JP2938487B2 - Manufacturing method of lubricating base oil - Google Patents

Manufacturing method of lubricating base oil

Info

Publication number
JP2938487B2
JP2938487B2 JP1343390A JP34339089A JP2938487B2 JP 2938487 B2 JP2938487 B2 JP 2938487B2 JP 1343390 A JP1343390 A JP 1343390A JP 34339089 A JP34339089 A JP 34339089A JP 2938487 B2 JP2938487 B2 JP 2938487B2
Authority
JP
Japan
Prior art keywords
oil
less
fraction
solvent
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1343390A
Other languages
Japanese (ja)
Other versions
JPH03223393A (en
Inventor
孝三 神谷
勲 本城
俊男 吉田
賢 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP1343390A priority Critical patent/JP2938487B2/en
Priority to DE69011829T priority patent/DE69011829T2/en
Priority to EP90314325A priority patent/EP0435670B1/en
Publication of JPH03223393A publication Critical patent/JPH03223393A/en
Priority to US08/047,040 priority patent/US5372703A/en
Application granted granted Critical
Publication of JP2938487B2 publication Critical patent/JP2938487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はイソパラフィン、一環ナフテンに富む高性能
潤滑油基油の製造方法に関するものである。
Description: TECHNICAL FIELD [0001] The present invention relates to a method for producing a high-performance lubricating base oil rich in isoparaffin and partially naphthene.

[発明の技術的背景とその問題点] 近年、自動車エンジン、工作機械をはじめとする機械
分野での技術開発とともに、苛酷な条件と長期の使用に
耐え、省エネルギーを可能にし、公害問題をもたない高
性能潤滑油が要求されるようになってきた。
[Technical background of the invention and its problems] In recent years, along with technical development in the machine field such as automobile engines and machine tools, it has endured severe conditions and long-term use, has enabled energy saving, and has pollution problems. No high performance lubricating oil has been required.

また、原油種の影響を大きくうけるため、高価で良質
な特定の原油に依存せざるを得ない従来の溶剤精製法を
中心とする製造法に代わり、原油の多様化が可能な新し
い潤滑油基油製造法が求められている。
In addition, a new lubricating oil base that can diversify crude oil replaces the conventional solvent refining method-based production method, which has to rely on expensive and high-quality specific crude oil because it is greatly affected by the type of crude oil. There is a need for an oil production method.

このような要求を満足する方法として高圧下での水素
化分解および水素化仕上げが提案され、すでに数基が実
稼動している。しかし、これらはいずれも反応圧力が20
0kg/cm2と高圧であるためプラント建設費が嵩み、生成
油中には潤滑油基油成分としては好ましくない多環ナフ
テンが多く含まれており、一方添加剤や潤滑油の使用中
に発生するスラッジの溶解性を上げるのに必要なアルキ
ルベンゼンの含有量が少ないという欠点がある。
Hydrocracking and hydrofinishing under high pressure have been proposed as a method to satisfy such demands, and several units have already been put into operation. However, all of these have a reaction pressure of 20
0 kg / cm 2 and the high pressure at which for plant construction costs Kasami, during product oil contains many undesirable polycyclic naphthenes as lubricating base oil component, whereas in the use of additives and lubricants There is a disadvantage that the content of alkylbenzene required for increasing the solubility of the generated sludge is small.

[発明の目的] 本発明はこのような従来法の欠点を解決するためにな
されたもので、特定な原料油を用いて、高い粘度指数と
低い流動点を有し、優れた酸化安定性、熱安定性を有
し、かつ添加剤や潤滑油の使用中に発生するスラッジを
潤滑油に溶解させる力が強い高性能潤滑油基油を安価に
製造することにある。
[Object of the Invention] The present invention has been made to solve such disadvantages of the conventional method, and has a high viscosity index and a low pour point using a specific raw material oil, and has excellent oxidation stability. An object of the present invention is to produce a high-performance lubricating oil base oil which has thermal stability and has a strong ability to dissolve sludge generated during use of an additive or a lubricating oil into the lubricating oil at a low cost.

[発明の概要] 本発明者等は鋭意研究を行った結果、特定の原料油を
低圧力、低LHSVの反応条件で水素化分解し、脱ろうと脱
芳香族処理を行うことにより上記の目的が達成できるこ
とを見出した。
[Summary of the Invention] As a result of intensive studies, the present inventors have achieved the above object by hydrocracking a specific feedstock under low pressure, low LHSV reaction conditions, and performing dewaxing and dearomatization. I found what I could achieve.

すなわち、本発明は、 減圧蒸留留出油(WVGO)又はWVGOのマイルドハイドロク
ラッキング(MHC)処理油(HIX)又はこれらの混合油な
いしは脱瀝油(DAO)又はDAOのMHC処理油又はこれらの
混合油を水素化分解触媒の存在下、全圧力100〜150kg/c
m2、温度360〜440℃、LHSV0.5hr-1以下の反応条件で、
分解率40〜75wt%になるように水素化分解して、当該分
解生成物をそのまま、もしくは潤滑留分を回収し、次に
脱ろう処理した後、脱芳香族処理するか又は脱芳香族処
理した後、脱ろう処理することにより、 全芳香族含有量が2〜15wt% 飽和分中のイソパラフィンと一環ナフテンの合計含有
量が60wt%以上 全芳香族分中のアルキルベンゼン含有量が30wt%以上 全芳香族分中の三、四環芳香族含有量が4wt%以下 の組成を有し、かつ、粘度指数が105以上で、流動点が
−10℃以下である潤滑油基油を製造することを特徴とす
る潤滑油基油の製造方法に関する。
That is, the present invention relates to a vacuum distillate (WVGO), a mild hydrocracking (MHC) treated oil of WVGO (HIX), a mixed oil thereof, or a deasphalted oil (DAO) or an MHC treated oil of DAO or a mixture thereof. Oil in the presence of hydrocracking catalyst, total pressure 100-150kg / c
m 2 , temperature 360 ~ 440 ℃, LHSV0.5hr- 1 under reaction conditions,
Hydrocracking to a decomposition rate of 40 to 75 wt%, the decomposition product as it is, or a lubricating fraction is recovered and then dewaxed and then dearomatized or dearomatized After dewaxing, the total aromatic content is 2 to 15 wt%. The total content of isoparaffins and mononaphthenes in the saturated content is 60 wt% or more. The alkylbenzene content in the total aromatic content is 30 wt% or more. To produce a lubricating base oil having a composition in which the content of tri- or tetracyclic aromatics in the aromatic component is 4 wt% or less, and having a viscosity index of 105 or more and a pour point of -10 ° C or less. The present invention relates to a method for producing a lubricating base oil.

また、減圧蒸留留出油(WVGO)又はWVGOのマイルドハ
イドロクラッキング(MHC)処理油(HIX)又はこれらの
混合油ないしは脱瀝油(DAO)又はDAOのMHC処理油又は
これらの混合油を水素化分解触媒の存在下、全圧力100
〜150kg/cm2、温度360〜440℃、LHSV0.5hr-1以下の反応
条件で、分解率40〜75wt%になるように水素化分解し
て、当該分解生成物をそのまま、もしくは潤滑留分を回
収し、次に脱ろう処理した後、脱芳香族処理するか又は
脱芳香族処理後、脱ろう処理することにより、 全芳香族含有量が3〜15wt% 飽和分中のイソパラフィンと一環ナフテンの合計含有
量が60wt%以上 全芳香族分中のアルキルベンゼン含有量が30wt%以上 全芳香族分中の三、四環芳香族含有量が4wt%以下 の組成を有し、かつ、 a)70ペール留分で105以上の粘度指数と−10℃以下の
流動点 b)SAE−10留分で115以上の粘度指数と−10℃以下の流
動点 c)SAE−20留分で120以上の粘度指数と−10℃以下の流
動点 d)SAE−30留分で120以上の粘度指数と−10℃以下の流
動点 のいずれかを満足する潤滑油基油を製造することを特徴
とする潤滑油基油の製造方法に関する。
In addition, vacuum distillation distillate (WVGO), mild hydrocracking (MHC) treated oil of WVGO (HIX), or a mixed oil thereof, or deasphalted oil (DAO), or MHC treated oil of DAO, or hydrogenated mixed oil thereof Total pressure 100 in the presence of cracking catalyst
150150 kg / cm 2 , temperature 360-440 ° C., LHSV0.5hr -1 or less under the reaction conditions, hydrocracking to a decomposition rate of 40-75 wt%, the decomposition product as it is or lubricating fraction And then dewaxing, followed by dearomatization or dewaxing followed by dewaxing, so that the total aromatic content is 3 to 15 wt%, isoparaffin and saturated naphthene in the saturated component. Has a composition in which the content of alkylbenzene in the total aromatics is not less than 30% by weight and the content of tri- and tetracyclic aromatics in the total aromatics is not more than 4% by weight; and a) 70 Pale fraction has a viscosity index of 105 or more and a pour point of -10 ° C or less. B) SAE-10 fraction has a viscosity index of 115 or more and a pour point of -10 ° C or less. C) SAE-20 fraction has a viscosity of 120 or more. Index and pour point of -10 ° C or less d) Lubricating oil base that satisfies either viscosity index of 120 or more and pour point of -10 ° C or less for SAE-30 fraction The present invention relates to a method for producing a lubricating base oil characterized by producing oil.

本発明で用いられる原料油は減圧蒸留留出油(WVGO)
又はWVGOのマイルドハイドロクラッキング(MHC)処理
油(HIX)又はこれらの混合油ないしは脱瀝油(DAO)又
はDAOのMHC処理油又はこれらの混合油である。
The feedstock used in the present invention is a vacuum distilled distillate (WVGO)
Or WVGO mild hydrocracking (MHC) treated oil (HIX) or a mixed oil thereof or deasphalted oil (DAO) or DAO MHC treated oil or a mixed oil thereof.

WVGOは原油の常圧蒸留装置からの残渣油を減圧蒸留装
置で蒸留した際に得られる留出油で、好ましくは360℃
〜530℃の沸点を持つものである。
WVGO is a distillate obtained by distilling residual oil from an atmospheric distillation unit of crude oil with a vacuum distillation unit, preferably at 360 ° C.
It has a boiling point of ~ 530 ° C.

前記のHIXとはWVGOをMHC(全圧力が100kg/cm2以下、
好ましくは60〜90kg/cm2、温度が370〜450℃、好ましく
は400〜430℃、LHSVが0.5〜4.0hr-1、好ましくは1.0〜
2.0hr-1の反応条件下、360℃留分の分解率が20〜30wt
%の範囲にある比較的温和な水素分解のことをいう)に
よって生成する重質減圧軽油である。
The above HIX and WVGO are MHC (total pressure is 100kg / cm 2 or less,
Preferably 60 to 90 kg / cm 2 , temperature is 370 to 450 ° C., preferably 400 to 430 ° C., LHSV is 0.5 to 4.0 hr −1 , preferably 1.0 to
Decomposition rate of 360 ° C + fraction under 20hr- 1 reaction condition is 20 ~ 30wt
% Of heavy vacuum gas oil produced by relatively mild hydrogen cracking in the range of 0.1%).

前記MHCの触媒としてはアルミナ、シリカアルミナ、
アルミナボリア等の複合酸化物担体に第VI族金属および
第VIII族金属を担持し硫化したものである。アルミナに
は例えばリン化合物のようなプロモーターが添加される
ことがある。
As the catalyst of the MHC, alumina, silica alumina,
It is obtained by supporting a Group VI metal and a Group VIII metal on a composite oxide carrier such as alumina boria and sulfided. For example, a promoter such as a phosphorus compound may be added to alumina.

前記金属の担持量は酸化物基準で第VI族金属例えばモ
リブデン、タングステン、クロムは5〜30wt%、好まし
くは10〜25wt%、第VIII族金属例えばコバルト、ニッケ
ルは1〜10wt%、好ましくは2〜10wt%である。
The supported amount of the metal is 5 to 30% by weight, preferably 10 to 25% by weight of a Group VI metal such as molybdenum, tungsten and chromium, and 1 to 10% by weight, preferably 2 to 10% by weight of a Group VIII metal such as cobalt and nickel on an oxide basis. ~ 10 wt%.

WVGOとHIXとを混合する場合はWVGOにHIXを50wt%以上
混合することが好ましい。
When WVGO and HIX are mixed, it is preferable to mix WVGO with HIX at 50 wt% or more.

前記脱瀝油とは原油の常圧蒸留装置からの残渣油を減
圧蒸留装置で蒸留した際に得られる残渣油をプロパン脱
瀝法等で処理し実質アスファルテンを含有しない油であ
る。
The above-mentioned deasphalted oil is an oil which is obtained by treating a residual oil obtained by distilling a residual oil from an atmospheric distillation apparatus with a vacuum distillation apparatus by a propane deasphalting method or the like and containing substantially no asphaltenes.

本発明に用いる原料油の水素化分解は水素化分解触媒
の存在下、全圧力が150kg/cm2以下、好ましくは100〜13
0kg/cm2の中低圧であり、温度が360〜440℃、好ましく
は370〜430℃、LHSVは0.5hr-1以下、好ましくは0.2〜0.
3hr-1の低LHSVであり、水素対原料油比が1,000〜6,000
s.c.f/bbl−原料油、好ましくは2,500〜5,000s.c.f/bbl
−原料油である反応条件で行うことができる。
Presence of feedstock hydrocracking hydrocracking catalyst used in the present invention, the total pressure is 150 kg / cm 2 or less, preferably from 100 to 13
A low pressure in the 0 kg / cm 2, temperature of three hundred sixty to four hundred forty ° C., preferably three hundred seventy to four hundred thirty ° C., LHSV is 0.5 hr -1 or less, preferably 0.2 to 0.
Low LHSV of 3hr- 1 and hydrogen to feed oil ratio of 1,000 to 6,000
scf / bbl-feedstock, preferably 2,500-5,000 scf / bbl
-It can be carried out under the reaction conditions of the feedstock.

本発明に用いる原料油の水素化分解率は原料油に対す
る分解生成留分の割合をいい、その値は40wt%以上、好
ましくは45wt%以上、さらに好ましくは50wt%以上であ
る。なお、原料油に該HIXを用いた場合、MHCと水素化分
解の合計の分解率は、60wt%以上、好ましくは70wt%以
上が選ばれる。なお、,未分解油の一部をリサイクルす
る場合、ここでいう分解率はリサイクル油込みの分解率
ではなく、フレッシュフィード当りの分解率を指す。
The hydrocracking rate of the feedstock used in the present invention refers to the ratio of the cracked product fraction to the feedstock, and the value is at least 40 wt%, preferably at least 45 wt%, more preferably at least 50 wt%. When HIX is used as a feedstock, the total decomposition rate of MHC and hydrocracking is selected to be 60 wt% or more, preferably 70 wt% or more. When a part of the uncracked oil is recycled, the cracking rate referred to here is not a cracking rate including recycled oil but a cracking rate per fresh feed.

本発明で用いる水素化分解触媒は二元機能を有するも
のが好ましく、具体的には、例えば第VI b族金属および
第VIII族鉄族金属から構成される水素化点と、第III
族、第IV族および第V族元素の複合酸化物から構成され
る分解点を有する触媒が挙げられる。第VI b族金属とし
てはタングステン、モリブデンがあり、第VIII族鉄族金
属としてはニッケル、コバルト、鉄があり、これらは複
合酸化物担体に担持後、最終的には硫化物として用いら
れる。
The hydrocracking catalyst used in the present invention preferably has a dual function.Specifically, for example, a hydrogenation point composed of a Group VIb metal and a Group VIII iron group metal;
A catalyst having a decomposition point composed of a complex oxide of Group IV, IV and V elements may be mentioned. The Group VIb metals include tungsten and molybdenum, and the Group VIII iron group metals include nickel, cobalt and iron. These are finally used as sulfides after being supported on the composite oxide carrier.

担体に用いる複合酸化物としては、シリカアルミナ、
シリカジルコニア、シリカチタニア、シリカマグネシ
ア、シリカアルミナジルコニア、シリカアルミナチタニ
ア、シリカアルミナマグネシアなどがあり、結晶性シリ
カアルミナ(ゼオライト)、結晶性アルミナホスフェー
ト(ALPO)、結晶性シリカアルミナホスフェート(SAP
O)が用いられることもある。
As the composite oxide used for the carrier, silica alumina,
There are silica zirconia, silica titania, silica magnesia, silica alumina zirconia, silica alumina titania, silica alumina magnesia, etc., and crystalline silica alumina (zeolite), crystalline alumina phosphate (ALPO), crystalline silica alumina phosphate (SAP
O) is sometimes used.

該複合酸化物への前記金属の担持量は酸化物基準とし
て第VI b族金属では5〜30wt%、好ましくは10〜25wt
%、第VIII族鉄族金属では1〜20wt%、好ましくは5〜
15wt%である。なお、該水素化分解触媒の前段に脱硫、
脱窒素能に優れた前処理触媒を充填してもよい。該前処
理触媒としては、アルミナ、アルミナボリア等の担体に
第VI族金属および第VIII族金属を担持し、硫化したもの
である。アルミナ、アルミナボリアにはプロモーター、
例えばリン化合物が添加されることがある。
The amount of the metal supported on the composite oxide is 5 to 30% by weight, preferably 10 to 25% by weight for Group VIb metal on an oxide basis.
%, For the Group VIII iron group metal, 1 to 20 wt%, preferably 5 to
15 wt%. In addition, desulfurization before the hydrocracking catalyst,
A pretreatment catalyst having excellent denitrification ability may be filled. The pretreatment catalyst is obtained by supporting a Group VI metal and a Group VIII metal on a support such as alumina or alumina boria and sulphidizing the support. Promoter for alumina and alumina boria,
For example, a phosphorus compound may be added.

本発明においては、前記水素化分解後、該分解生成物
を通常の蒸留操作により、潤滑油留分を回収してもよ
い。該潤滑油留分は、沸点範囲が343℃〜390℃の70ペー
ル留分、390℃〜445℃のSAE−10留分、445℃〜500℃のS
AE−20留分、500℃〜565℃のSAE−30留分が潤滑油留分
として回収される。
In the present invention, after the hydrocracking, a lubricating oil fraction may be recovered from the cracked product by a usual distillation operation. The lubricating oil fraction is a 70-peer fraction having a boiling range of 343 ° C. to 390 ° C., a SAE-10 fraction at 390 ° C. to 445 ° C., and a S
The AE-20 fraction and the SAE-30 fraction at 500 ° C to 565 ° C are recovered as a lubricating oil fraction.

本発明において、前記の水素化分解生成油は次に脱ろ
う処理した後、脱芳香族処理するか又は脱芳香族処理し
た後、脱ろう処理する。脱ろう処理としては溶剤脱ろう
処理又は接触脱ろう処理を挙げることができる。
In the present invention, the hydrocracked oil is then subjected to a dewaxing treatment, followed by a dearomatic treatment, or a dewaxing treatment, followed by a dewaxing treatment. Examples of the dewaxing treatment include a solvent dewaxing treatment and a contact dewaxing treatment.

前記溶剤脱ろう処理は通常の方向で行うことができ
る。例えばMEK法が挙げられる。MEK法は溶剤としてベン
ゼン、トルエン、アセトン又はベンゼン、トルエン、メ
チルエチルケトン(MEK)などの混合溶剤を使用する。
処理条件は脱ろう油が所定の流動点になるように冷却温
度を調節する。溶剤/油vol比は0.5〜5.0、好ましくは
1.0〜4.5、温度は−5〜−45℃、好ましくは−10〜−40
℃である。
The solvent dewaxing treatment can be performed in a normal direction. An example is the MEK method. The MEK method uses benzene, toluene, acetone or a mixed solvent such as benzene, toluene, and methyl ethyl ketone (MEK) as a solvent.
The processing conditions adjust the cooling temperature so that the dewaxed oil has a predetermined pour point. Solvent / oil vol ratio is 0.5-5.0, preferably
1.0 to 4.5, temperature is -5 to -45 ° C, preferably -10 to -40
° C.

前記接触脱ろう処理は通常の方法で行うことができ
る。例えばペンタシル型ゼオライトを触媒とし、水素流
通下、脱ろう油が所定の流動点になるように反応温度を
調節する。
The contact dewaxing treatment can be performed by a usual method. For example, using a pentasil-type zeolite as a catalyst, the reaction temperature is adjusted so that the dewaxed oil has a predetermined pour point under hydrogen flow.

前記水素流通下の反応条件は全圧力が10〜70kg/cm2
好ましくは20〜50kg/cm2、温度が240〜400℃、好ましく
は260〜380℃である。LHSVは0.1〜3.0hr-1、好ましくは
0.5〜2.0hr-1の範囲である。
The reaction conditions under the hydrogen flow is the total pressure is 10 to 70 kg / cm 2,
Preferably it is 20 to 50 kg / cm 2 , and the temperature is 240 to 400 ° C, preferably 260 to 380 ° C. LHSV is 0.1-3.0 hr -1 , preferably
It is in the range of 0.5 to 2.0 hr -1 .

脱芳香族処理としては、溶剤脱芳香族処理あるいは高
圧水素化脱芳香族処理が挙げられる。
Examples of the dearomatization treatment include a solvent dearomatization treatment and a high-pressure hydrogenation dearomatization treatment.

溶剤脱芳香族処理は通常フルフラール、フェノール等
の溶剤を用いるが、本発明では溶剤にフルフラールを用
いることが好ましい。溶剤脱芳香族処理の条件として
は、溶剤/油vol比4以下、好ましくは3以下、さらに
好ましくは2以下、温度90〜150℃で行なわれ、ラフィ
ネート収率は60vol%以上、好ましくは70vol%以上、さ
らに好ましくは85vol%以上となるように運転される。
In the solvent dearomatization treatment, usually a solvent such as furfural and phenol is used, but in the present invention, it is preferable to use furfural as the solvent. The conditions of the solvent dearomatization treatment are as follows: the solvent / oil vol ratio is 4 or less, preferably 3 or less, more preferably 2 or less, and the temperature is 90 to 150 ° C., and the raffinate yield is 60 vol% or more, preferably 70 vol%. The operation is performed so as to be at least 85 vol%, more preferably at least 85 vol%.

高圧水素化反応による脱芳香族処理は通常アルミナ担
体に第VI b族金属および第VIII族鉄族金属を担持し硫化
した触媒の存在下で、全圧力150〜200kg/cm2、好ましく
は170〜200kg/cm2、温度が280〜350℃、好ましくは300
〜330℃、LHSVは0.2〜2.0hr-1、好ましくは0.5〜1.0hr
-1の条件で行なわれる。前記金属の担持量は酸化物基準
で第VI b族金属、例えばモリブデン、タングステン、ク
ロムは5〜30wt%、好ましくは10〜25wt%、第VIII族鉄
族金属、例えばコバルト、ニッケルは1〜10wt%、好ま
しくは2〜10wt%である。
In the presence of a dearomatization process by the high-pressure hydrogenation reaction was usually the first VI b group metals and Group VIII iron group metals on an alumina support carrying sulfided catalyst, the total pressure 150~200kg / cm 2, preferably 170 to 200 kg / cm 2, temperature of 280 to 350 ° C., preferably 300
~ 330 ° C, LHSV is 0.2 ~ 2.0hr- 1 , preferably 0.5 ~ 1.0hr
Performed under the condition of -1 . The amount of the metal supported is 5 to 30 wt%, preferably 10 to 25 wt% for Group VIb metals such as molybdenum, tungsten and chromium, and 1 to 10 wt% for Group VIII iron group metals such as cobalt and nickel on an oxide basis. %, Preferably 2 to 10% by weight.

本発明において、脱芳香族処理は溶剤脱芳香族処理を
用いるのが好ましい。
In the present invention, the dearomatization treatment preferably uses a solvent dearomatization treatment.

本発明において、脱芳香族処理として溶剤脱芳香族処
理を用いた場合、必要によりこの処理の後に、水素化処
理をすることができる。該水素化処理は溶剤脱芳香族処
理油を、全反応圧力50kg/cm2以下、好ましくは25〜40kg
/cm2の低圧の水素化反応条件で、アルミナ担体に第VI b
族金属及び第VIII族鉄族金属を担持し硫化して得られる
水素化触媒と接触させることにより行う。前記金属の担
持量は酸化物基準で第VI b族金属、例えばモリブデン、
タングステン、クロムは5〜30wt%、好ましくは10〜25
wt%、第VIII族鉄族金属、例えばコバルト、ニッケルは
1〜10wt%、好ましくは2〜10wt%である。
In the present invention, when a solvent dearomatization process is used as the dearomatization process, a hydrogenation process can be performed after this process if necessary. The hydrogenation treatment is a solvent dearomatized oil, the total reaction pressure 50 kg / cm 2 or less, preferably 25 ~ 40 kg
of / cm 2 at low pressure hydrogenation reaction conditions, the VI b alumina support
It is carried out by supporting a group metal and a group VIII iron group metal and bringing them into contact with a hydrogenation catalyst obtained by sulfidation. The supported amount of the metal is a Group VIb metal on an oxide basis, for example, molybdenum,
5-30 wt% of tungsten and chromium, preferably 10-25
wt%, Group VIII iron group metals such as cobalt and nickel are from 1 to 10 wt%, preferably from 2 to 10 wt%.

このような比較的低圧下での水素化処理は溶剤脱芳香
族油の光安定性を飛躍的に向上させる。
Such hydrotreatment under relatively low pressure dramatically improves the photostability of the solvent-dearomatized oil.

本発明では、必要により特殊な用途に限り基油中の全
芳香族含有量を1wt%以下に下げることがある。この操
作は、通常溶剤脱芳香族処理の後、好ましくは反応圧力
80〜150kg/cm2、反応温度250〜350℃、LHSV0.2〜2.0hr
-1の条件下、アルミナ担体に第VI b族金属および第VIII
族鉄族金属を担持し硫化した触媒上で水素化することに
より達成される。ここで用いる触媒には、前記の低圧下
での水素化処理触媒と同様の触媒を用いることができ
る。
In the present invention, if necessary, the total aromatic content in the base oil may be reduced to 1 wt% or less only for special uses. This operation is usually performed after the solvent dearomatization treatment, preferably at a reaction pressure.
80~150kg / cm 2, the reaction temperature 250~350 ℃, LHSV0.2~2.0hr
Under the conditions of -1, a group VIb metal and a group VIII
It is achieved by hydrogenation over a sulfided catalyst carrying a group III metal. As the catalyst used here, the same catalyst as the above-mentioned hydrotreating catalyst under low pressure can be used.

本発明においては、水素化分解後に潤滑油留分を回収
しない場合には、脱芳香族処理あるいは脱ろう処理ある
いは水素化処理の後に、通常の蒸留操作により、潤滑油
留分を回収してもよい。ここで回収される潤滑油留分
は、先の場合と同様、沸点範囲が343℃〜390℃の70ペー
ル留分、390℃〜445℃のSAE−10留分、445℃〜500℃のS
AE−20留分、500℃〜565℃のSAE−30留分等である。
In the present invention, when the lubricating oil fraction is not recovered after hydrocracking, the lubricating oil fraction may be recovered by a normal distillation operation after the dearomatization treatment or the dewaxing treatment or the hydrogenation treatment. Good. The lubricating oil fraction collected here is, as in the previous case, a 70-pale fraction having a boiling range of 343 ° C to 390 ° C, a SAE-10 fraction of 390 ° C to 445 ° C, and a S
AE-20 fraction, SAE-30 fraction at 500 ° C to 565 ° C, and the like.

本発明において、前記の処理を実施することにより、
原料油から以下の潤滑油組成および性能を有する潤滑油
基油を製造することができる。すなわち、潤滑油基油は
以下の如き組成上の特徴を有する。
In the present invention, by performing the above processing,
A lubricating base oil having the following lubricating oil composition and performance can be produced from a base oil. That is, the lubricating base oil has the following compositional characteristics.

a)芳香族分の総量である全芳香族含有量が2〜15wt
%、好ましくは3〜10wt%の範囲に保たれる。
a) The total aromatic content, which is the total amount of aromatic components, is 2 to 15 wt.
%, Preferably in the range of 3 to 10% by weight.

b)飽和分中のイソパラフィンと一環ナフテンの合計量
が60wt%以上、好ましくは65wt%以上の高い値をとる。
これらの成分は高い粘度指数と優れた酸化安定性、熱安
定性を有しているため、きわめて好ましい潤滑油基油成
分である。
b) The total amount of isoparaffin and mono-naphthene in the saturated content is as high as 60% by weight or more, preferably 65% by weight or more.
These components are highly preferred lubricating base oil components because they have a high viscosity index and excellent oxidation stability and heat stability.

c)全芳香族分中のアルキルベンゼン量が30wt%以上、
好ましくは40wt%以上の値をとる。アルキルベンゼン
は、添加剤や潤滑油の使用中に発生するスラッジを潤滑
油に溶解させる力が強く、かつ高い粘度指数を有するの
で大変好ましい潤滑油基油成分である。
c) the amount of alkylbenzene in the total aromatic content is 30% by weight or more;
Preferably, it takes a value of 40% by weight or more. Alkyl benzene is a very preferable lubricating base oil component because it has a strong power to dissolve sludge generated during use of additives and lubricating oil in lubricating oil and has a high viscosity index.

d)全芳香族分中の三、四環芳香族量が4wt%以下、好
ましくは3wt%以下に抑えられる。製品基油中の三、四
環芳香族含有量と基油の熱安定性の間に明確な負の相関
があることを発明者らは見出した(添付図面参照)。そ
して発明者等は、中低圧、低LHSVの水素化分解反応条件
下で生成する本発明の潤滑油留分に関しては溶剤脱芳香
族処理が、三、四環芳香族、および五環芳香族分など
多環芳香族分に対する選択性がきわめて高く、アルキル
ベンゼン含有量をあまり減少させることなく該多環芳香
族分を効率よく抽出除去できることも見出した。
d) The amount of tri- or tetracyclic aromatics in the total aromatics is suppressed to 4% by weight or less, preferably 3% by weight or less. The inventors have found that there is a clear negative correlation between the tri- or tetracyclic aromatic content in the finished base oil and the thermal stability of the base oil (see attached drawings). The present inventors have found that the solvent dearomatization treatment of the lubricating oil fraction of the present invention produced under medium-low pressure, low LHSV hydrocracking reaction conditions can be carried out by three-, four-ring aromatic, and five-ring + aromatic. It has also been found that the selectivity to polycyclic aromatic components such as polycyclic aromatic components is extremely high, and the polycyclic aromatic components can be efficiently extracted and removed without significantly reducing the alkylbenzene content.

さらに、潤滑油基油の性能は105以上の粘度指数と−1
0℃以下の流動点を有し、各種潤滑油基油については以
下の性能を有する。
Further, the performance of the lubricating base oil has a viscosity index of 105 or more and −1
It has a pour point of 0 ° C. or less and has the following performance for various lubricating base oils.

70ペール留分は、粘度指数が105以上、好ましくは110
以上、流動点が−10℃以下、好ましくは−25℃以下の高
い性能を有する。
The 70-pale fraction has a viscosity index of 105 or more, preferably 110
As described above, it has high performance with a pour point of -10 ° C or less, preferably -25 ° C or less.

SAE−10留分は、粘度指数が115以上、好ましくは125
以上、流動点が−10℃以下、好ましくは−15℃以下の高
い性能を有する。
The SAE-10 fraction has a viscosity index of 115 or more, preferably 125
As described above, the pour point has a high performance of −10 ° C. or less, preferably −15 ° C. or less.

SAE−20留分は、粘度指数が120以上、好ましくは125
以上、流動点が−10℃以下、好ましくは−15℃以下の高
い性能を有する。
The SAE-20 fraction has a viscosity index of 120 or more, preferably 125
As described above, the pour point has a high performance of −10 ° C. or less, preferably −15 ° C. or less.

SAE−30留分は、粘度指数が120以上、好ましくは125
以上、流動点が−10℃以下、好ましくは−15℃以下の高
い性能を有する。
The SAE-30 fraction has a viscosity index of 120 or more, preferably 125
As described above, the pour point has a high performance of −10 ° C. or less, preferably −15 ° C. or less.

[発明の効果] 本発明の方法を用いると、潤滑油成分として好ましい
イソパラフィン、一環ナフテン、アルキルベンゼンが多
く、潤滑油成分として好ましくない多環ナフテン、多環
芳香族が少ない高性能潤滑油基油を安価に製造できる。
[Effects of the Invention] By using the method of the present invention, a high-performance lubricating base oil containing a large amount of isoparaffins, mono-naphthenes, and alkylbenzenes which are preferable as lubricating oil components, and a small amount of polycyclic naphthenes and polycyclic aromatics which are not preferable as lubricating oil components, It can be manufactured at low cost.

従って、高い粘度指数と低い流動点を有し、優れた酸
化安定性、熱安定性を有し、かつ添加剤や潤滑油の使用
中に発生するスラッジを潤滑油に溶解させる力が強い高
性能潤滑油基油を製造することができる。
Therefore, it has a high viscosity index and a low pour point, has excellent oxidation stability and thermal stability, and has a strong ability to dissolve sludge generated during use of additives and lubricating oil in lubricating oil. A lubricating base oil can be produced.

以下実施例および比較例でもって、本発明の有効性を
説明する。表−1に実施例および比較例で用いた原料油
の性状を示す。
Hereinafter, the effectiveness of the present invention will be described with reference to Examples and Comparative Examples. Table 1 shows the properties of the feedstock oils used in the examples and comparative examples.

実施例1 表−2に示す中圧、低LHSVの条件下で水素化分解処
理、溶剤脱ろう処理およびフルフラール溶剤を用いた溶
剤脱芳香族処理からなる本発明の方法によって、潤滑油
基油の製造を行った。
Example 1 According to the method of the present invention comprising a hydrocracking treatment, a solvent dewaxing treatment, and a solvent dearomatization treatment using a furfural solvent under the conditions of medium pressure and low LHSV shown in Table 2, a lubricating base oil was produced. Manufactured.

その結果、WVGO原料から製造されたSAE−10グレード
の製品基油は、芳香族含有量が9.5wt%と高く、そのた
め添加剤の溶解性、使用中に生成するスラッジの溶解性
に優れる。また、高い粘度指数を持つイソパラフィンお
よび一環ナフテンの飽和分中の合計量が66.1wt%と比較
的多いため、基油の粘度指数は122と高い値を示す。さ
らに芳香族分中には基油の安定性を悪くする三、四芳香
族、五環芳香家族は殆ど残存しておらず、熱安定性試
験に容易に合格する。この時のラフィネート収率は90.2
wt%と高く、望ましい成分であるアルキルベンゼンが多
く含まれている。
As a result, SAE-10 grade product base oil produced from WVGO raw material has a high aromatic content of 9.5 wt%, and therefore has excellent solubility of additives and solubility of sludge generated during use. In addition, since the total amount of isoparaffin and mononaphthene having a high viscosity index in the saturated component is relatively large at 66.1 wt%, the viscosity index of the base oil is as high as 122. Furthermore, there is hardly any tri-, tetra-aromatic, or pentacyclic + aromatic family remaining in the aromatic component, which degrades the stability of the base oil, and easily passes the thermal stability test. The raffinate yield at this time was 90.2
It is as high as wt% and contains a large amount of alkylbenzene which is a desirable component.

実施例2 実施例1で得られた脱ろう油を、溶剤/油vol比3.0で
フルフラール溶剤を用いて脱芳香族処理すると、芳香族
分中の三、四環芳香族量は痕跡量まで減少し、熱安定性
試験におけるASTM色もL2.5と安定なものとなる。このよ
うに、中低圧、低LHSV下での水素化分解油は、溶剤脱芳
香族処理における多環芳香族への選択性に優れている。
Example 2 When the dewaxed oil obtained in Example 1 was subjected to dearomatization treatment using a furfural solvent at a solvent / oil volume ratio of 3.0, the amount of tri- or tetracyclic aromatics in the aromatic components was reduced to a trace amount. However, the ASTM color in the thermal stability test is also stable at L2.5. As described above, hydrocracked oils under medium and low pressures and low LHSV have excellent selectivity to polycyclic aromatics in the solvent dearomatization treatment.

実施例3 表−2に示す中圧、低LHSVの条件下での水素化分解処
理、溶剤脱ろう処理および溶剤脱芳香族処理からなる本
発明の方法によって、潤滑油基油の製造を行った。
Example 3 A lubricating base oil was produced by the method of the present invention comprising hydrocracking treatment, solvent dewaxing treatment and solvent dearomatization treatment under the conditions of medium pressure and low LHSV shown in Table-2. .

その結果、HIX原料から製造されたSAE−10グレードの
製品基油は、芳香族含有量が6.1wt%と高く、そのため
添加剤の溶解性、使用中に生成するスラッジの溶解性に
優れる。また、高い粘度指数をもつイソパラフィンおよ
び一環ナフテンの飽和分中の合計量が70.1wt%と多いた
め、基油の粘度指数は127と大変高い値を示す。さら
に、芳香族分中には基油の安定性を悪くする三、四環芳
香族、五環芳香族は殆ど残存しておらず、熱安定性試
験に容易に合格する。この時のラフィネート収率は91.8
wt%と高く、望ましい成分であるアルキルベンゼンが多
く含まれている。
As a result, the SAE-10 grade product base oil produced from the HIX raw material has a high aromatic content of 6.1% by weight, and therefore has excellent solubility of additives and solubility of sludge generated during use. Further, since the total amount of the isoparaffin and the mononaphthene having a high viscosity index in the saturated content is as large as 70.1% by weight, the viscosity index of the base oil shows a very high value of 127. Furthermore, the three are in the aromatic fraction to deteriorate the stability of the base oil, tetracyclic aromatic pentacyclic + aromatics are not remain most readily pass the thermal stability test. The raffinate yield at this time was 91.8
It is as high as wt% and contains a large amount of alkylbenzene which is a desirable component.

実施例4 実施例3で得た水素化分解油を表−2に示す高圧、中
LHSV条件で水素化処理すると芳香族分中の三、四環芳香
族量は0.8wt%(製品基油中で0.1wt%)まで下り、熱安
定性試験に容易に合格するようになる。
Example 4 The hydrocracked oil obtained in Example 3 was subjected to high pressure, medium
When hydrogenated under LHSV conditions, the amount of tri- or tetracyclic aromatics in the aromatics drops to 0.8 wt% (0.1 wt% in the product base oil) and easily passes the thermal stability test.

実施例5 実施例3で得た潤滑油基油を表−2に示す低圧条件で
水素化仕上げ処理すると光安定性に悪い影響を与える芳
香族分中の三、四環芳香族、五環芳香族およびレジン
分が減少し、光安定性が4日間も向上する。このように
低圧条件での水素化仕上げ油は、光安定性が飛躍的に向
上する。
Example 5 When the lubricating base oil obtained in Example 3 is subjected to hydrofinishing treatment under the low pressure conditions shown in Table 2, tri-, tetra-cyclic aromatic, and pentacyclic + Aromatic and resin content is reduced, and light stability is improved for up to 4 days. As described above, the hydrogenated oil under the low pressure condition has a remarkably improved light stability.

実施例6 実施例3で得た潤滑油基油を表−2に示す中圧、中LH
SV条件で水素化仕上げ処理すると芳香族量は0.7wt%ま
で減少する。
Example 6 The lubricating base oil obtained in Example 3 was subjected to medium pressure and medium LH shown in Table-2.
Hydrofinishing under SV conditions reduces the aromatics to 0.7 wt%.

実施例7 実施例3で得た水素化分解油を溶剤/油vol比2.0、脱
ろう温度40℃でMEK脱ろう処理および表−2に示す条件
でフルフラール溶剤を用いた脱芳香族処理すると、製品
基油の流動点は−35℃まで下がる。この時、イソパラフ
ィンおよび一環ナフテンの飽和分中の合計量は67.1wt%
と比較的多いため、基油の粘度指数は121と高い値を示
す。さらに三、四環芳香族、五環芳香族は殆ど残存し
ておらず、熱安定性試験に容易に合格する。
Example 7 The hydrocracked oil obtained in Example 3 was subjected to MEK dewaxing treatment at a solvent / oil vol ratio of 2.0 and a dewaxing temperature of 40 ° C. and to dearomatization treatment using a furfural solvent under the conditions shown in Table-2. The pour point of the finished base oil drops to -35 ° C. At this time, the total amount of isoparaffins and saturated naphthenes in the saturated content was 67.1 wt%
Therefore, the viscosity index of the base oil shows a high value of 121. Furthermore, there are hardly any tri-, tetra-cyclic aromatics and penta-rings + aromatics remaining, which easily pass the thermal stability test.

実施例8 表−2に示す中圧、低LHSVの条件下で水素化分解処
理、表−2に示す条件下で接触脱ろう処理およびフルフ
ラール溶剤を用いた溶剤脱芳香族処理からなる本発明の
方法によって潤滑油基油の製造を行った。
Example 8 The present invention comprises a hydrocracking treatment under the conditions of medium pressure and low LHSV shown in Table-2, a catalytic dewaxing treatment under the conditions shown in Table-2, and a solvent dearomatization treatment using a furfural solvent. A lubricating base oil was produced by the method.

その結果、HIX原料から製造されたSAE−10グレードの
製品基油は芳香族量が6.8wt%と高く、そのため添加剤
の溶解性、使用中に生成するスラッジの溶解性に優れ
る。また高い粘度指数をもつイソパラフィンおよび一環
ナフテンの飽和分中の合計量が68.0wt%と多いため、基
油の粘度指数は123と高い値を示す。さらに、芳香族分
中には基油の安定性を悪くする三、四環芳香族、五環
芳香族は殆ど残存しておらず、逆に望まして成分である
アルキルベンゼンが多く含まれている。
As a result, the SAE-10 grade product base oil produced from the HIX raw material has a high aromatic content of 6.8% by weight, and therefore has excellent solubility of additives and solubility of sludge generated during use. In addition, since the total amount of isoparaffin and mononaphthene having a high viscosity index in the saturated content is as large as 68.0% by weight, the viscosity index of the base oil is as high as 123. Furthermore, the three are in the aromatic fraction to deteriorate the stability of the base oil, tetracyclic aromatic, pentacyclic +
Almost no aromatic remains, and on the contrary, a large amount of the desired component alkylbenzene is contained.

実施例9 表−2に示す中圧、低LHSVの条件下で水素化分解処
理、溶剤脱ろう処理およびフルフラール溶剤を用いた溶
剤脱芳香族処理からなる本発明の方法によって潤滑油基
油の製造を行った。
Example 9 Production of a lubricating base oil by the method of the present invention comprising hydrocracking, solvent dewaxing, and solvent dearomatization using a furfural solvent under the conditions of medium pressure and low LHSV shown in Table-2 Was done.

その結果、DAO原料から製造されたSAE−10グレードの
製品基油は芳香族量が7.8wt%と高く、そのため添加剤
の溶解性、使用中に生成するスラッジの溶解性に優れ
る。また、高い粘度指数をもつイソパラフィンおよび一
環ナフテンの飽和分中の合計量が65.1wt%と比較的多い
ため、基油の粘度指数は121と高い値を示す。さらに、
芳香族分中には基油の安定性を悪くする三、四環芳香
族、五環芳香族は殆ど残存しておらず、逆に望ましい
成分であるアルキルベンゼンが多く含まれている。
As a result, the product base oil of SAE-10 grade produced from DAO raw material has a high aromatic content of 7.8 wt%, and therefore has excellent solubility of additives and solubility of sludge generated during use. In addition, since the total amount of isoparaffin and mononaphthene having a high viscosity index in the saturated component is relatively large at 65.1 wt%, the viscosity index of the base oil is as high as 121. further,
In the aromatic components, there are hardly any three, four or four ring aromatics and five ring + aromatics, which degrade the stability of the base oil, and on the contrary, a large amount of alkylbenzene which is a desirable component is contained.

比較例1 表−3に示す高圧、高LHSVの条件下での水素化分解処
理およびフルフラール溶剤を用いた溶剤脱芳香族処理か
らなる方法によって潤滑油基油を製造した。
Comparative Example 1 A lubricating base oil was produced by a method comprising hydrocracking under high pressure and high LHSV conditions and solvent dearomatization using a furfural solvent as shown in Table-3.

その結果、WVGO原料から製造されたSAE−10グレード
の製品基油は、芳香族含有量が3.8wt%と低く、そのた
め添加剤の溶解性、使用中に生成するスラッジの溶解性
に劣る。また、高い粘度指数をもつイソパラフィンおよ
び一環ナフテンの飽和分中の合計量が55.4wt%とまだ充
分ではないため、基油の粘度指数は110と低い値を示
す。さらに、芳香族分中には基油の安定性を悪くする
三、四環芳香族、五環芳香族が多く残存しており、望
ましい成分であるアルキルベンゼンの含有量は少ない。
As a result, the SAE-10 grade product base oil produced from WVGO feedstock has a low aromatic content of 3.8 wt%, and therefore poor solubility of additives and solubility of sludge generated during use. In addition, since the total amount of isoparaffin and high-grade naphthene having a high viscosity index in the saturated component is still not enough, 55.4 wt%, the viscosity index of the base oil is as low as 110. Furthermore, the three are in the aromatic fraction to deteriorate the stability of the base oil, tetracyclic aromatic, and remained a lot pentacyclic + aromatics content of the alkylbenzene is small is desirable components.

比較例2 表−3に示す高圧、高LHSV下で処理して得られる水素
化分解基油を、溶剤脱ろうして得た脱ろう油は、熱安定
性テストに合格しない。
Comparative Example 2 A dewaxed oil obtained by solvent dewaxing of a hydrocracked base oil obtained by treatment under high pressure and high LHSV shown in Table 3 does not pass the thermal stability test.

比較列3 比較例2で得た溶剤脱ろう油を溶剤/油vol比2.0で、
フルフラール溶剤を用いた溶剤脱芳香族処理しても芳香
族分中には8.1wt%(製品基油中で0.3wt%)もの三、四
環芳香族が残り、熱安定性試験に合格するには至らな
い。
Comparative Column 3 The solvent dewaxed oil obtained in Comparative Example 2 was subjected to a solvent / oil vol ratio of 2.0,
Even if the solvent is dearomatized using a furfural solvent, as much as 8.1 wt% (0.3 wt% in the product base oil) of the three- or four-ring aromatics remain in the aromatics and pass the thermal stability test. Does not reach.

比較例4 比較例2で得た溶剤脱ろう油を溶剤/油vol比3.0で、
フルフラール溶剤を用いた溶剤脱芳香族処理してはじめ
て芳香族分中の三、四環芳香族量は6.0wt%(製品基油
中で0.2wt%)まで下り、熱安定性試験にも合格するよ
うになる。しかし、このとき飽和分およびアルキキルベ
ンゼンも同時に抽出除去されるため、ラフィネート収率
は72.1wt%と低く、望ましい成分であるアルキルベンゼ
ン含有量が少ない。このように、高圧、高LHSV下での水
素化分解油は、溶剤脱芳香処理における多環芳香族への
選択性が良くない。
Comparative Example 4 The solvent dewaxed oil obtained in Comparative Example 2 was prepared at a solvent / oil vol ratio of 3.0.
Only after the solvent dearomatization treatment using furfural solvent, the amount of tri- or tetracyclic aromatics in the aromatics drops to 6.0 wt% (0.2 wt% in the product base oil) and passes the thermal stability test. Become like However, at this time, since the saturated component and the alkylbenzene are also extracted and removed at the same time, the raffinate yield is as low as 72.1 wt%, and the content of alkylbenzene, which is a desirable component, is small. Thus, hydrocracked oils under high pressure and high LHSV have poor selectivity to polycyclic aromatics in solvent deodorization treatment.

比較例5 実施例1と同様に中低圧、低LHSV下での水素化分解油
を溶剤脱ろうして得た脱ろう油はそのままでは熱安定性
テストに合格しない。
Comparative Example 5 The dewaxed oil obtained by solvent dewaxing of the hydrocracked oil under medium to low pressure and low LHSV as in Example 1 does not pass the thermal stability test as it is.

【図面の簡単な説明】[Brief description of the drawings]

添付図面は三、四環芳香族含有量と潤滑油の熱安定性と
の関係を示すグラフである。
The accompanying drawings are graphs showing the relationship between the tri- or tetracyclic aromatic content and the thermal stability of the lubricating oil.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C10G 45/64 C10G 45/64 47/12 47/12 73/08 73/08 C10N 30:02 30:10 (56)参考文献 特開 昭55−65295(JP,A) 特公 昭51−5403(JP,B1) 米国特許3970543(US,A) (58)調査した分野(Int.Cl.6,DB名) G10G 67/14 G10G 67/04 G10G 65/12 G10G 21/16 G10G 47/12 G10G 45/64 G10G 73/08 G10M 101/02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C10G 45/64 C10G 45/64 47/12 47/12 73/08 73/08 C10N 30:02 30:10 (56) References JP-A-55-65295 (JP, A) JP-B-51-5403 (JP, B1) US Patent 3,970,543 (US, A) (58) Fields investigated (Int. Cl. 6 , DB name) G10G 67 / 14 G10G 67/04 G10G 65/12 G10G 21/16 G10G 47/12 G10G 45/64 G10G 73/08 G10M 101/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】減圧蒸留留出油(WVGO)又はWVGOをマイル
ドハイドロクラッキング(MHC)処理油(HIX)又はこれ
らの混合物ないしは脱瀝油(DAO)又はDAOのMHC処理油
又はこれらの混合油を水素化分解触媒の存在下、全圧力
100〜150kg/cm2、温度360〜440℃、LHSV0.5hr-1以下の
反応条件で、分解率が40〜75wt%になるように水素化分
解して、当該分解生成物をそのまま、もしくは潤滑留分
を回収し、次に脱ろう処理した後、脱芳香族処理するか
又は脱芳香族処理した後、脱ろう処理することにより、 全芳香族含有量が2〜15wt% 飽和分中のイソパラフィンと一環ナフテンの合計含有
量が60wt%以上 全芳香族分中のアルキルベンゼン含有量が30wt%以上 全芳香族分中の三、四環芳香族含有量が40wt%以下 の組成を有し、かつ、粘度指数が105以上で、流動点が
−10℃以下である潤滑油基油を製造することを特徴とす
る潤滑油基油の製造方法。
Claims 1. A vacuum distilled distillate (WVGO) or WVGO is treated with a mild hydrocracking (MHC) treated oil (HIX) or a mixture thereof, or a deasphalted oil (DAO) or a DAO MHC treated oil or a mixed oil thereof. Total pressure in the presence of hydrocracking catalyst
Under the reaction conditions of 100-150 kg / cm 2 , temperature of 360-440 ° C, LHSV of 0.5 hr -1 or less, hydrocracking is performed so that the decomposition rate becomes 40-75 wt%. The fraction is recovered, then dewaxed, dearomatized, or dearomatized, and then dewaxed so that the total aromatic content is 2 to 15% by weight. The total content of naphthenes is 60% by weight or more. The alkylbenzene content in the total aromatic content is 30% by weight or more. The total aromatic content of the tri- or tetracyclic aromatic content is 40% by weight or less. A method for producing a lubricating base oil, comprising producing a lubricating base oil having a viscosity index of 105 or more and a pour point of -10 ° C or less.
【請求項2】減圧蒸留留出油(WVGO)又はWVGOをマイル
ドハイドロクラッキング(MHC)処理油(HIX)又はこれ
らの混合物ないしは脱瀝油(DAO)又はDAOのMHC処理油
又はこれらの混合油を水素化分解触媒の存在下、全圧力
100〜150kg/cm2、温度360〜440℃、LHSV0.5hr-1以下の
反応条件で、分解率が40〜75wt%になるように水素化分
解して、当該分解生成物をそのまま、もしくは潤滑留分
を回収し、次に脱ろう処理した後、脱芳香族処理するか
又は脱芳香族処理した後、脱ろう処理することにより、 全芳香族含有量が2〜15wt% 飽和分中のイソパラフィンと一環ナフテンの合計含有
量が60wt%以上 全芳香族分中のアルキルベンゼン含有量が30wt%以上 全芳香族分中の三、四環芳香族含有量が40wt%以下 の組成を有し、かつ、 a)70ペール留分で105以上の粘度指数と−10℃以下の
流動点 b)SAE−10留分で115以上の粘度指数と−10℃以下の流
動点 c)SAE−20留分で120以上の粘度指数と−10℃以下の流
動点 d)SAE−30留分で120以上の粘度指数と−10℃以下の流
動点 のいずれかを満足する潤滑油基油を製造することを特徴
とする潤滑油基油の製造方法。
2. A vacuum distilled distillate (WVGO) or WVGO is treated with a mild hydrocracking (MHC) treated oil (HIX) or a mixture thereof, or a deasphalted oil (DAO) or a DAO MHC treated oil or a mixed oil thereof. Total pressure in the presence of hydrocracking catalyst
Under the reaction conditions of 100-150 kg / cm 2 , temperature of 360-440 ° C, LHSV of 0.5 hr -1 or less, hydrocracking is performed so that the decomposition rate becomes 40-75 wt%. The fraction is recovered, then dewaxed, dearomatized, or dearomatized, and then dewaxed so that the total aromatic content is 2 to 15% by weight. The total content of naphthenes is 60 wt% or more. The alkylbenzene content in the total aromatic components is 30 wt% or more. The tri- or tetracyclic aromatic content in the total aromatic components is 40 wt% or less, and a) Viscosity index of 105 or more and pour point of -10 ° C or less for 70 pale fraction b) Viscosity index of 115 or more and pour point of -10 ° C or less for SAE-10 fraction c) 120 for SAE-20 fraction Viscosity index above and pour point below -10 ° C d) SAE-30 fraction satisfies either viscosity index above 120 and pour point below -10 ° C Method for producing a lubricant base oil, characterized in that to produce a lubricating oil base oil.
【請求項3】溶剤脱芳香族処理において、溶剤としてフ
ルフラールを用い、溶剤/原料油比が2以下であること
を特徴とする請求項1又は2記載の方法。
3. The method according to claim 1, wherein in the solvent dearomatization treatment, furfural is used as a solvent and the solvent / feed oil ratio is 2 or less.
【請求項4】溶剤脱芳香族処理において、ラフィネート
収率が85wt%以上であることを特徴とする請求項1又は
2記載の方法。
4. The method according to claim 1, wherein the raffinate yield in the solvent dearomatization treatment is 85% by weight or more.
JP1343390A 1989-12-26 1989-12-28 Manufacturing method of lubricating base oil Expired - Lifetime JP2938487B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1343390A JP2938487B2 (en) 1989-12-26 1989-12-28 Manufacturing method of lubricating base oil
DE69011829T DE69011829T2 (en) 1989-12-26 1990-12-27 Lubricating oils.
EP90314325A EP0435670B1 (en) 1989-12-26 1990-12-27 Lubricating oils
US08/047,040 US5372703A (en) 1989-12-26 1993-04-12 Lubricating oils

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33722489 1989-12-26
JP1-337224 1989-12-26
JP1343390A JP2938487B2 (en) 1989-12-26 1989-12-28 Manufacturing method of lubricating base oil

Publications (2)

Publication Number Publication Date
JPH03223393A JPH03223393A (en) 1991-10-02
JP2938487B2 true JP2938487B2 (en) 1999-08-23

Family

ID=26575715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343390A Expired - Lifetime JP2938487B2 (en) 1989-12-26 1989-12-28 Manufacturing method of lubricating base oil

Country Status (1)

Country Link
JP (1) JP2938487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073026A (en) * 2002-03-08 2003-09-19 에스케이 주식회사 Method for producing feedstocks of high quality and heavy lube base oil from unconverted oil of fuels hydrocracker

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080388A (en) * 1998-09-03 2000-03-21 Tonen Corp Lubricant composition
ES2248538T3 (en) * 2001-02-13 2006-03-16 Shell Internationale Research Maatschappij B.V. LUBRICATING COMPOSITION.
KR101396804B1 (en) * 2007-03-30 2014-05-20 제이엑스 닛코닛세키에너지주식회사 Lubricant base oil, method for production thereof, and lubricant oil composition
KR100841804B1 (en) * 2007-07-13 2008-06-26 에스케이에너지 주식회사 Process for manufacturing naphthenic base oils from effluences of fluidized catalytic cracking unit
KR101779605B1 (en) * 2010-06-04 2017-09-19 에스케이이노베이션 주식회사 Method for producing base oil using deasphalt oil from reduced pressure distillation
RU2502788C1 (en) * 2012-11-30 2013-12-27 Феликс Саитович Биктимиров Method for mechanical dewaxing of raffinates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073026A (en) * 2002-03-08 2003-09-19 에스케이 주식회사 Method for producing feedstocks of high quality and heavy lube base oil from unconverted oil of fuels hydrocracker

Also Published As

Publication number Publication date
JPH03223393A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP3065816B2 (en) Production method of high viscosity index low viscosity lubricating base oil
JP3057125B2 (en) Method for producing high viscosity index low viscosity lubricating base oil
KR101779605B1 (en) Method for producing base oil using deasphalt oil from reduced pressure distillation
KR100592145B1 (en) Raffinate hydroconversion process
US4764265A (en) Process for the manufacture of lubricating base oils
CN1926220A (en) Process to continuously prepare two or more base oil grades and middle distillates
JP2938487B2 (en) Manufacturing method of lubricating base oil
US3816295A (en) Production of lubricating oils
JP2890060B2 (en) Manufacturing method of lubricating base oil
JPH09100480A (en) Base oil of light lubricant oil and its production
EP1198539B1 (en) Process to prepare a lubricating base oil
JPH08259974A (en) Lube base oil and its production
CA1090275A (en) Base-oil compositions
US3970543A (en) Production of lubricating oils
KR100705141B1 (en) Raffinate hydroconversion process
JP2003530460A (en) Process oil production method
CN114437816B (en) Method and apparatus for combined production of lubricating base oil and aromatic mineral oil
GB1572794A (en) Baseoil compositions
JPH1180755A (en) Production of non-carcinogenic aromatic hydrocarbon oil by solvent extraction and hydrogenative purification
RU2115695C1 (en) Method of producing base oil
JPH0786198B2 (en) Lubricating base oil and method for producing the same
JP2020164449A (en) Method for producing hexane solvent
JPH0356591A (en) Production of hydrocarbon mineral oil without containing aromatic
GB1572793A (en) Baseoil compositions
PL187748B1 (en) Method of producing basic oils

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11