through 5% sulfuric acid, anodized with a direct current of 135 A, washed with water, and then dried to obtain a support for an aluminum lithographic printing plate. First tank Electrolyte: 1.4% Hydrochloric acid Temperature: 35 ° C 5cm between aluminum and electrodes Second tank Electrolyte: 2.0% Hydrochloric acid temperature: 5 ° C 5cm between aluminum and electrodes Impedance of each tank during electrolysis is always the same value showed that. The support thus obtained showed good suitability for a lithographic printing plate as in Example 1.

【0019】実施例3 幅300mm、厚み0.3mmのA1050タイプアルミニ
ウム板帯を2m/min の処理速度で移動させながら、50
℃、4%苛性ソーダ に30秒間浸漬した後、水洗し、
下記の条件で2槽タイプの液体間接給電方式の電解槽に
30秒間通して、525Aの単相交流電流で交流電解粗
面化し、水洗し、その後25℃、4%苛性ソーダにて3
0秒間浸漬してデスマットし、水洗し、その後25℃、
15%硫酸中に通して、135Aの直流電流で陽極酸化
し、水洗し、その後乾燥してオフセット印刷版用アルミ
ニウム支持体を得た。 第1槽 電解液:1.4% 塩酸 温度:10℃ アルミ−電極間 3cm 第2槽 電解液:2.0% 塩酸 温度:10℃ アルミ−電極間 4.5cm
Example 3 While moving an A1050 type aluminum plate strip having a width of 300 mm and a thickness of 0.3 mm at a processing speed of 2 m / min, a 50
After immersing in 4% caustic soda for 30 seconds, wash with water,
Under the following conditions, the solution is passed through a two-cell type liquid indirect power supply type electrolytic cell for 30 seconds to roughen the AC electrolytic surface with a single-phase AC current of 525 A, rinse with water, and then wash at 25 ° C. with 4% caustic soda.
Desmut by immersing for 0 seconds, washing with water, then 25 ° C,
It was passed through 15% sulfuric acid, anodized with a direct current of 135 A, washed with water, and then dried to obtain an aluminum support for offset printing plates. 1st tank Electrolyte: 1.4% hydrochloric acid Temperature: 10 ° C Aluminum-electrode 3cm 2nd tank Electrolyte: 2.0% hydrochloric acid Temperature: 10 ° C Aluminum-electrode 4.5cm

【0020】電解中各槽のインピーダンスは常に同じ値
を示した。このようにして得られた支持体は実施例1と
同様良好な平版印刷版適性を示した。比較のため第1槽
および第2槽の各電解液を両槽とも同じ電解液を満た
し、電極間距離を同一にして電解粗面化処理したとこ
ろ、1.4%では表面が粗く不均一で電流密度、温度を
変えても適正な粗面は得られなかった。又、2.0%で
はスマットの付着が多く、局部的なピットが発生し、良
好な粗面は得られなかった。
During the electrolysis, the impedance of each tank always showed the same value. The support thus obtained showed good suitability for a lithographic printing plate as in Example 1. For comparison, each of the first and second tanks was filled with the same electrolyte, and the surface between the electrodes was roughened with the same distance between the electrodes. An appropriate rough surface could not be obtained even when the current density and temperature were changed. At 2.0%, smut adhered much, local pits were generated, and a good rough surface could not be obtained.

【0021】実施例4 幅300mm、厚み0.3mmのA1050タイプアルミニ
ウム板帯を2m/min の処理速度で移動させながら、50
℃、4%苛性ソーダに30秒間浸漬した後、水洗し、下
記の条件で3槽タイプの液体間接給電方式の電解槽に4
5秒間通して、450Aの3相交流電流で交流電解粗面
化し、水洗し、その後25℃、4%苛性ソーダに30秒
間浸漬してデスマットし、水洗し、その後25℃、15
%硫酸中に通して、135Aの直流電流で陽極酸化し、
水洗し、その後乾燥してアルミニウム平版印刷版用支持
体を得た。 第1槽 電解液:1.4% 塩酸 温度:10℃ アルミ−電極間 3cm 第2槽 電解液:2.0% 塩酸 温度:10℃ アルミ−電極間 4.5cm 第3槽 電解液:2.2% 硝酸 温度:15℃ アルミ−電極間 5cm 電解中各槽のインピーダンスは常に同じ値を示した。こ
のようにして得られた支持体は実施例1と同様良好な平
版印刷版適性を示した。
Example 4 While moving an A1050 type aluminum sheet strip having a width of 300 mm and a thickness of 0.3 mm at a processing speed of 2 m / min,
Immersed in 4% caustic soda for 30 seconds, washed with water, and placed in a three-cell type indirect liquid supply type electrolytic cell under the following conditions.
After passing through for 5 seconds, AC electrolytic surface roughening was performed with a three-phase AC current of 450 A, washed with water, then immersed in 25% C. 4% caustic soda for 30 seconds, desmutted, washed with water, and then washed with 25 ° C., 15%
% Sulfuric acid and anodized with 135 A direct current,
After washing with water and drying, a support for an aluminum lithographic printing plate was obtained. First tank Electrolyte: 1.4% hydrochloric acid Temperature: 10 ° C Aluminum-electrode 3cm 2nd tank Electrolyte: 2.0% Hydrochloric acid temperature: 10 ° C Aluminum-electrode 4.5cm Third tank Electrolyte: 2. 2% nitric acid Temperature: 15 ° C Aluminum-electrode 5 cm During electrolysis, the impedance of each tank always showed the same value. The support thus obtained showed good suitability for a lithographic printing plate as in Example 1.

【0022】[0022]

【発明の効果】本発明の電解粗面化処理法により、電解
粗面化処理条件の自由度が増し、1個の電源で、局部ピ
ットのない細かい複合砂目を短時間処理で安定して得る
ことが出来る。
According to the electrolytic graining treatment method of the present invention, the degree of freedom of the electrolytic graining treatment condition is increased, and a single power supply can stably remove fine composite grain without local pits in a short time. Can be obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム板帯を2槽又は3槽の電解
槽を通過させて間接給電法により連続電解処理する方法
であって、前記2槽叉は3槽の電解槽に同一電源を接続
した電極を配し、各電解槽に異なる電解液を供給し、該
電極と被処理アルミ板帯の間のインピーダンスを電解液
の濃度、組成、温度或は電極間距離によってコントロー
ルし、略一定インピーダンスの下で電解処理することを
特徴とするオフセット印刷版用アルミニウム支持体の連
続電解粗面化方法。
1. A method in which an aluminum plate strip is passed through two or three electrolytic baths to perform continuous electrolytic treatment by an indirect power supply method, wherein the same power supply is connected to the two or three electrolytic baths. Electrodes are arranged, different electrolytic solutions are supplied to each electrolytic cell, and the impedance between the electrodes and the aluminum strip to be treated is controlled by the concentration, composition, temperature or distance between the electrodes of the electrolytic solution, and a substantially constant impedance is obtained. A method for continuous electrolytic surface roughening of an aluminum support for offset printing plates, wherein the electrolytic treatment is performed under the following conditions.
JP10863191A 1991-04-12 1991-04-12 Continuous electrolytic surface roughening method of aluminum support for offset printing plate Expired - Lifetime JP2945502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10863191A JP2945502B2 (en) 1991-04-12 1991-04-12 Continuous electrolytic surface roughening method of aluminum support for offset printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10863191A JP2945502B2 (en) 1991-04-12 1991-04-12 Continuous electrolytic surface roughening method of aluminum support for offset printing plate

Publications (2)

Publication Number Publication Date
JPH04314595A JPH04314595A (en) 1992-11-05
JP2945502B2 true JP2945502B2 (en) 1999-09-06

Family

ID=14489696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10863191A Expired - Lifetime JP2945502B2 (en) 1991-04-12 1991-04-12 Continuous electrolytic surface roughening method of aluminum support for offset printing plate

Country Status (1)

Country Link
JP (1) JP2945502B2 (en)

Also Published As

Publication number Publication date
JPH04314595A (en) 1992-11-05

Similar Documents

Publication Publication Date Title
EP1046514B1 (en) Method for producing aluminium support for lithographic printing plate
JPS6282089A (en) Preparation of support for planographic printing plate
JPH03257199A (en) Production of aluminum base for printing plate
JP2945502B2 (en) Continuous electrolytic surface roughening method of aluminum support for offset printing plate
JP2001011698A (en) Surface roughening method and manufacture of aluminum supporting body for lithographic printing plate
JP3162115B2 (en) Continuous electrolytic surface roughening method for aluminum support for offset printing plate
JP3695618B2 (en) Method for producing aluminum support for lithographic printing plate
JP2001121837A (en) Method for manufacturing aluminum base for lithographic printing plate
JPH11240275A (en) Manufacture of aluminum carrier for lithographic plate
JP3717025B2 (en) Method for producing aluminum support for lithographic printing plate
JPS6151396A (en) Preparation of support for planographic printing plate
JPH10183400A (en) Surface roughening method for aluminum plate
JP2000301850A (en) Manufacture of aluminum support for lithographic printing plate
JP2011047019A (en) Aluminum alloy sheet for planographic printing plate and support for planographic printing plate
JP2001011699A (en) Manufacture of aluminum supporting body for lithographic printing plate
JP2000318338A (en) Manufacture of printing plate
JP3113409B2 (en) Method for producing aluminum support for lithographic printing plate
JP3787735B2 (en) Method for producing aluminum support for lithographic printing plate and support
JPH09277735A (en) Manufacture of aluminum supporting body for lithographic printing plate
JP2686955B2 (en) Method for producing aluminum support for lithographic printing plate
JPH1111035A (en) Manufacture of aluminum supporting body for planographic printing plate
JPS63176188A (en) Method for removing smut of printing base material
JPH0532082A (en) Continuous electrolytic roughing treatment for surface of aluminum support body for offset printing plate
JPH054468A (en) Continuous electrolytic surface roughening method for aluminum support body for offset printing plate
JPH10130897A (en) Aluminum plate and its surface roughening method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11