JP2941138B2 - Γ-ray and neutron flux measurement equipment in the reactor - Google Patents
Γ-ray and neutron flux measurement equipment in the reactorInfo
- Publication number
- JP2941138B2 JP2941138B2 JP5024107A JP2410793A JP2941138B2 JP 2941138 B2 JP2941138 B2 JP 2941138B2 JP 5024107 A JP5024107 A JP 5024107A JP 2410793 A JP2410793 A JP 2410793A JP 2941138 B2 JP2941138 B2 JP 2941138B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- neutron flux
- measuring
- ray
- rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Measurement Of Radiation (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は原子炉停止時に原子炉内
のγ線および中性子束を簡便に測定する装置に係わり、
水中仕様であり、使用済み燃料体が貯蔵保管されている
プール内等の高線量当量率の機材が水中で保管あるいは
使用されている箇所の測定にも適用可能なγ線・中性子
束測定装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for easily measuring gamma rays and neutron flux in a reactor when the reactor is shut down,
A gamma-ray / neutron flux measurement device that is underwater specification and can be used to measure locations where equipment with a high dose equivalent rate is stored or used in water, such as in a pool where spent fuel bodies are stored and stored Things.
【0002】[0002]
【従来の技術】従来、原子炉停止時における原子炉内の
γ線や中性子束に関しては、予測解析コードによる計算
により求め、この計算結果をもとに原子炉停止時の炉心
管理及び原子炉内部構造物の検査装置開発に係わる耐放
射線性の設計や照射試験に反映することが行われてい
る。2. Description of the Related Art Conventionally, gamma rays and neutron flux in a reactor when the reactor is shut down are obtained by calculation using a prediction analysis code, and based on the calculation results, core management when the reactor is shut down and the inside of the reactor are calculated. This is reflected in the design of radiation resistance and irradiation tests related to the development of inspection equipment for structures.
【0003】[0003]
【発明が解決しようとする課題】しかし、実際に原子炉
内のγ線や中性子束を測定したデータがなかったために
予測解析コードの精度が不明であり、炉心管理や検査装
置の開発にあたってはマージンを見込む等の対応が必要
であった。そこで、原子炉停止時における原子炉内のγ
線や中性子束を簡便に測定し、予測解析コードの精度評
価や見直しを行うと共に、原子炉停止時の炉心管理およ
び原子炉内部構造物の検査装置開発に係わる設計に反映
することが望まれていたが、測定にあたっては以下のよ
うな解決すべき課題があった。However, the accuracy of the predictive analysis code is unknown because there is no actual measurement data of gamma rays and neutron flux in the reactor, and there is a margin in developing core management and inspection equipment. It was necessary to take measures such as anticipation. Therefore, γ in the reactor when the reactor is stopped
It is desirable to easily measure the wires and neutron flux, evaluate and review the accuracy of the prediction analysis code, and reflect it in the design related to the core management when the reactor is shut down and the development of inspection equipment for reactor internal structures. However, the measurement had the following problems to be solved.
【0004】ふげん発電所の場合、原子炉は燃料体を
装着する圧力管と呼ばれる内径約120mmの細長い管
が格子状に竪に224本並べられて構成されており、そ
のため、測定にあたってはこの圧力管内に装置を挿入す
る必要があり、外径の大きさに制限がある。[0004] In the case of the Fugen power plant, the reactor is composed of 224 elongated tubes having an inner diameter of about 120 mm, called pressure tubes, on which a fuel body is mounted. It is necessary to insert the device into the pressure tube, and the size of the outer diameter is limited.
【0005】原子炉内のγ線や中性子束は縦軸方向の
分布に違いを有しており、この分布性を測定するために
原子炉を構成する圧力管長さ約5mの全領域を測定する
必要がある。The distribution of gamma rays and neutron fluxes in the reactor has a difference in the direction of the vertical axis. To measure this distribution, the entire area of the pressure tube constituting the reactor having a length of about 5 m is measured. There is a need.
【0006】測定する圧力管1本の冷却水(軽水)の
抜き出しは構造的にできず、また、全体の冷却水の抜き
出しも他の圧力管に燃料体が装荷されていることから不
可能で、このため装置は水中仕様とする必要がある。[0006] The cooling water (light water) of one pressure pipe to be measured cannot be withdrawn structurally, and the entire cooling water cannot be withdrawn because the fuel body is loaded in another pressure pipe. Therefore, the device needs to be underwater.
【0007】原子炉を構成する圧力管を開閉する箇所
は最下端にあり、そのシールは特殊なプラグによってな
されているため、装置を圧力管内に挿入した場合には冷
却水のシールのためこのプラグを再装着することから装
置より信号ケーブルを引き回すことはできない。[0007] The opening and closing of the pressure pipe constituting the reactor is located at the lowermost end, and the seal is made by a special plug. When the apparatus is inserted into the pressure pipe, this plug is used to seal the cooling water. Therefore, the signal cable cannot be routed from the device.
【0008】構造上から直接人手により測定すること
ができない。[0008] It cannot be directly measured manually from the structural point of view.
【0009】本発明はかかる事情に鑑みてなされたもの
であり、原子炉停止時に原子炉内のγ線及び中性子束を
原子炉内の冷却水を抜き出さずに、水中でかつ非常に簡
便に測定することができる原子炉内γ線・中性子束測定
装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and makes it possible to easily convert γ-rays and neutron flux in a reactor into water without extracting cooling water from the reactor when the reactor is shut down. It is an object of the present invention to provide a gamma-ray / neutron flux measuring device in a nuclear reactor capable of measuring.
【0010】[0010]
【課題を解決するための手段】本発明の原子炉内γ線・
中性子束測定装置は、燃料体とほぼ同じサイズで圧力管
内に装着される密閉構造容器内部にアルミ棒が設けら
れ、該アルミ棒に沿って大放射線量測定用線量計あるい
は中性子束測定用放射箔が貼り付けられていることを特
徴とする。SUMMARY OF THE INVENTION A gamma ray in a nuclear reactor of the present invention is provided.
The neutron flux measuring device is provided with an aluminum rod inside a hermetically sealed container which is almost the same size as the fuel body and is mounted in the pressure pipe, and along with the aluminum rod, a dosimeter for measuring a large radiation dose or a radiation foil for measuring a neutron flux. Is affixed.
【0011】[0011]
【作用】本発明は原子炉内γ線及び中性子束の測定容器
の大きさを燃料体とほぼ同じ程度として圧力管内に挿入
できるようにするとともに、密閉容器構造とし、密閉容
器内にアルミ棒を設けてγ線測定時には大放射線量測定
用線量計を、また中性子束測定時には放射箔をアルミ棒
の全長にわたって貼りつけて測定するようにしたので、
原子炉内のγ線および中性子束を冷却水を抜き出さずに
水中でかつ非常に簡便に測定することが可能となる。According to the present invention, the measurement container for measuring γ-rays and neutron flux in a nuclear reactor is made approximately the same size as the fuel body so that it can be inserted into the pressure tube, and has a closed container structure. When measuring γ-rays, a dosimeter for measuring large radiation dose was used, and when measuring neutron flux, radiation foil was applied over the entire length of the aluminum rod to measure.
The gamma rays and neutron flux in the reactor can be measured in water and very easily without extracting cooling water.
【0012】[0012]
【実施例】ふげん発電所の原子炉の構造は、図2に示す
ように、格納容器8内に長さ約5m、内径約120mm
の圧力管3が格子状に竪に224本並べられ、この圧力
管各1本毎にそれぞれ燃料体4が装荷されて構成されて
いる。原子炉停止時の燃料体4の取り替えは、燃料交換
機9により遠隔操作で行われ、圧力管3内の原子炉冷却
水をシールしているシールプラグ1も同時に着脱、交換
される。なお、燃料交換機9内にも原子炉冷却水と同じ
軽水が満たされており、これら交換作業は全て水中で行
われる。また、原子炉停止時の原子炉内γ線・中性子束
測定容器5は燃料体4と同程度の大きさとし、燃料体4
の交換作業と同じように燃料交換機9により圧力管3内
に装着したり、取り出したりできるようになっている。
この原子炉から蒸気ドラム10により取り出された蒸気
はタービン11を回し、発電機12を駆動して発電して
いる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 2, the structure of the nuclear reactor of the Fugen power station is as follows:
224 pressure pipes 3 are vertically arranged in a grid pattern, and a fuel body 4 is loaded on each of the pressure pipes. The replacement of the fuel assembly 4 when the reactor is stopped is performed by remote control by the refueling machine 9, and the seal plug 1 sealing the reactor cooling water in the pressure pipe 3 is also detached and replaced at the same time. The refueling machine 9 is also filled with the same light water as the reactor cooling water, and these replacement operations are all performed underwater. In addition, the vessel 5 for measuring γ-rays and neutron flux in the reactor when the reactor is stopped has the same size as the fuel body 4,
In the same manner as in the replacement work, the fuel exchanger 9 can be mounted in or taken out of the pressure pipe 3.
The steam extracted from the reactor by the steam drum 10 rotates the turbine 11 and drives the generator 12 to generate power.
【0013】図1は原子炉を構成する圧力管224本の
うち、1本を拡大し、通常の燃料体装荷状態(図1
(a))と、測定容器装着状態(図1(b))を比較し
て示したもので、図1(c)は測定容器5の部分拡大図
である。図1(a)に示す通常の場合では、圧力管3の
下端に原子炉冷却水をシールするシールプラグ1が、そ
の上にしゃへいプラグ2が装着されており、燃料体4は
このしゃへいプラグ2と連結されて保持されている。原
子炉内γ線・中性子束測定時には、前述したように燃料
交換機により測定容器5が燃料体4の代わりにしゃへい
プラグ2と連結されて圧力管3内に装着される。測定容
器5は密閉容器となっており、この中に市販されている
小型の測定器として、γ線測定時には大放射線量測定用
線量計を、また中性子束測定時には放射箔をアルミ棒6
に全長にわたって任意の箇所に取り付けて測定容器5内
に挿入しておくことにより原子炉内のγ線や中性子束を
測定する。なお、大放射線量測定用線量計は、原子炉内
のγ線照射により着色が発生し、この着色の程度を分光
光度計により測定してγ線の強度を定量化するものであ
り、放射箔は中性子の照射により生成する核種および生
成核種の半減期をゲルマニウム半導体検出器により測定
して中性子束を定量化するものである。FIG. 1 is an enlarged view of one of 224 pressure tubes constituting a nuclear reactor, showing a normal fuel body loading state (FIG. 1).
FIG. 1A is a comparison between the measurement container mounted state (FIG. 1B) and FIG. 1C is a partially enlarged view of the measurement container 5. In the normal case shown in FIG. 1 (a), a seal plug 1 for sealing the reactor cooling water is mounted at the lower end of the pressure pipe 3, and a shielding plug 2 is mounted thereon. It is connected and held. When measuring γ-rays and neutron flux in the reactor, the measurement vessel 5 is connected to the shielding plug 2 instead of the fuel body 4 by the fuel exchanger and mounted in the pressure pipe 3 as described above. The measuring container 5 is a closed container. As a small measuring device commercially available, a dosimeter for measuring a large radiation dose is used for measuring γ-rays, and a radiation foil is used for measuring a neutron flux.
The γ-rays and the neutron flux in the reactor are measured by being attached to an arbitrary position over the entire length and inserted into the measurement vessel 5. The dosimeter for measuring large radiation dose is colored by gamma ray irradiation in the reactor, and the degree of this coloring is measured by a spectrophotometer to quantify the intensity of gamma rays. Is to quantify the neutron flux by measuring the nuclides produced by neutron irradiation and the half-life of the produced nuclides with a germanium semiconductor detector.
【0014】このように原子炉内γ線及び中性子束の測
定容器の大きさを燃料体とほぼ同じ程度とし、密閉容器
構造としてこの中に大放射線量測定用線量計あるいは中
性子束測定時の放射箔をアルミ棒全長にわたって貼り付
けることにより容易に冷却水を抜き出さずに水中でγ線
及び中性子束を測定することが可能となる。[0014] As described above, the size of the measuring vessel for gamma rays and neutron flux in the reactor is made substantially the same as that of the fuel body, and a radiation dose for measuring a large radiation dose or a neutron flux is formed in a closed vessel structure. By attaching the foil over the entire length of the aluminum rod, it is possible to easily measure γ-rays and neutron flux in water without extracting cooling water.
【0015】[0015]
【発明の効果】以上のように本発明によれば、原子炉内
は非常に狭隘な構造となっているものの、燃料体に代わ
りにいかなる位置にも測定容器を装着することができ、
また原子炉の高さ(圧力管の長さ)方向の全領域の測定
が可能となる。また、原子炉内の測定容器の装着及び取
り出しは燃料交換機により遠隔操作で行うことができ、
原子炉内の冷却水の抜き出しを行う必要がなく、水中に
おける測定が可能である。さらに大放射線量測定用線量
計や中性子束測定時の放射箔は原子炉内で照射させた
後、測定容器から取り出して定量化するため信号ケーブ
ルを引き回す必要がなく、また大放射線量測定用線量計
や放射箔は密閉容器内に挿入されているため、原子炉冷
却水に曝されないことから、放射性物質による汚染がな
く、定量化に伴う計測装置の制限等その取扱いが非常に
簡略化できる。As described above, according to the present invention, although the inside of the reactor has a very narrow structure, the measuring vessel can be mounted at any position instead of the fuel body.
In addition, it is possible to measure the entire area in the height direction of the reactor (the length of the pressure tube). In addition, mounting and unloading of the measurement vessel in the reactor can be performed remotely by a refueling machine,
There is no need to extract the cooling water from the reactor, and measurement in water is possible. Furthermore, dosimeters for measuring large radiation doses and radiation foils for measuring neutron flux are irradiated in the reactor, then removed from the measurement container and quantified, eliminating the need to route a signal cable. Since the meter and the radiating foil are inserted in the closed vessel, they are not exposed to the reactor cooling water, so that there is no contamination by radioactive substances, and the handling such as limitation of the measuring device accompanying quantification can be greatly simplified.
【図1】 本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.
【図2】 原子炉の構造を説明する図である。FIG. 2 is a diagram illustrating the structure of a nuclear reactor.
1…シールプラグ、2…しゃへいプラグ、3…圧力管、
4…燃料体、5…測定容器、6…アルミ棒、7…大放射
線量測定用線量計又は放射箔、8…格納容器、9…燃料
交換機、10…蒸気ドラム、11…タービン、12…発
電機。1 ... Seal plug, 2 ... Shield plug, 3 ... Pressure tube,
4 ... Fuel body, 5 ... Measurement vessel, 6 ... Aluminum rod, 7 ... Dosimeter or radiation foil for large radiation dose measurement, 8 ... Container, 9 ... Fuel exchanger, 10 ... Steam drum, 11 ... Turbine, 12 ... Power generation Machine.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01T 3/00 G01T 1/04 G21C 17/108 G21C 17/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01T 3/00 G01T 1/04 G21C 17/108 G21C 17/12
Claims (1)
着される密閉構造容器内部にアルミ棒が設けられ、該ア
ルミ棒に沿って大放射線量測定用線量計あるいは中性子
束測定用放射箔が貼り付けられていることを特徴とする
原子炉内γ線・中性子束測定装置。An aluminum rod is provided inside a sealed structure container having the same size as a fuel body and mounted in a pressure tube. A dosimeter for measuring a large radiation dose or a radiation foil for measuring a neutron flux is provided along the aluminum rod. A gamma ray / neutron flux measuring device in a nuclear reactor, which is attached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5024107A JP2941138B2 (en) | 1993-02-12 | 1993-02-12 | Γ-ray and neutron flux measurement equipment in the reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5024107A JP2941138B2 (en) | 1993-02-12 | 1993-02-12 | Γ-ray and neutron flux measurement equipment in the reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06242251A JPH06242251A (en) | 1994-09-02 |
JP2941138B2 true JP2941138B2 (en) | 1999-08-25 |
Family
ID=12129121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5024107A Expired - Fee Related JP2941138B2 (en) | 1993-02-12 | 1993-02-12 | Γ-ray and neutron flux measurement equipment in the reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2941138B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003266A1 (en) * | 1998-07-09 | 2000-01-20 | Mitsubishi Denki Kabushiki Kaisha | Radiation detector |
JP6647048B2 (en) * | 2016-01-15 | 2020-02-14 | 日立Geニュークリア・エナジー株式会社 | Radiation measurement system |
-
1993
- 1993-02-12 JP JP5024107A patent/JP2941138B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06242251A (en) | 1994-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2632712B2 (en) | Equipment for criticality control and concentration measurement of fissile material | |
JP2748323B2 (en) | Fissile material characterization device with at least one neutron detector embedded in a scintillator for gamma ray detection | |
JP2941138B2 (en) | Γ-ray and neutron flux measurement equipment in the reactor | |
JP2018205070A (en) | Radiation measurement device | |
Ashrapov et al. | Manufacturing of an Iridium-192 Ionizing Radiation Source for Nondestructive Testing | |
JP3544065B2 (en) | Simple burnup monitor | |
JPH04269697A (en) | Non-destructive inspection device for reactor fuel rod | |
Singh et al. | Non destructive evaluation of irradiated nuclear fuel pins at cirus research reactor by neutron radiography | |
JP6137635B2 (en) | Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material | |
US20230054651A1 (en) | Apparatus and method for real-time precision measurement of the thermal power of a nuclear reactor | |
RU2527489C2 (en) | Neutron-activation method of monitoring burning of spent fuel assemblies of thermal neutron reactors and apparatus therefor | |
JPS58223006A (en) | Method and device for measuring thickness of pure zirconium liner of fuel coating pipe | |
Aarrestad | Fuel rod instrumentation | |
Thaler | The measurement of capsule heat transfer gaps using neutron radiography | |
IL22375A (en) | Method of and apparatus for measuring physical properties of x-rays,particularly gamma-rays and their energies | |
JPH056678B2 (en) | ||
JP2000155175A (en) | Radiation-measuring device and radiation detector | |
Jansson | Determination of the residual thermal power in spent nuclear fuel from gamma-ray measurements | |
Page et al. | FLUX MAPPING MEASUREMENTS TO DETERMINE THE LOCATION OF THE PERMANENT DETECTORS IN THE ENRICO FERMI REACTOR. | |
Roure et al. | Non-destructive examination development for the JHR material testing reactor | |
Usatyi et al. | Condition Evaluation of Spent Nuclear Fuel Assemblies from the First-Generation Nuclear-Powered Submarines by Gamma Scanning | |
Caillot et al. | Analytical experiments on PWR fuel rods carried out in Siloe Reactor at CEA/Grenoble | |
Chwaszczewski | Spent fuel management in Poland | |
Aarrestad | In-core instrumentation for LWRs | |
Kumar | Power distribution monitoring and control in 500 MWe PHWR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |