JPH0356591A - Production of hydrocarbon mineral oil without containing aromatic - Google Patents

Production of hydrocarbon mineral oil without containing aromatic

Info

Publication number
JPH0356591A
JPH0356591A JP19286389A JP19286389A JPH0356591A JP H0356591 A JPH0356591 A JP H0356591A JP 19286389 A JP19286389 A JP 19286389A JP 19286389 A JP19286389 A JP 19286389A JP H0356591 A JPH0356591 A JP H0356591A
Authority
JP
Japan
Prior art keywords
oil
hydrocracking
conditions
product
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19286389A
Other languages
Japanese (ja)
Inventor
Katsuhiko Ishikawa
勝彦 石川
Takashi Shoda
正田 隆志
Masaru Ushio
賢 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP19286389A priority Critical patent/JPH0356591A/en
Publication of JPH0356591A publication Critical patent/JPH0356591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To produce various solvents for cleaning, coatings, etc., extremely rich in naphthenic content by carrying out selective hydrogenolysis of a mineral hydrocarbon oil under specific conditions in two stages. CONSTITUTION:A mineral hydrocarbon oil is brought into contact with H2 in the presence of a group VIII iron family metal and/or VIb group metal-based catalyst under relatively mild conditions to provide a hydrogenolysis product, which is then fractionated to afford a heavy fraction having >=300 deg.C initial boiling point. The resultant fraction is subsequently brought into contact with H2 in the presence of the same catalyst under relatively severe conditions to provide a hydrogenolysis product again. The aforementioned product is then brought into contact with H2 in the presence of a group VIII iron family metal- based catalyst to selectively hydrogenate aromatics and afford a hydrocarbon mineral oil substantially without containing the aromatics.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は実質的に芳香族を含まない各種鉱物油の経済的
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an economical process for producing various mineral oils that are substantially free of aromatics.

[従来の技術] 近年、芳香族の有害性からソルベント類および潤滑油留
分の非芳香族化が緊急の課題となってきている。したが
って潤滑油留分の非芳香族化については、例えば特公平
1−14278号公報に開示のように、一般に望ましく
ない原料を耐硫黄性触媒の存在下で水素化分解せしめ、
次いで耐硫黄性触媒の存在下で脱硫反応により油中の硫
黄含有量を低下させ、最後に第■族貴金属触媒の存在下
で食品用鉱物性白油を製造する方法が提案されている。
[Prior Art] In recent years, due to the harmful nature of aromatics, it has become an urgent issue to make solvents and lubricating oil fractions non-aromatic. Therefore, in order to dearomatize a lubricating oil fraction, for example, as disclosed in Japanese Patent Publication No. 1-14278, generally undesirable raw materials are hydrocracked in the presence of a sulfur-resistant catalyst,
A method has been proposed in which the sulfur content in the oil is then lowered by a desulfurization reaction in the presence of a sulfur-resistant catalyst, and finally a food-grade mineral white oil is produced in the presence of a Group I noble metal catalyst.

この方法は、最終工程で貴金属触媒を用いて非芳香族化
を行なろに当たり、硫黄が章金属触媒の触媒毒となるた
め、前段に脱硫工程を設けている。
In this method, in the final step, a noble metal catalyst is used to perform de-aromatization, and since sulfur becomes a catalyst poison for the metal catalyst, a desulfurization step is provided in the first stage.

また、蒸留性状が灯軽油留分の各種ソルベントの場合、
ソルベントとしては各種の顔料等に対する溶解性が重要
である。一般にこれらの溶解性はパラフィンくナフテン
く芳香族の順に大きいと言われており、特に非芳香族ソ
ルベントとした時はその溶解性の面からナフテン量の多
いものが好ましい。
In addition, if the distillation properties are various solvents of kerosene and gas oil fractions,
As a solvent, solubility for various pigments and the like is important. It is generally said that the solubility of these solvents is highest in the order of paraffins, naphthenes, and aromatics, and in particular, when using non-aromatic solvents, those with a large amount of naphthenes are preferred from the viewpoint of solubility.

かかる観点から炭化水素油中に芳香族留分を加えた混合
油を水素化することにより、ナフテン量に富だンルベン
トの製造方法が提案されている(米国特許第4.038
.734号公報)。
From this point of view, a method for producing danlubento rich in naphthenes has been proposed by hydrogenating a mixed oil in which an aromatic fraction is added to a hydrocarbon oil (U.S. Pat. No. 4,038).
.. Publication No. 734).

〔発明が解決しよづとする課題コ 本発明は、前記特公平1−14278号公報に開示のよ
ろな貴金属触媒の触媒毒となる硫黄を除去する脱硫工程
を設けることなく、また米国特許第4.036,734
号公報に開示のように炭化水素油にさらに芳香族留分を
添加することもなく、水素化分解を2段で実施すること
により、芳香族の水素化に有用な第W族金属触媒にとっ
て好ましい実質的に硫黄を含まない各種原料留分を同時
に併産し、それらを原料油として第■族金属触媒の存在
下で分子状水素と接触させ、実質的に芳香族を含まない
各種ソルベント〔ターニンク用(沸点140〜200℃
留分)、塗料、殺虫剤、インキ溶剤用(沸点200〜3
00℃留分)および潤滑油(沸点300℃以上の留分)
〕を製造することを目的にしている。
[Problems to be Solved by the Invention] The present invention does not require a desulfurization process for removing sulfur, which is a catalyst poison of various noble metal catalysts, as disclosed in the above-mentioned Japanese Patent Publication No. 1-14278, and also solves the problems disclosed in U.S. Patent No. 1-14278. 4.036,734
As disclosed in the publication, hydrogenolysis is carried out in two stages without further addition of an aromatic fraction to the hydrocarbon oil, which is preferable for Group W metal catalysts useful for aromatic hydrogenation. Various raw material fractions that do not contain substantially sulfur are co-produced at the same time, and these are brought into contact with molecular hydrogen in the presence of a group II metal catalyst as feedstock oil to produce various solvents that do not contain substantially aromatics [turning oil]. (boiling point 140-200℃
Distillates), paints, pesticides, ink solvents (boiling point 200-3
00℃ fraction) and lubricating oil (fraction with a boiling point of 300℃ or higher)
] is aimed at manufacturing.

また、また、本発明は2段水素化分解油の選択的水素化
により極めてナフテン量に富んだクリーニング用、塗料
用等の各種ソルベントを製造することを目的としている
Another object of the present invention is to produce various solvents for cleaning, paint, etc. that are extremely rich in naphthenes by selectively hydrogenating two-stage hydrocracked oil.

[課層を解決するための手段コ 本発明は、前記目的を達成するために、すなわち、 (a)第■鉄族金属、第VIb族金属およびそれらの混
合物から選択される少なくとも一つの金属を活性成分と
して活性アルミナを含む担体から成る水素化分解触媒の
存在下、比較的温和な水素化分解条件下で鉱物性炭化水
素油を分子状水素と接触させ、水素化分解生成物を得て
、(b)得られた水素化分解生成物を分留して少なくと
も初留点が300℃より高温で沸騰する重質留分を得て
、 (c)第■鉄族金属、第VIb族金属およびそれらの混
合物から選択される少なくとも一つの金属を活性威分と
して活性アルミナを含む担体から成る水素化分解触媒の
存在下、比較的苛酷な水素化分解条件で工程(b)から
の生成油を分子状水素と接触させ、再度水素化分解生成
物を得、(d)第■鉄族金属およびそれらの混合物から
選択される少なくとも一つの金属を活性成分として耐火
性無機酸化物の担体から成る触媒の存在下、選択的水素
化条件下で、工程(c)からの水素化分解生成物を分子
状水素と接触させ、工程(c)からの水素化分解生成物
中の芳香族を選択的に水素化する、 工程から成る実質的に芳香族を含まない炭化水素鉱油の
製造方法を提供するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides the following: (a) At least one metal selected from iron group metals, group VIb metals and mixtures thereof. Contacting a mineral hydrocarbon oil with molecular hydrogen under relatively mild hydrocracking conditions in the presence of a hydrocracking catalyst consisting of a support containing activated alumina as an active ingredient to obtain a hydrocracking product; (b) Fractionally distilling the obtained hydrocracked product to obtain a heavy fraction whose initial boiling point boils at a temperature higher than 300°C; (c) iron group metal, group VIb metal and The product oil from step (b) is subjected to relatively harsh hydrocracking conditions in the presence of a hydrocracking catalyst consisting of a carrier comprising activated alumina with at least one metal selected from the mixture as an active ingredient. (d) a catalyst consisting of a refractory inorganic oxide support with at least one metal selected from iron group metals and mixtures thereof as an active component; contacting the hydrocracked product from step (c) with molecular hydrogen under selective hydrogenation conditions in the presence of selective hydrogenation of aromatics in the hydrocracked product from step (c). The present invention provides a method for producing a substantially aromatic-free hydrocarbon mineral oil comprising the steps of:

本発明で使用する原料油は鉱物性炭化水素であり、特に
沸点範囲約360〜590℃の炭化水素油が好ましく使
用される。例えば減圧蒸留留出油および脱れき油が挙げ
られる。
The raw material oil used in the present invention is a mineral hydrocarbon, and in particular, a hydrocarbon oil having a boiling point range of about 360 to 590°C is preferably used. Examples include vacuum distillation distillate oil and deasphalted oil.

本発明の(a)工程でいろ”比較的温和な水素化分解”
とは 温度380〜450℃、このましくは400〜430℃
、圧力70〜110未満K g/ c m2・G1好ま
しくは90〜100Kg/am″eG1液空間速度(L
HSV)1.0 〜3.0V/V/H1好ましくは1.
2 〜1.7V/V/H1および水素対炭化水素原料油
比1.500〜3,OOOs.c.f/bbl一原料油
、好ましくは2,500〜3,OOOs.c.f/bb
i一原料油 の温和な条件で水素化分解することである。
In step (a) of the present invention, "relatively mild hydrogenolysis"
means temperature 380-450℃, preferably 400-430℃
, pressure 70 to less than 110 K g/cm2・G1 preferably 90 to 100 Kg/am″eG1 liquid hourly velocity (L
HSV) 1.0 to 3.0V/V/H1 preferably 1.
2 to 1.7 V/V/H1 and hydrogen to hydrocarbon feedstock ratio 1.500 to 3, OOOs. c. f/bbl - feedstock oil, preferably 2,500 to 3,000s. c. f/bb
i- Hydrocracking of feedstock oil under mild conditions.

本発明の(a)工程で用いる水素化分解触媒は第■族鉄
族金属、例えばニッケル、コバルト等の金属と、第VI
b族金属、例えばモリブデン、タングステン等の金属の
少なくとも一種の活性金属を活性アルミナを含む担体、
例えば活性アルミナの他に、好ましくはシリカ、ボリア
等の無機酸化物に担持させた触媒である。
The hydrocracking catalyst used in step (a) of the present invention is a group IV iron group metal, such as a metal such as nickel or cobalt, and a group VI metal.
A carrier containing activated alumina containing at least one active metal of Group B metals, such as molybdenum and tungsten;
For example, in addition to activated alumina, the catalyst is preferably supported on an inorganic oxide such as silica or boria.

前記触媒の活性金属は、金属形態、酸化物あるいは硫化
物のいずれの形態で存在してもよい。
The active metal of the catalyst may be present in the form of a metal, an oxide or a sulfide.

活性金属の担持量(酸化物として)は第■族鉄族金属で
は1〜15重量%、好ましくは2〜lO重量%である。
The amount of active metal supported (as oxide) is 1 to 15% by weight, preferably 2 to 10% by weight for Group I iron group metals.

第VIb族金属は5〜30重量%、好ましくは10〜3
0重量%である。
Group VIb metal is 5-30% by weight, preferably 10-3
It is 0% by weight.

本発明の(b)工程では前記(a)工程で得られた水素
化分解油を減圧蒸留等で軽質留分と重質留分とに分留す
る。このうち初留点が300℃より高い重質留分を次の
(c)工程に移送する。
In step (b) of the present invention, the hydrocracked oil obtained in step (a) is fractionated into a light fraction and a heavy fraction by vacuum distillation or the like. Among these, the heavy fraction with an initial boiling point higher than 300°C is transferred to the next step (c).

本発明では(c)工程に移送する重質留分の一部に代え
て、温和な水素化分解の原料である減圧蒸留留出油を混
合することができる。
In the present invention, instead of part of the heavy fraction transferred to step (c), vacuum distillation distillate oil, which is a raw material for mild hydrocracking, can be mixed.

本発明の(c)工程でいう”比較的苛酷な水素化分解”
とは 温度3θO〜450℃、好ましくは370〜420℃、
圧力1 1 0 〜2 1 0Kg/am2@G1好ま
しくは120 〜170Kg/cm” eG, 液空J
I速度(LHSV)0.2 〜2.0V/V/H,好ま
し<lt0.3 〜0.9V/V/H1および水素対炭
化水素原料油比2, 500〜4.500s.c.f/
bbl一原料油、好ましくはL 000 〜4+ OO
Os.c.t/bbl一原料油 の苛酷な条件で水素化分解することである。
"Comparatively severe hydrocracking" in step (c) of the present invention
means a temperature of 3θO to 450°C, preferably 370 to 420°C,
Pressure 110 to 210Kg/am2@G1 preferably 120 to 170Kg/cm” eG, liquid air J
I velocity (LHSV) 0.2 to 2.0 V/V/H, preferably <lt0.3 to 0.9 V/V/H1 and hydrogen to hydrocarbon feedstock ratio 2,500 to 4,500 s. c. f/
bbl - feedstock oil, preferably L 000 to 4+ OO
Os. c. t/bbl - Hydrocracking of feedstock oil under severe conditions.

本発明の(c)工程で使用する水素化分解触媒は(a)
工程で使用した触媒と同様の触媒を使用することができ
る。
The hydrocracking catalyst used in step (c) of the present invention is (a)
A catalyst similar to that used in the process can be used.

次いで苛酷な水素化分解条件で水素化分解された生成油
は通常の蒸留操作により、ナフサ、灯油、軽油および潤
滑油留分に分留することができる。また苛酷な水素化分
解条件で生成した軽油留分および潤滑油留分は選択的水
素化工程に先立って脱ろうすることもできる。
The product oil hydrocracked under severe hydrocracking conditions can then be fractionated into naphtha, kerosene, gas oil, and lubricating oil fractions by conventional distillation operations. Gas oil fractions and lubricating oil fractions produced under severe hydrocracking conditions can also be dewaxed prior to the selective hydrogenation step.

該脱ろう方法は通常の方法が用いられる。例えば脱ろつ
溶剤としてべ冫ゼン、トルエン、アセトン、またはベン
ゼン、トノレエン、MEK (メチノレエチルケトン)
などの混合溶剤を用いた溶剤脱ろう法、またはZSM−
5ゼオライト等を用いる接触脱ろう法が挙げられる。
A conventional method is used for the dewaxing method. For example, benzene, toluene, acetone, or benzene, tonoleene, MEK (methynolethyl ketone) as a defrosting solvent.
Solvent dewaxing method using a mixed solvent such as ZSM-
A catalytic dewaxing method using No. 5 zeolite or the like can be mentioned.

また苛酷な水素化分解条件で生成した潤滑油留分にはナ
フサ、灯油、軽油留分に比べて比較的多くの多環芳香族
(ナフタリンで代表される2環以上の芳香族)を含む。
Furthermore, lubricating oil fractions produced under severe hydrocracking conditions contain relatively more polycyclic aromatics (aromatics with two or more rings, typified by naphthalene) than naphtha, kerosene, and gas oil fractions.

多環芳香族の選択的水素化には熱力学的に単環芳香族よ
りも高い水素分圧を必要とすることから、潤滑油留分を
溶剤精製したのちに選択的水素化工程に送るのが好まし
い。
Selective hydrogenation of polycyclic aromatics thermodynamically requires a higher hydrogen partial pressure than single-ring aromatics, so lubricating oil fractions are sent to the selective hydrogenation process after solvent refining. is preferred.

溶剤精製は通常の方法で行うことができる。例えば、抽
出溶剤としてフルフラールを使用するフルフラール法が
挙げられる。
Solvent purification can be carried out by conventional methods. For example, the furfural method uses furfural as an extraction solvent.

本発明の(c)工程からの水素化分解生成油を(d)工
程の選択的水素化工程に送入する。
The hydrocracked oil from step (c) of the present invention is fed to the selective hydrogenation step of step (d).

(d)工程の選択的水素化は、圧力20〜100Kg/
cmQ●61好ましくは25〜60Kg/cm’ ”G
s温度100 〜350℃、好ましくは120〜300
℃、液空間速度0.5〜8.0V/V/H,好1<は1
.O 〜4.0V/V/H,および水素対原料油比50
〜3.OOOs.c.f/bbl一原料油、好ましくは
400 〜1,500s.c.f/bbl一原料油の条
件で芳香族を選択的に水素化する。
Selective hydrogenation in step (d) is performed at a pressure of 20 to 100 Kg/
cmQ●61 preferably 25-60Kg/cm' ”G
s temperature 100-350℃, preferably 120-300℃
°C, liquid space velocity 0.5 to 8.0 V/V/H, good 1 < is 1
.. O ~4.0V/V/H, and hydrogen to feedstock ratio 50
~3. OOOs. c. f/bbl - feedstock oil, preferably 400 to 1,500 s. c. Aromatics are selectively hydrogenated under conditions of f/bbl - feedstock oil.

本発明の(d)工程の選択的水素化工程に用いる触媒と
しては、第■族鉄族金属または第■族貴金属族金属が挙
げられる。第■族鉄族金属としては特にニッケルが好ま
しい。該ニッケルは還元ニッケル含有触媒であり、還元
ニッケルを含有するものであればニッケル形態の大半が
酸化物であっても、または他のアニオンとの化合物であ
ってもよい。
Examples of the catalyst used in the selective hydrogenation step of step (d) of the present invention include Group (1) iron group metals and Group (1) noble metal group metals. Nickel is particularly preferred as the Group (I) iron group metal. The nickel is a reduced nickel-containing catalyst, and as long as it contains reduced nickel, most of the nickel form may be an oxide or a compound with other anions.

担体としては、耐火性無機酸化物が挙げられ、例えばけ
い藻土、軽石、シリカ、アルミナあるいは酸性白土等が
好ましく使用できる。また、これらを混合してもよい。
Examples of the carrier include refractory inorganic oxides, such as diatomaceous earth, pumice, silica, alumina, and acid clay. Alternatively, these may be mixed.

金属の担持量はニッケル含有量(酸化物として)として
は6〜90重量%、好ましくは15〜50重量%、また
還元ニッケル含有量としては5〜70重量%、好ましく
は10〜50重量%の範囲が適当である。
The supported amount of metal is nickel content (as oxide) of 6 to 90% by weight, preferably 15 to 50% by weight, and reduced nickel content of 5 to 70% by weight, preferably 10 to 50% by weight. The range is appropriate.

また、第■族貴金属族としては白金またはパラジウムが
好ましい。
Further, as the Group (1) noble metal group, platinum or palladium is preferable.

担体としては耐火性無機酸化物が挙げられ、例えばアル
ミナが好ましく、該アルミナに少量のシルカ、ジルコニ
ア、マグネシア等を含有してもよい。
Examples of the carrier include refractory inorganic oxides, preferably alumina, and the alumina may contain a small amount of silica, zirconia, magnesia, etc.

前記の貴金属成分は、金属の形態、酸化物の形態の何れ
で存在していてもよい。
The above-mentioned noble metal component may exist in either a metal form or an oxide form.

貴金属成分の担持量は金属の形態として、0.1〜2.
0重量%、好ましくは0.3〜0.7重量%の範囲であ
る。また酸化物として、0.1〜2.3重量%、好まし
くは0.3〜0.8重量%の範囲である。
The supported amount of the noble metal component is 0.1 to 2.
0% by weight, preferably in the range of 0.3-0.7% by weight. Further, the amount of the oxide is in the range of 0.1 to 2.3% by weight, preferably 0.3 to 0.8% by weight.

本発明で使用する触媒は好ましくは固定床といして反応
塔に充填される。触媒の形状は押出物、球形物、粒状物
、タブレット等の任意の形状のものが使用できる。
The catalyst used in the present invention is preferably packed into a reaction column as a fixed bed. The catalyst can be in any shape such as extrudates, spheres, granules, tablets, etc.

【実施例] 次に実施例により本発明をさらに具体的に説明する。【Example] Next, the present invention will be explained in more detail with reference to Examples.

実i例」一 表1に示す中東系原油の減圧蒸留留出油を活性アルミナ
ーボリア(A1aOaに対しB2ss15重量%)を担
体とするニッケル3.0重量%(酸化物として)および
モリブデン10.0重量%(酸化物として)を含有する
触媒の存在下で温度434℃、水素対原料油比2,IO
Os.c.f/bbl一原料油、圧力95Kg/cm2
*G, 液空間速度1.82V/V/Hで反応サセ、当
該生成物から常圧および減圧蒸留を行って表2に示す各
留出油を得た。
Practical Example 1 3.0% by weight of nickel (as oxide) and 10% of molybdenum using activated alumina boria (15% by weight of B2ss based on A1aOa) as a carrier was prepared from vacuum distillation distillate of Middle Eastern crude oil shown in Table 1. At a temperature of 434° C. in the presence of a catalyst containing 0% by weight (as oxides), a hydrogen to feedstock ratio of 2.IO
Os. c. f/bbl - raw material oil, pressure 95Kg/cm2
*G, The reaction was carried out at a liquid hourly space velocity of 1.82 V/V/H, and the product was subjected to atmospheric and reduced pressure distillation to obtain each distillate oil shown in Table 2.

次いで表2の潤滑油留分89重量%と表1の減圧蒸留留
出油11重量%意を混合してシリカー活性アルミナ(S
in2に対しAla0325重量%)を担体とするニッ
ケル9.3重量%(酸化物として)および夕冫グステン
16.4重量%(酸化物として)を含有する触媒の存在
下で温度391℃、水素対原料油比L 500s.c−
  f/bbl一原料油、圧力130kg/Cm” *
G1液空間a!0.32V/V/}{で反応させ、当該
生成物から常圧および減圧蒸留を行って表3に示す各留
出油を得た。
Next, 89% by weight of the lubricating oil fraction in Table 2 and 11% by weight of the vacuum distillation distillate in Table 1 were mixed to form silica-activated alumina (S).
In the presence of a catalyst containing 9.3 wt. % nickel (as oxide) and 16.4 wt. % nickel (as oxide) on a carrier of 325 wt. Raw material oil ratio L 500s. c-
f/bbl - raw material oil, pressure 130kg/Cm" *
G1 liquid space a! 0.32V/V/}{The product was subjected to normal pressure and reduced pressure distillation to obtain each distillate oil shown in Table 3.

表3の軽油留分をシリカーアルミナ(S i OQに対
しAl*Oi23重量%)を担体とするニッケル64重
量%(酸化物として)を含有する選択的水素化触媒の存
在下で温度200℃、水素対原料油比1.400s.c
.f/bbl一原料油、圧力30kg/cm2●G1液
空間速度2.0V/V/Hで反応させ、実質的に芳香族
を含まない軽油留分沸点範囲の非芳香族ソルベントを得
た。
The gas oil fractions of Table 3 were heated at 200° C. in the presence of a selective hydrogenation catalyst containing 64% by weight of nickel (as oxide) supported on silica-alumina (23% by weight of Al*Oi relative to S i OQ). , hydrogen to feedstock ratio 1.400s. c.
.. The reaction was carried out using f/bbl - feedstock oil at a pressure of 30 kg/cm 2 -G1 and a liquid hourly space velocity of 2.0 V/V/H to obtain a non-aromatic solvent having a gas oil fraction boiling point range that does not substantially contain aromatics.

性状を表4に示した。The properties are shown in Table 4.

なおこの選択的水素化触媒11ポンドに対し表3の2段
水素化分解軽油48バーレルまで芳香族の実質的な水素
化活性低下は認められなかった。
Note that no substantial decrease in aromatic hydrogenation activity was observed up to 48 barrels of the two-stage hydrocracking gas oil shown in Table 3 for 11 pounds of this selective hydrogenation catalyst.

寛胤虹L 表3の2段水素化分解生成灯油留分をアルミナを担体と
する白金0.6重量%を含有する選択的水素化触媒の存
在下で温度280℃、水素対原料簡比1.400s.c
.f/bbl一原料油、圧力θO K g / c m
” ●G 1液空間速度5.0V/V/Hで反応させ、
実質的に芳香族を含まない灯油留分沸点範囲の非芳香族
ソルベントを得た。性状を表5に示した。
Hiroyuki Hong L The two-stage hydrocracking kerosene fraction shown in Table 3 was treated in the presence of a selective hydrogenation catalyst containing 0.6% by weight of platinum using alumina as a carrier at a temperature of 280°C and a simple ratio of hydrogen to raw material 1. .400s. c.
.. f/bbl - raw material oil, pressure θO K g/cm
” ●G React at a liquid space velocity of 5.0 V/V/H,
A non-aromatic solvent in the kerosene fraction boiling range that is substantially free of aromatics was obtained. The properties are shown in Table 5.

実丑艷虹1 表3の2段水素化分解生成潤滑油留分を潤滑油留分10
0容量部に対し、フルフラール150容量部、温度10
0〜130℃の条件でフルフラール抽出を行い、抽出後
の潤滑油留分について実施例1の選択的水素化触媒と選
択的水素化条件下で反応させ、実質的に芳香族を含まな
い潤滑油留分を得た。性状を表6に示した。
The lubricating oil fraction produced by two-stage hydrocracking in Table 3 was converted into lubricating oil fraction 10.
0 parts by volume, furfural 150 parts by volume, temperature 10 parts by volume
Furfural extraction is carried out under conditions of 0 to 130°C, and the lubricating oil fraction after the extraction is reacted with the selective hydrogenation catalyst of Example 1 under selective hydrogenation conditions to obtain a lubricating oil substantially free of aromatics. A fraction was obtained. The properties are shown in Table 6.

比鬼IL 表2の1段水素化分解生成軽油留分を実施例1の選択的
水索化触媒と共に同一選択的水素化条件下で反応させた
ところ、芳香族分は32重量%から28重量%に低下し
たに過ぎず、実質的に芳香族分を含まない軽油留分ンル
ベントの製造はできなかった。
Hiki IL When the gas oil fraction produced by first-stage hydrocracking in Table 2 was reacted with the selective hydrocracking catalyst of Example 1 under the same selective hydrogenation conditions, the aromatic content ranged from 32% by weight to 28% by weight. %, and it was not possible to produce a gas oil distillate containing substantially no aromatic content.

密度15℃(g/cm3 動粘度 50℃ (cSt)100℃ 粘度指数 流動点(゜C) 蒸留(”C)IBP EP 硫黄分(重量%) ) 0. 49. 9. 89 42. 301 585 1. 9219 71 303 70 表4 密度15℃(g/Cm3 蒸留(’C)IBP EP 色相(セーボルト) 流動点(”C) アニリン点(’C) 硫黄分(重量ppm) 窒素分(重量ppm) ナフテン分(重量%) ) 0.  828 226 341 +30以上 −10.0 90.7 1以下 1以下 71 表5 密度15℃(g/am3 蒸留(”C)IBP EP 色相(セーボルト) 流動点(゜C) アニリン点(’C) 硫黄分(重量ppm) 窒素分(重量ppm) ナフテン分(重量%) )    O.787 136 237 +30以上 −45以下 71 1以下 1以下 81 表8 2段水素化分解生成潤滑油留分をフルフラール抽密度1
5℃(g/cm’ 動粘度 50℃ (cSt)100℃ 粘度指数 流動点(℃) 蒸留(’C)IBP EP 硫黄分(重量ppm) 窒素分(重量ppm) アニリン点( ’C ) ナフテン分(重量%) ) 0. 1 1. 3. 137 35. 3 18 551 122. 65 8469 O8 702 1以下 1以下 〔発明の効果コ 本発明は選択的水素化に使用する貴金属触媒の触媒毒と
なる硫黄を除去する脱硫工程を設けることなく、水素化
分解を2段で行うことにより、芳香族の水素化に有用な
第■族金属触媒にとって好ましい実質的に硫黄を含まな
い各種原料油留分を同時に併産し、それらを原料油とし
て第■族金属触媒の存在下で分子状水素と接触せしめ、
実質的に芳香族を含まない各種ソルベントおよび潤滑油
を製造できる。
Density 15℃ (g/cm3 Kinematic viscosity 50℃ (cSt) 100℃ Viscosity index Pour point (℃) Distillation ("C) IBP EP Sulfur content (wt%) ) 0. 49. 9. 89 42. 301 585 1 9219 71 303 70 Table 4 Density 15℃ (g/Cm3 Distillation ('C) IBP EP Hue (Saybold) Pour point ('C) Aniline point ('C) Sulfur content (ppm by weight) Nitrogen content (ppm by weight) Naphthene Minutes (weight%) ) 0. 828 226 341 +30 or more -10.0 90.7 1 or less 1 or less 71 Table 5 Density 15°C (g/am3 Distillation ('C) IBP EP Hue (Saybold) Pour point (°C) Aniline point ('C) Sulfur (weight ppm) Nitrogen content (weight ppm) Naphthene content (weight %) ) O.787 136 237 +30 or more -45 or less 71 1 or less 1 or less 81 Table 8 Furfural extraction density of the lubricating oil fraction produced by two-stage hydrocracking 1
5℃ (g/cm') Kinematic viscosity 50℃ (cSt) 100℃ Viscosity index pour point (℃) Distillation ('C) IBP EP Sulfur content (weight ppm) Nitrogen content (weight ppm) Aniline point ('C) Naphthene content (% by weight)) 0. 1 1. 3. 137 35. 3 18 551 122. 65 8469 O8 702 1 or less 1 or less [Effects of the invention] The present invention performs hydrocracking in two stages without providing a desulfurization step to remove sulfur, which is a catalyst poison for the noble metal catalyst used in selective hydrogenation. By this method, various substantially sulfur-free feedstock fractions, which are preferable for Group II metal catalysts useful for aromatic hydrogenation, are simultaneously co-produced, and these are used as feedstock oils to react with molecules in the presence of Group II metal catalysts. contact with hydrogen,
Various solvents and lubricating oils can be produced that are substantially aromatic-free.

また、2段水素化分解油の選択的水素化により、極めて
ナフテン量に富んだクリーニング用、塗料用等の各種ソ
ルベントを製造できる。
In addition, by selectively hydrogenating the two-stage hydrocracked oil, various solvents for cleaning, paint, etc., which are extremely rich in naphthene content, can be produced.

Claims (1)

【特許請求の範囲】 (1)(a)第VIII鉄族金属、第VIb族金属およびそれ
らの混合物から選択される少なくとも一つの金属を活性
成分として活性アルミナを含む担体から成る水素化分解
触媒の存在下、比較的温和な水素化分解条件下で鉱物性
炭化水素油を分子状水素と接触させ、水素化分解生成物
を得て、(b)得られた水素化分解生成物を分留し て少なくとも初留点が300℃より高温で沸騰する重質
留分を得て、 (c)第VIII鉄族金属、第VIb族金属および それらの混合物から選択される少なくとも一つの金属を
活性成分として活性アルミナを含む担体から成る水素化
分解触媒の存在下、比較的苛酷な水素化分解条件で工程
(b)からの生成油を分子状水素と接触させ、再度水素
化分解生成物を得て、 (d)第VIII鉄族金属およびそれらの混合物 から選択される少なくとも一つの金属を活性成分として
耐火性無機酸化物の担体から成る触媒の存在下、選択的
水素化条件下で、工程(c)からの水素化分解生成物を
分子状水素と接触させ、工程(c)からの水素化分解生
成物中の芳香族を選択的に水素化する、 工程から成る実質的に芳香族を含まない炭化水素鉱油の
製造方法。 (2)工程(c)からの生成炭化水素を選択的に水素化
する工程に先立ってさらに脱ろうする工程を包含して成
る請求項1記載の製造方法。 (3)工程(c)からの生成炭化水素を選択的に水素化
する工程に先立ってさらにナフサ、灯油、軽油および潤
滑油留分に分留する工程を包含する請求項1記載の製造
方法。 (4)工程(c)からの生成炭化水素を選択的に水素化
する工程に先立ってさらに溶剤精製工程を包含する請求
項1記載の製造方法。 (5)温和な水素化分解条件が、温度360〜450℃
、圧力70〜110未満Kg/cm^2・G、液空間速
度(LHSV)1.0〜3.0V/V/H、および水素
対炭化水素原料油比1,500〜3,000s.c.f
/bbl−原料油である請求項1記載の製造方法。 (B)苛酷な水素化分解条件が、温度360〜450℃
、圧力110〜210Kg/cm^2・G、液空間速度
(LHSV)0.2〜2.0V/V/H、および水素対
炭化水素原料油比2,500〜4,500s.c.f/
bbl−原料油である請求項1記載の製造方法。 (7)選択的水素化条件が、温度100〜350℃、圧
力20〜100Kg/cm^2・G、液空間速度(LH
SV)0.5〜6.0V/V/H、および水素対炭化水
素原料油比50〜 2,500s.c.f/bbl−原料油である請求項1
記載の製造方法。 (8)溶剤精製における精製溶剤がフルフラールである
請求項4記載の製造方法。
[Scope of Claims] (1) (a) A hydrocracking catalyst comprising at least one metal selected from iron group VIII metals, group VIb metals and mixtures thereof as an active ingredient and a carrier containing activated alumina. (b) contacting a mineral hydrocarbon oil with molecular hydrogen under relatively mild hydrocracking conditions to obtain a hydrocracking product; and (b) fractionating the resulting hydrocracking product. (c) at least one metal selected from iron group VIII metals, group VIb metals and mixtures thereof as an active ingredient; contacting the product oil from step (b) with molecular hydrogen under relatively harsh hydrocracking conditions in the presence of a hydrocracking catalyst consisting of a support comprising activated alumina to again obtain a hydrocracking product; (d) step (c) under selective hydrogenation conditions in the presence of a catalyst consisting of a refractory inorganic oxide support with at least one metal selected from iron group VIII metals and mixtures thereof as active component; contacting the hydrocracked product from step (c) with molecular hydrogen to selectively hydrogenate aromatics in the hydrocracked product from step (c). Method for producing hydrogen mineral oil. 2. The method according to claim 1, further comprising the step of dewaxing the hydrocarbons produced in step (c) prior to selectively hydrogenating the hydrocarbons produced in step (c). 3. The production method according to claim 1, further comprising the step of fractionating the hydrocarbons produced in step (c) into naphtha, kerosene, light oil, and lubricating oil fractions prior to the step of selectively hydrogenating the hydrocarbons produced. (4) The production method according to claim 1, further comprising a solvent purification step prior to the step of selectively hydrogenating the hydrocarbons produced in step (c). (5) Mild hydrogenolysis conditions are at a temperature of 360-450℃
, pressure 70 to less than 110 Kg/cm^2.G, liquid hourly space velocity (LHSV) 1.0 to 3.0 V/V/H, and hydrogen to hydrocarbon feedstock ratio 1,500 to 3,000 s. c. f
The production method according to claim 1, wherein the raw material oil is /bbl-stock oil. (B) Severe hydrocracking conditions at a temperature of 360 to 450°C
, pressure 110-210 Kg/cm^2.G, liquid hourly space velocity (LHSV) 0.2-2.0 V/V/H, and hydrogen to hydrocarbon feedstock ratio 2,500-4,500 s. c. f/
The manufacturing method according to claim 1, wherein the raw material is bbl-stock oil. (7) Selective hydrogenation conditions are temperature 100~350℃, pressure 20~100Kg/cm^2・G, liquid hourly space velocity (LH
SV) 0.5 to 6.0 V/V/H, and hydrogen to hydrocarbon feedstock ratio 50 to 2,500 s. c. Claim 1: f/bbl-stock oil
Manufacturing method described. (8) The manufacturing method according to claim 4, wherein the purified solvent in the solvent purification is furfural.
JP19286389A 1989-07-26 1989-07-26 Production of hydrocarbon mineral oil without containing aromatic Pending JPH0356591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19286389A JPH0356591A (en) 1989-07-26 1989-07-26 Production of hydrocarbon mineral oil without containing aromatic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19286389A JPH0356591A (en) 1989-07-26 1989-07-26 Production of hydrocarbon mineral oil without containing aromatic

Publications (1)

Publication Number Publication Date
JPH0356591A true JPH0356591A (en) 1991-03-12

Family

ID=16298226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19286389A Pending JPH0356591A (en) 1989-07-26 1989-07-26 Production of hydrocarbon mineral oil without containing aromatic

Country Status (1)

Country Link
JP (1) JPH0356591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553331B2 (en) * 1999-03-16 2010-09-29 Jx日鉱日石エネルギー株式会社 Light oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553331B2 (en) * 1999-03-16 2010-09-29 Jx日鉱日石エネルギー株式会社 Light oil composition

Similar Documents

Publication Publication Date Title
US3923636A (en) Production of lubricating oils
JP3065816B2 (en) Production method of high viscosity index low viscosity lubricating base oil
JP3057125B2 (en) Method for producing high viscosity index low viscosity lubricating base oil
CA1098467A (en) Process for the conversion of hydrocarbons
KR100876354B1 (en) How to make fuel and lubricating oil in a single combined hydrocracking system
US4183801A (en) Process for preparing hydrocarbons
KR20110133130A (en) Method for producing base oil using deasphalt oil from reduced pressure distillation
SU1676456A3 (en) Method of producing lubricating oils
US20050194288A1 (en) Process to prepare a lubricating base oil
JPS6315890A (en) Production of lubricating base oil
JP2007526381A (en) Continuous production method of two or more base oil grades and middle distillates
US3816295A (en) Production of lubricating oils
US5098551A (en) Process for the manufacture of lubricating base oils
EP1198539B1 (en) Process to prepare a lubricating base oil
US4011154A (en) Production of lubricating oils
JPS6132356B2 (en)
RU2263706C2 (en) Colorless basic lubricating oil production process
US3790470A (en) Production of lubricating oils
US3896025A (en) Production of improved lubricating oils
JPH0356591A (en) Production of hydrocarbon mineral oil without containing aromatic
US3725245A (en) Production of lubricating oils
SU1681735A3 (en) Process for preparing kerosene and/or gas oil
JPH03223393A (en) Manufacture of lube base oil
JPS6215289A (en) Production of high grade lubricant
JPH06116570A (en) Production of low-aromatic hydrocarbon oil