JP2935738B2 - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JP2935738B2
JP2935738B2 JP2297066A JP29706690A JP2935738B2 JP 2935738 B2 JP2935738 B2 JP 2935738B2 JP 2297066 A JP2297066 A JP 2297066A JP 29706690 A JP29706690 A JP 29706690A JP 2935738 B2 JP2935738 B2 JP 2935738B2
Authority
JP
Japan
Prior art keywords
infrared
semiconductor
detecting element
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2297066A
Other languages
Japanese (ja)
Other versions
JPH04171772A (en
Inventor
博明 柳田
勝 宮山
範雄 武藤
毅 野竹
宏 市川
義一 今井
博文 原田
章 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Sohgo Security Services Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Sohgo Security Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd, Sohgo Security Services Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2297066A priority Critical patent/JP2935738B2/en
Publication of JPH04171772A publication Critical patent/JPH04171772A/en
Application granted granted Critical
Publication of JP2935738B2 publication Critical patent/JP2935738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は赤外線検出素子に関し、詳しくは赤外線によ
り電気抵抗が変化する半導体繊維を用いて赤外線量を検
出する赤外線検出素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element, and more particularly, to an infrared detecting element for detecting an amount of infrared light using a semiconductor fiber whose electric resistance changes by infrared light.

[従来の技術] 従来、赤外線検出素子としては、焦電効果を利用した
焦電素子や熱電対を集積したサーモパイル等を用いたも
のが知られている。
[Prior Art] Conventionally, as an infrared detecting element, an infrared detecting element using a pyroelectric element utilizing a pyroelectric effect, a thermopile integrating thermocouples, or the like is known.

しかしこれらの赤外線検出素子は、高度の応答速度が
要求される用途には応答時間の点で難点があり、また被
検出赤外線源の位置検出への利用にも限界があった。さ
らに、上記従来の赤外線検出素子は価格の点でも不利で
あった。
However, these infrared detecting elements have drawbacks in response time in applications where a high response speed is required, and there is a limit in the use of the infrared light source to be detected for position detection. Further, the above-mentioned conventional infrared detecting element is disadvantageous in terms of price.

本発明者らは先に、温度により電気抵抗が変化する半
導体繊維を用いた赤外線検出素子を提案し(特開平2−
71121号[特願昭63−222506号])、さらに前記半導体
繊維として特定の炭化ケイ素繊維を用いた赤外線検出素
子(特願平1−131435号)、並びに特定の炭素繊維を用
いた赤外線検出素子(特願平1−232888号、特願平1−
277050)を提案してきた。
The present inventors have previously proposed an infrared detecting element using a semiconductor fiber whose electric resistance changes with temperature (Japanese Unexamined Patent Publication No.
No. 71121 [Japanese Patent Application No. 63-222506], an infrared detecting element using a specific silicon carbide fiber as the semiconductor fiber (Japanese Patent Application No. 1-131435), and an infrared detecting element using a specific carbon fiber. (Japanese Patent Application No. 1-2232888, Japanese Patent Application No.
277050).

上記の本発明者らによる赤外線検出素子は、時定数
(τ)が十分小さく、価格的にも有利であり、前記従来
の赤外線検出素子の欠点を解消し得るものであった。
The infrared detecting element of the present inventors has a sufficiently small time constant (τ), is advantageous in terms of cost, and can eliminate the disadvantages of the conventional infrared detecting element.

[発明が解決しようとする課題] しかしながら、上述の本発明者らによる赤外線検出素
子においても、応答時間のさらなる短縮を達成するため
により高出力化、すなわち感度の向上が望まれていた。
[Problems to be Solved by the Invention] However, even in the above-described infrared detecting element of the present inventors, higher output, that is, improvement in sensitivity has been desired in order to further shorten the response time.

本発明はかかる従来技術の問題に鑑みてなされたもの
であり、赤外線により電気抵抗が変化する半導体繊維を
用いて赤外線量を検出する赤外線検出素子において、時
定数に悪影響を与えることなく出力の増大を可能とする
ことを目的とする。
The present invention has been made in view of such a problem of the related art, and in an infrared detecting element that detects an amount of infrared light using a semiconductor fiber whose electric resistance changes due to infrared light, the output is increased without adversely affecting a time constant. The purpose is to enable.

[課題を解決するための手段] 本発明者らは、上記目的を達成すべく鋭意研究した結
果、検出する赤外線の下端波長に対して半導体繊維の間
隔、半導体繊維の直径および赤外線の入射角が特定の関
係となるように半導体繊維を配置することによって上記
問題が解決されることを見出し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, the distance between the semiconductor fibers, the diameter of the semiconductor fibers, and the incident angle of the infrared light with respect to the lower end wavelength of the infrared light to be detected. The inventors have found that the above problem can be solved by arranging the semiconductor fibers in a specific relationship, and arrived at the present invention.

すなわち、本発明の赤外線検出素子は、赤外線による
電気抵抗変化で赤外線量を検出する赤外線検出素子であ
って、赤外線により電気抵抗が変化する複数の半導体繊
維を、検出する赤外線の下端波長に対して下記式(I) 0<P・cosθ−Df≦λ (I) [上式中、Pは半導体繊維の中心から隣の半導体繊維の
中心までの距離、θは素子面の法線に対する赤外線の入
射角(0≦θ<90゜)、Dfは半導体繊維を直径、λは検
出する赤外線を下端波長をそれぞれ示す] の関係を満たすように電極間に規則的に引揃えてまたは
格子状に配列してなることを特徴とするものである。
That is, the infrared detecting element of the present invention is an infrared detecting element that detects the amount of infrared light by electric resistance change due to infrared light, and detects a plurality of semiconductor fibers whose electric resistance changes due to infrared light, with respect to the lower end wavelength of the detected infrared light. The following formula (I) 0 <P · cos θ−D f ≦ λ (I) [wherein P is the distance from the center of the semiconductor fiber to the center of the adjacent semiconductor fiber, and θ is the infrared ray with respect to the normal to the element surface. The incident angle (0 ≦ θ <90 °), D f is the diameter of the semiconductor fiber, and λ is the bottom wavelength of the infrared light to be detected.] It is characterized by being arranged.

また、本発明の他の赤外線検出素子は、赤外線による
電気抵抗変化で赤外線量を検出する赤外線検出素子であ
って、赤外線により電気抵抗が変化する複数の半導体繊
維を、検出する赤外線の下端波長に対して下記式(II) 0<Lmax・cosθ−Df≦λ (II) [上式中、Lmaxは半導体繊維の中心から隣の半導体繊維
の中心までの最長距離、θは素子面の法線に対する赤外
線の入射角(0≦θ<90゜)、Dfは半導体繊維の直径、
λは検出する赤外線の下端波長をそれぞれ示す] の関係を満たすように電極間に規則的に引揃えてまたは
不規則格子状に配列してなることを特徴とするものであ
る。
Further, another infrared detecting element of the present invention is an infrared detecting element that detects the amount of infrared light by a change in electric resistance due to infrared light, and detects a plurality of semiconductor fibers whose electric resistance changes due to infrared light at the lower end wavelength of the detected infrared light. On the other hand, the following formula (II) 0 <Lmax · cos θ−D f ≦ λ (II) [where Lmax is the longest distance from the center of the semiconductor fiber to the center of the adjacent semiconductor fiber, and θ is the normal to the element surface. Incident angle of infrared rays (0 ≦ θ <90 °), D f is the diameter of the semiconductor fiber,
λ indicates the lower wavelength of the infrared light to be detected.] The electrodes are regularly aligned or arranged in an irregular lattice pattern so as to satisfy the following relationship.

以下、図面を参照して本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)は半導体繊維を規則的に略等間隔で引揃
えて配列してなる赤外線検出素子の一例を示す正面図で
あり、第1図(b)は第1図(a)の赤外線検出素子の
部分拡大断面図である。第1図(a)および第1図
(b)において、1は半導体繊維、2は電極、3は素子
を電気回路に接続するリード線、Pは半導体繊維1の中
心から隣の半導体繊維1の中心までの距離、θは素子面
の法線lに対する赤外線Iの入射角、Dfは半導体繊維1
の直径をそれぞれ示す。なお、上記θは0゜以上でかつ
90゜未満である。
FIG. 1 (a) is a front view showing an example of an infrared detecting element in which semiconductor fibers are regularly aligned at substantially equal intervals, and FIG. 1 (b) is a front view of FIG. 1 (a). It is a partial expanded sectional view of an infrared detecting element. 1 (a) and 1 (b), reference numeral 1 denotes a semiconductor fiber, reference numeral 2 denotes an electrode, reference numeral 3 denotes a lead wire connecting an element to an electric circuit, and reference character P denotes a semiconductor fiber 1 adjacent to the center of the semiconductor fiber 1. The distance to the center, θ is the incident angle of the infrared ray I with respect to the normal 1 to the element surface, and D f is the semiconductor fiber 1
Are shown respectively. The above θ is 0 ° or more and
Less than 90 ゜.

本発明にあっては、上記P、θ、Dfを、検出する赤外
線Iの下端波長λに対して下記式(I) 0<P・cosθ−Df≦λ (I) の関係を満たすようにしなければならない。(P・cos
θ−Df)の値より小さい下端波長λの赤外線Iの吸収効
率は低下し、高出力が得られない。また、(P・cosθ
−Df)の値が負の場合も吸収効率が低下する。
In the present invention, the P, theta, and D f, the following expression for the lower end wavelength lambda of detect infrared I (I) 0 <to satisfy the relationship of P · cosθ-D f ≦ λ (I) Must be. (P ・ cos
The absorption efficiency of infrared rays I having a lower wavelength λ smaller than the value of θ−D f ) is reduced, and a high output cannot be obtained. Also, (P · cosθ
When the value of −D f ) is negative, the absorption efficiency also decreases.

例えば、第2図に示すスペクルト分布の赤外線Iを検
出する場合、(P・cosθ−Df)の値をピーク波長λmax
より十分小さいλaとすれば吸収効率が高い領域が図中
斜線部となり、高出力が得られる。他方、P・cosθ−D
f=λbの場合は高吸収領域が図中縦線部のみとなり、
高出力は得られない。従って、(P・cosθ−Df)の値
がピーク波長λmaxより十分小さくなるように設定する
ことが実用上は好ましい。
For example, in the case of detecting the infrared light I having the speckled distribution shown in FIG. 2, the value of (P · cos θ−D f ) is determined by using the peak wavelength
If λa is set to be sufficiently smaller, a region where the absorption efficiency is high becomes a shaded portion in the figure, and a high output can be obtained. On the other hand, P · cosθ−D
When f = λb, the high absorption region is only the vertical line in the figure,
High output cannot be obtained. Therefore, it is practically preferable to set (P · cos θ−D f ) to be sufficiently smaller than the peak wavelength λmax.

半導体繊維1を電極2間に引揃えて配列する場合、赤
外線Iの反射を極力抑えるようにすることが好ましい。
すなわち、反射率(γ)は下記式(III) γ=tan(ψ−φ)/tan(ψ+φ) (III) [式中、γは反射率、ψは半導体繊維1に直交する面
Xに対する赤外線Iの入射角、φは該面Xに対する吸収
赤外線iの角度を示す(第3図参照)] のような関係となる。従って、ψ+φ=π/2の時γ
0となるので、ψを調節してγが0にできるだけ近付
く角度として使用するのが好ましい。
When the semiconductor fibers 1 are aligned between the electrodes 2, it is preferable to minimize the reflection of infrared rays I.
That is, the reflectance (γ p ) is expressed by the following equation (III): γ p = tan (ψ−φ) / tan (ψ + φ) (III) [where γ p is the reflectance, and ψ is the surface orthogonal to the semiconductor fiber 1. The incident angle of the infrared ray I with respect to X, φ indicates the angle of the absorbed infrared ray i with respect to the surface X (see FIG. 3). Therefore, when ψ + φ = π / 2, γ p
Since it becomes 0, it is preferable to use ψ by adjusting ψ so that γ p approaches 0 as much as possible.

第4図(a)は半導体繊維を規則的に略等間隔で格子
状に配列してなる赤外線検出素子の一例を示す正面図で
あり、第4図(b)は第4図(a)の赤外線検出素子の
部分拡大断面図である。第4図(a)および第4図
(b)における各記号は第1図(a)および第1図
(b)と同様のものを示す。
FIG. 4 (a) is a front view showing an example of an infrared detecting element in which semiconductor fibers are regularly arranged in a grid at substantially equal intervals, and FIG. 4 (b) is a front view of FIG. 4 (a). It is a partial expanded sectional view of an infrared detecting element. Each symbol in FIGS. 4 (a) and 4 (b) indicates the same one as in FIGS. 1 (a) and 1 (b).

この場合も本発明にあっては、上記P、θ、Dfを、検
出する赤外線Iの下端波長λに対して下記式(I) 0<P・cosθ−Df≦λ (I) の関係を満たすようにしなければならない。
Also in this case, in the present invention, the above-mentioned P, θ, and D f are related to the lower end wavelength λ of the infrared ray I to be detected by the following formula (I): 0 <P · cos θ−D f ≦ λ (I) Must be satisfied.

第5図(a)は半導体繊維を不規則的に引揃えて配列
してなる赤外線検出素子の一例を示す正面図であり、第
5図(b)は第5図(a)の赤外線検出素子の部分拡大
断面図である。第5図(a)および第5図(b)におい
て、Lmaxは半導体繊維の中心から隣の半導体繊維の中心
までの最長距離を示し、他の各記号は第1図(a)およ
び第1図(b)と同様のものを示す。
FIG. 5 (a) is a front view showing an example of an infrared detecting element in which semiconductor fibers are irregularly aligned and arranged, and FIG. 5 (b) is an infrared detecting element of FIG. 5 (a). It is the elements on larger scale sectional view. 5 (a) and 5 (b), Lmax indicates the longest distance from the center of the semiconductor fiber to the center of the adjacent semiconductor fiber, and other symbols are those in FIGS. 1 (a) and 1 (b). The same thing as (b) is shown.

半導体繊維を不規則的に配列する場合は、上述のPを
Lmaxに置き換えればよく、すなわち本発明にあっては上
記Lmax、θ、Dfを、検出する赤外線Iの下端波長λに対
して下記式(II) 0<Lmax・cosθ−Df≦λ (II) の関係を満たすようにしなければならない。(Lmax・co
sθ−Df)の値より小さい下端波長λの赤外線Iの吸収
効率は低下し、高出力が得られない。また、(Lmax・co
sθ−Df)の値が負の場合も吸収効率が低下する。
When the semiconductor fibers are arranged irregularly, the above P
May be replaced with Lmax, i.e. in the present invention is the Lmax, theta, and D f, the following expression for the lower end wavelength lambda of detect infrared I (II) 0 <Lmax · cosθ-D f ≦ λ (II ) Must be satisfied. (Lmax ・ co
The absorption efficiency of infrared light I having a lower wavelength λ smaller than the value of sθ−D f ) is reduced, and a high output cannot be obtained. Also, (Lmax ・ co
When the value of sθ−D f ) is negative, the absorption efficiency also decreases.

第6図(a)は半導体繊維を不規則格子状に配列して
なる赤外線検出素子の一例を示す正面図であり、第6図
(b)は第6図(a)の赤外線検出素子の部分拡大断面
図である。第6図(a)および第6図(b)における各
記号は第5図(a)および第5図(b)と同様のものを
示す。
FIG. 6 (a) is a front view showing an example of an infrared detecting element in which semiconductor fibers are arranged in an irregular lattice, and FIG. 6 (b) is a part of the infrared detecting element of FIG. 6 (a). It is an expanded sectional view. 6 (a) and 6 (b) indicate the same symbols as in FIGS. 5 (a) and 5 (b).

この場合も本発明にあっては、上記Lmax、θ、Dfを、
検出する赤外線Iの下端波長λに対して下記式(II) 0<Lmax・cosθ−Df≦λ (II) の関係を満たすようにしなければならない。
Also in this case, in the present invention, the above Lmax, θ, D f
It is necessary to satisfy the following expression (II) 0 <Lmax · cos θ−D f ≦ λ (II) with respect to the lower end wavelength λ of the infrared ray I to be detected.

上述の本発明の赤外線検出素子にあっては、電極間距
離が0.5mm以上であることが好ましい。電極間距離が0.5
mm以上であること時定数(τ)が小さいままでより出力
を向上させることが可能となる傾向にある。
In the above-described infrared detecting element of the present invention, the distance between the electrodes is preferably 0.5 mm or more. 0.5 between electrodes
When the distance is not less than mm, the output tends to be further improved while the time constant (τ) is kept small.

本発明に使用する半導体繊維は直径が200μm以下の
ものが好ましい。直径200μm以下の半導体繊維を用い
ると時定数(τ)が小さいままでより出力を向上させる
ことが可能となる傾向にある。
The semiconductor fibers used in the present invention preferably have a diameter of 200 μm or less. When a semiconductor fiber having a diameter of 200 μm or less is used, the output tends to be able to be further improved while keeping the time constant (τ) small.

また、本発明に使用する半導体繊維は赤外線により電
気抵抗が変化するものであればよいが、炭化ケイ素繊
維、炭素繊維およびそれらの前駆体繊維からなる群から
選ばれる少なくとも一種が好ましい。
The semiconductor fiber used in the present invention may be any one as long as its electric resistance changes due to infrared rays, but at least one selected from the group consisting of silicon carbide fiber, carbon fiber and their precursor fibers is preferable.

上記炭化ケイ素繊維としては、常温比抵抗が10〜6000
Ω・cm、サーミスタ定数Bが100〜8000kのものが好まし
い。このような炭化ケイ素繊維は例えば以下の方法によ
って製造される。すなわち、ポリカルボシラン等の有機
高分子化合物を溶融紡糸した後、酸化性雰囲気下で、10
0〜300℃まで不融化するかあるいは不活性雰囲気下で電
子線を照射する等して不融化し、次いで不活性雰囲気下
で1200〜1500℃に熱処理して得られる。
As the silicon carbide fiber, the room temperature resistivity is 10 to 6000.
Ω · cm and the thermistor constant B are preferably 100 to 8000 k. Such a silicon carbide fiber is produced, for example, by the following method. That is, after an organic polymer compound such as polycarbosilane is melt-spun, under an oxidizing atmosphere, 10
It is obtained by infusibility to 0 to 300 ° C. or insolubilization by irradiating an electron beam in an inert atmosphere or the like, and then heat-treating to 1200 to 1500 ° C. in an inert atmosphere.

また、上記炭素繊維としては、常温比抵抗が10〜4000
Ω・cm、サーミスタ定数Bが500〜7000kのものが好まし
い。このような炭素繊維は例えば以下の方法によって製
造される。すなわち、PAN、ピッチ、レーヨン等の紡糸
繊維を酸化性雰囲気下で150〜250℃に熱処理し、次いで
不活性雰囲気下で500〜800℃に熱処理して得られる。
Further, as the carbon fiber, the room temperature resistivity is 10 to 4000
Ω · cm and a thermistor constant B of 500 to 7000 k are preferable. Such carbon fibers are produced, for example, by the following method. That is, it is obtained by heat-treating spun fibers such as PAN, pitch and rayon to 150 to 250 ° C. in an oxidizing atmosphere and then to 500 to 800 ° C. in an inert atmosphere.

[実施例] 以下、実施例および比較例に基づいて本発明をより詳
細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples and comparative examples.

実施例1 ポリカルボシラン紡糸繊維を空気中、200℃で60分間
不融化処理した後、不活性ガス中で1200℃まで昇温して
熱処理し、下記の炭化ケイ素繊維を得た。
Example 1 Polycarbosilane spun fiber was subjected to infusibilization treatment in air at 200 ° C. for 60 minutes, and then heated to 1200 ° C. in an inert gas and heat-treated to obtain the following silicon carbide fiber.

(炭化ケイ素繊維) ・直径(Df):15μm、 ・組成:Si…57.5wt%、C…31.0wt%、O…11.0wt%、
残部…0.5wt%、 ・常温比抵抗:1000Ω・cm、 ・サーミスタ定数:1000k。
(Silicon carbide fiber) ・ Diameter (D f ): 15 μm ・ Composition: Si: 57.5 wt%, C: 31.0 wt%, O: 11.0 wt%,
The remainder: 0.5 wt%,-Room temperature specific resistance: 1000 Ω-cm,-Thermistor constant: 1000 k.

この炭化ケイ素繊維のモノフィラメントを5mmに切断
し、100本を略等間隔(P=40μm)で引揃えて電極間
(電極間距離:2.5mm)に配列および接続して、第1図
(a)に例示されるような本発明の赤外線検出素子を得
た。
This monofilament of silicon carbide fiber is cut into 5 mm, and 100 filaments are arranged at substantially equal intervals (P = 40 μm), arranged and connected between electrodes (interelectrode distance: 2.5 mm), and FIG. The infrared detecting element of the present invention as exemplified in (1) was obtained.

この検出素子に8vの直流電圧を印加し、黒体炉(温度
450゜k)から発する赤外線(ピーク波長λmax:6.4μ
m)をカメラシャッター(開閉速度:500μsec)を用い
てθ=60゜の状態で断続的に照射して、フィラメントの
抵抗変化による出力電圧を求めた。その結果、出力電圧
は72mVであった。
A DC voltage of 8 V is applied to this detector, and a black body furnace (temperature
Infrared (peak wavelength λmax: 6.4μ) emitted from 450 ゜ k)
m) was intermittently irradiated using a camera shutter (opening / closing speed: 500 μsec) at a state of θ = 60 °, and an output voltage due to a change in resistance of the filament was obtained. As a result, the output voltage was 72 mV.

なお、この場合、P・cosθ−Df=5である。In this case, P · cos θ−D f = 5.

比較例1 P=60μmとした以外は実施例1と同様にして赤外線
検出素子を得、実施例1と同様の方法で出力電圧を求め
た。その結果、出力電圧は13mVであった。
Comparative Example 1 An infrared detecting element was obtained in the same manner as in Example 1 except that P was set to 60 μm, and the output voltage was obtained in the same manner as in Example 1. As a result, the output voltage was 13 mV.

なお、この場合、P・cosθ−Df=15である。In this case, P · cos θ−D f = 15.

実施例2 ポリアクリロニトリル(PAN)繊維フィラメントを空
気中、250℃で1時間不融化処理した後、N2ガス中で700
℃まで昇温して熱処理し、下記の炭素繊維フィラメント
を得た。
Example 2 A polyacrylonitrile (PAN) fiber filament was infusibilized at 250 ° C. for 1 hour in air, and then heated to 700 ° C. in N 2 gas.
C. and heat-treated to obtain the following carbon fiber filament.

(炭素繊維フィラメント) ・直径(Df):6.5μm、 ・常温比抵抗:780Ω・cm、 ・サーミスタ定数:2300k。(Carbon fiber filament) ・ Diameter (D f ): 6.5 μm ・ Specific resistance at room temperature: 780Ω ・ cm ・ Thermistor constant: 2300k

この炭素繊維フィラメントを5mmに切断し、縦、横各5
0本ずつ略等間隔(P=16μm)で格子状に電極間(電
極間距離:3mm)に配列および接続して、第4図(a)に
例示されるような本発明の赤外線検出素子を得た。
Cut this carbon fiber filament to 5mm
The infrared detecting elements of the present invention as illustrated in FIG. 4 (a) are arranged and connected in a grid pattern at substantially equal intervals (P = 16 μm) between the electrodes (distance between the electrodes: 3 mm). Obtained.

この検出素子に8vの直流電圧を印加し、黒体炉(温度
300゜k)から発する赤外線(ピーク波長λmax:9.7μ
m)をカメラシャッター(開閉速度:500μsec)を用い
てθ=0゜で断続的に照射して、フィラメントの抵抗変
化による出力電圧を求めた。その結果、出力電圧は68mV
であった。
A DC voltage of 8 V is applied to this detector, and a black body furnace (temperature
Infrared (peak wavelength λmax: 9.7μ) emitted from 300 ゜ k)
m) was intermittently irradiated at θ = 0 ° using a camera shutter (opening / closing speed: 500 μsec), and the output voltage due to the resistance change of the filament was determined. As a result, the output voltage is 68mV
Met.

なお、この場合、P・cosθ−Df=9.5である。In this case, P · cos θ−D f = 9.5.

比較例2 P=20μmとした以外は実施例2と同様にして赤外線
検出素子を得、実施例2と同様の方法で出力電圧を求め
た。その結果、出力電圧は16mVであった。
Comparative Example 2 An infrared detecting element was obtained in the same manner as in Example 2 except that P was set to 20 μm, and the output voltage was obtained in the same manner as in Example 2. As a result, the output voltage was 16 mV.

なお、この場合、P・cosθ−Df=13.5である。In this case, P · cos θ−D f = 13.5.

実施例3 実施例1と同様の炭化ケイ素繊維フィラメントを縦、
横各50本ずつ不規則格子状(Lmax=23μm)に電極間
(電極間距離:1mm)に配列および接続して、第6図
(a)に例示されるような本発明の赤外線検出素子を得
た。
Example 3 The same silicon carbide fiber filament as in Example 1 was
The infrared detecting element of the present invention as illustrated in FIG. 6 (a) is arranged and connected between the electrodes (distance between the electrodes: 1 mm) in an irregular lattice (Lmax = 23 μm) by 50 lines each. Obtained.

この検出素子の出力電圧を実施例2と同様にして求め
た。その結果、出力電圧は63mVであった。
The output voltage of this detection element was determined in the same manner as in Example 2. As a result, the output voltage was 63 mV.

なお、この場合、Lmax・cosθ−Df=8である。In this case, Lmax · cos θ−D f = 8.

比較例3 Lmax=32μmとした以外は実施例3と同様にして赤外
線検出素子を得、実施例3と同様の方法で出力電圧を求
めた。その結果、出力電圧は25mVであった。
Comparative Example 3 An infrared detecting element was obtained in the same manner as in Example 3 except that Lmax was set to 32 μm, and the output voltage was obtained in the same manner as in Example 3. As a result, the output voltage was 25 mV.

なお、この場合、Lmax・cosθ−Df=17である。In this case, Lmax · cos θ−D f = 17.

実施例4〜9および比較例4〜5 ポリカルボシランを延伸率を変えて溶融紡糸し、径の
異なるフィラメントを得、これを空気中、200℃で1時
間不融化処理した後、N2ガス中、1200〜1500℃で1〜3
時間熱処理して第1表に示す特性の炭化ケイ素繊維(組
成:Si…55〜58wt%、C…29〜31wt%、O…10〜13wt
%、H…0.5〜1.0wt%)を得た。
Examples 4 to 9 and Comparative Examples 4 to 5 Polycarbosilane was melt-spun at different draw ratios to obtain filaments having different diameters, which were infusibilized in air at 200 ° C. for 1 hour, and then N 2 gas was added. Medium, 1-3 at 1200-1500 ° C
Silicon carbide fibers having the properties shown in Table 1 after heat treatment (composition: Si: 55 to 58 wt%, C: 29 to 31 wt%, O: 10 to 13 wt%)
%, H ... 0.5 to 1.0 wt%).

この炭化ケイ素繊維を用いて第1表に示す赤外線検出
素子を得た。次いで、この素子に8vの直流電圧を印加
し、黒体炉(温度350゜k)から発する赤外線(ピーク波
長λmax:8.3μm)をカメラシャッター(開閉速度:500
μsec)を用いてθ=45゜で断続的に照射して、フィラ
メントの抵抗変化による出力電圧を求めた。その結果を
第1表に示す。
Using this silicon carbide fiber, infrared detecting elements shown in Table 1 were obtained. Then, a DC voltage of 8 V was applied to this element, and infrared rays (peak wavelength λmax: 8.3 μm) emitted from a black body furnace (temperature 350 ° k) were taken by a camera shutter (opening / closing speed: 500
(μsec) and intermittent irradiation at θ = 45 ° to determine the output voltage due to the change in resistance of the filament. Table 1 shows the results.

実施例10〜14および比較例6〜7 石炭ピッチ(軟化点:270℃、数平均分子量:2000)を
用いて延伸率を変えて溶融紡糸し、径の異なるフィラメ
ントを得、これを空気中、250℃で1時間不融化処理し
た後、N2ガス中、500〜800℃で0.5〜16時間熱処理して
第1表に示す特性の炭素繊維を得た。
Examples 10-14 and Comparative Examples 6-7 Melt spinning using coal pitch (softening point: 270 ° C., number average molecular weight: 2000) at different draw ratios to obtain filaments having different diameters, After infusibilizing at 250 ° C. for 1 hour, heat treatment was performed in N 2 gas at 500 to 800 ° C. for 0.5 to 16 hours to obtain carbon fibers having the characteristics shown in Table 1.

この炭素繊維を用いて第1表に示す赤外線検出素子を
得、実施例4〜9および比較例4〜5と同様にして出力
電圧を求めた。その結果を第1表に示す。
Using the carbon fibers, infrared detecting elements shown in Table 1 were obtained, and output voltages were obtained in the same manner as in Examples 4 to 9 and Comparative Examples 4 and 5. Table 1 shows the results.

実施例1〜3および比較例1〜3の結果、並びに第1
表から明らかなように、検出する赤外線の下端波長λと
してピーク波長λmaxを設定し、λmaxに対して下記式
(I) 0<P・cosθ−Df≦λmax (I) あるいは下記式(II) 0<Lmax・cosθ−Df≦λmax (II) の条件を満たしている赤外線検出素子はいずれも高出力
電圧が得られたのに対し、上記条件を満たしていない比
較例1〜7の赤外線検出素子はいずれも出力電圧が低か
った。
Results of Examples 1 to 3 and Comparative Examples 1 to 3, and
As apparent from Table, then set the peak wavelength .lambda.max as lower wavelength of the infrared detecting lambda, the following expression for λmax (I) 0 <P · cosθ-D f ≦ λmax (I) or formula (II) 0 <Lmax · cos θ−D f ≦ λmax (II) Although all of the infrared detecting elements satisfying the condition of (II), high output voltage was obtained, the infrared detecting elements of Comparative Examples 1 to 7 which did not satisfy the above condition were obtained. Each of the devices had a low output voltage.

[発明の効果] 以上説明したように、本発明の赤外線検出素子は時定
数を小さく保持したままで十分な高出力を得ることが可
能であり、結果として応答時間のさらなる短縮を達成す
ることが可能となる。
[Effects of the Invention] As described above, the infrared detecting element of the present invention can obtain a sufficiently high output while keeping the time constant small, and as a result, the response time can be further shortened. It becomes possible.

従って、本発明の赤外線検出素子は赤外線の検知を利
用したセキュリティーシステム等に非常に有効である。
Therefore, the infrared detecting element of the present invention is very effective for a security system or the like utilizing infrared detection.

また、本発明の赤外線検出素子は、特定波長の赤外線
を優れた出力電圧で検出できるので、微小な赤外線の検
知、赤外線量の測定等の用途に応用できる。さらに、本
発明の赤外線検出素子は、素子を組合せることによって
放射、回折格子、偏光板、赤外線増倍素子等の用途にも
応用でき、工業的に極めて有用である。
Further, since the infrared detecting element of the present invention can detect infrared light of a specific wavelength with an excellent output voltage, it can be applied to applications such as detection of minute infrared light and measurement of the amount of infrared light. Further, the infrared detecting element of the present invention can be applied to applications such as radiation, a diffraction grating, a polarizing plate, and an infrared multiplier by combining the elements, and is extremely useful industrially.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は半導体繊維を規則的に略等間隔で引揃え
て配列してなる赤外線検出素子の一例を示す正面図であ
り、 第1図(b)は第1図(a)の赤外線検出素子の部分拡
大断面図であり、 第2図はある赤外線の吸収効率を説明するための参考図
であり、 第3図は赤外線の反射率を説明するための参考図であ
り、 第4図(a)は半導体繊維を規則的に略等間隔で格子状
に配列してなる赤外線検出素子の一例を示す正面図であ
り、 第4図(b)は第4図(a)の赤外線検出素子の部分拡
大断面図であり、 第5図(a)は半導体繊維を不規則的に引揃えて配列し
てなる赤外線検出素子の一例を示す正面図であり、 第5図(b)は第5図(a)の赤外線検出素子の部分拡
大断面図であり、 第6図(a)は半導体繊維を不規則格子状に配列してな
る赤外線検出素子の一例を示す正面図であり、 第6図(b)は第6図(a)の赤外線検出素子の部分拡
大断面図である。 1:半導体繊維、2:電極、 3:素子を電気回路に接続するリード線、 P:半導体繊維の中心から隣の半導体繊維の中心までの距
離、 θ:素子面の法線lに対する赤外線Iの入射角、 Df:半導体繊維1の直径、 Lmax:半導体繊維の中心から隣の半導体繊維の中心まで
の最長距離。
FIG. 1 (a) is a front view showing an example of an infrared detecting element in which semiconductor fibers are regularly aligned and arranged at substantially equal intervals, and FIG. 1 (b) is a front view of FIG. 1 (a). FIG. 2 is a partial enlarged cross-sectional view of the infrared detecting element, FIG. 2 is a reference diagram for explaining the absorption efficiency of a certain infrared ray, FIG. 3 is a reference diagram for explaining the reflectance of the infrared ray, FIG. FIG. 4A is a front view showing an example of an infrared detecting element in which semiconductor fibers are regularly arranged in a grid at substantially equal intervals, and FIG. 4B is a front view of the infrared detecting element shown in FIG. FIG. 5 (a) is a front view showing an example of an infrared detecting element in which semiconductor fibers are arranged in an irregularly aligned manner, and FIG. 5 (b) is a partial enlarged sectional view of the element. FIG. 5 (a) is a partially enlarged cross-sectional view of the infrared detecting element, and FIG. 6 (a) is a diagram in which semiconductor fibers are arranged in an irregular lattice shape. That is a front view showing an example of the infrared detection element, FIG. 6 (b) is a partially enlarged cross-sectional view of the infrared detector of Figure 6 (a). 1: semiconductor fiber, 2: electrode, 3: lead wire connecting the element to the electric circuit, P: distance from the center of the semiconductor fiber to the center of the adjacent semiconductor fiber, θ: infrared ray I with respect to the normal l of the element surface angle of incidence, D f: the semiconductor fiber 1 diameter, Lmax: longest distance from the center of the semiconductor fibers to the center of the semiconductor fibers next.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 範雄 神奈川県相模原市宮下本町1―5―18 (72)発明者 野竹 毅 埼玉県北葛飾郡杉戸町鷲巣375―8 (72)発明者 市川 宏 神奈川県横浜市栄区庄戸2―5―16 (72)発明者 今井 義一 東京都大田区山王1―39―34 (72)発明者 原田 博文 神奈川県藤沢市辻堂太平台1―16―26 (72)発明者 浦野 章 神奈川県横浜市鶴見区生麦3―8―12 (56)参考文献 特開 平2−71121(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norio Muto 1-5-18 Miyashita Honcho, Sagamihara City, Kanagawa Prefecture (72) Inventor Takeshi Notake 375-8 Washigosu, Sugito-cho, Kitakatsushika-gun, Saitama Prefecture (72) Inventor Hiroshi Ichikawa Kanagawa (72) Inventor Yoshikazu Imai 1-39-34 Sanno, Ota-ku, Tokyo (72) Inventor Hirofumi Harada 1-16-26 Tsujido Taiheidai, Fujisawa-shi, Kanagawa Prefecture (72) Invention Person Akira Urano 3-8-12 Namamugi, Tsurumi-ku, Yokohama-shi, Kanagawa (56) References JP-A-2-71121 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 31 / 08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】赤外線による電気抵抗変化で赤外線量を検
出する赤外線検出素子であって、赤外線により電気抵抗
が変化する複数の半導体繊維を、検出する赤外線の下端
波長に対して下記式(I) 0<P・cosθ−Df≦λ (I) [上式中、Pは半導体繊維の中心から隣の半導体繊維の
中心までの距離、θは素子面の法線に対する赤外線の入
射角(0≦θ<90゜)、Dfは半導体繊維を直径、λは検
出する赤外線の下端波長をそれぞれ示す] の関係を満たすように電極間に規則的に引揃えてまたは
格子状に配列してなることを特徴とする赤外線検出素
子。
An infrared detecting element for detecting an amount of infrared light by a change in electric resistance due to infrared light, wherein a plurality of semiconductor fibers whose electric resistance changes by infrared light are detected by the following formula (I) 0 <P · cos θ−D f ≦ λ (I) [where P is the distance from the center of the semiconductor fiber to the center of the adjacent semiconductor fiber, and θ is the incident angle of infrared rays with respect to the normal to the element surface (0 ≦ θ <90 °), D f is the diameter of the semiconductor fiber, and λ is the lower end wavelength of the infrared light to be detected.] An infrared detecting element characterized by the above-mentioned.
【請求項2】赤外線による電気抵抗変化で赤外線量を検
出する赤外線検出素子であって、赤外線により電気抵抗
が変化する複数の半導体繊維を、検出する赤外線の下端
波長に対して下記式(II) 0<Lmax・cosθ−Df≦λ (II) [上式中、Lmaxは半導体繊維の中心から隣の半導体繊維
の中心までの最長距離、θは素子面の法線に対する赤外
線の入射角(0≦θ<90゜)、Dfは半導体繊維の直径、
λは検出する赤外線の下端波長をそれぞれ示す] の関係を満たすように電極間に規則的に引揃えてまたは
不規則格子状に配列してなることを特徴とする赤外線検
出素子。
2. An infrared detecting element for detecting an amount of infrared rays by a change in electric resistance caused by infrared rays, wherein a plurality of semiconductor fibers whose electric resistance changes by infrared rays are detected by the following formula (II) with respect to the lower end wavelength of the detected infrared rays. 0 <Lmax · cos θ−D f ≦ λ (II) [where Lmax is the longest distance from the center of the semiconductor fiber to the center of the adjacent semiconductor fiber, and θ is the angle of incidence of infrared rays with respect to the normal to the element surface (0 ≦ θ <90 °), D f is the diameter of the semiconductor fiber,
[lambda] indicates the lower end wavelength of infrared light to be detected, respectively]. An infrared detecting element characterized in that the electrodes are regularly aligned or arranged in an irregular lattice so as to satisfy the following relationship.
【請求項3】前記半導体繊維の直径が200μm以下、電
極間距離が0.5mm以上である、請求項1または2に記載
の赤外線検出素子。
3. The infrared detecting element according to claim 1, wherein the diameter of the semiconductor fiber is 200 μm or less, and the distance between the electrodes is 0.5 mm or more.
【請求項4】前記半導体繊維が、炭化ケイ素繊維、炭素
繊維およびそれらの前駆体繊維からなる群から選ばれる
少なくとも一種である、請求項1〜3のうちのいずれか
に記載の赤外線検出素子。
4. The infrared detecting element according to claim 1, wherein said semiconductor fibers are at least one selected from the group consisting of silicon carbide fibers, carbon fibers, and precursor fibers thereof.
JP2297066A 1990-11-05 1990-11-05 Infrared detector Expired - Lifetime JP2935738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297066A JP2935738B2 (en) 1990-11-05 1990-11-05 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297066A JP2935738B2 (en) 1990-11-05 1990-11-05 Infrared detector

Publications (2)

Publication Number Publication Date
JPH04171772A JPH04171772A (en) 1992-06-18
JP2935738B2 true JP2935738B2 (en) 1999-08-16

Family

ID=17841779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297066A Expired - Lifetime JP2935738B2 (en) 1990-11-05 1990-11-05 Infrared detector

Country Status (1)

Country Link
JP (1) JP2935738B2 (en)

Also Published As

Publication number Publication date
JPH04171772A (en) 1992-06-18

Similar Documents

Publication Publication Date Title
FI110727B (en) Electrically adjustable thermal radiation source
Cooke et al. Intrinsic trapping sites in rare-earth and yttrium oxyorthosilicates
JP2935738B2 (en) Infrared detector
JP2840735B2 (en) Infrared detector
JP2897033B2 (en) High sensitivity infrared detector
JP2897039B2 (en) Infrared detector
Hamblen et al. Preparation of Ceramic Semiconductors from High‐Vanadium Glasses
CA1086547A (en) Photoconductor element with superimposed layers of ca te and zn te containing in
JPH10158937A (en) Silicon carbide inorganic fiber and its production
EP0419718B1 (en) Infrared detective element
JPS6119706B2 (en)
Ueta et al. Interaction of Exciton with Electron Trapping Centers in Alkali Halide Crystals. 3. Exciton Induced Photoconductivity of U center
Redfield Recombination processes in tellurium
Abdel-Malik et al. Electric and photoelectric investigations of?? nickel phthalocyanine thin films
Harper et al. Semitransparent Photocathodes at Low Temperatures
Govinda Coloration and luminescence in pure and chromium‐doped Al2O3 single crystals irradiated with X‐rays at room temperature
Andújar et al. Effect of substrate temperature on deposition rate of rf plasma‐deposited hydrogenated amorphous silicon thin films
Doughty Ultra-violet Sensitive Camera Tubes Incorporating the SEC Principle
JPH085749A (en) Semiconductor radiation detector and manufacture thereof
Ruiz et al. Characterization of Off Stoichiometric Silicon Oxide by Thermo, Cathode, and Photo-Luminescence
Szmulowicz et al. The effect of light attenuation on quantum efficiency for transverse and longitudinal responsivity and detectivity
Morita et al. The photoconductive effect in Pb 2 CrO 5 thin films prepared by an electron-beam evaporation technique
Coblentz et al. Spectral photoelectric sensitivity of silver sulphide and several other substances
SUPLINSKAS et al. A study of the deposition of carbide coatings on graphite fibers(to increase electrical resistance)
Fung et al. Characterization of activated carbon fibers