JP2897039B2 - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JP2897039B2
JP2897039B2 JP27705089A JP27705089A JP2897039B2 JP 2897039 B2 JP2897039 B2 JP 2897039B2 JP 27705089 A JP27705089 A JP 27705089A JP 27705089 A JP27705089 A JP 27705089A JP 2897039 B2 JP2897039 B2 JP 2897039B2
Authority
JP
Japan
Prior art keywords
infrared
fiber
temperature
variation
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27705089A
Other languages
Japanese (ja)
Other versions
JPH03140825A (en
Inventor
博明 柳田
勝 宮山
範雄 武藤
貞次郎 梶原
憲寿 森
宏 市川
博文 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Sohgo Security Services Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Sohgo Security Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd, Sohgo Security Services Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP27705089A priority Critical patent/JP2897039B2/en
Publication of JPH03140825A publication Critical patent/JPH03140825A/en
Application granted granted Critical
Publication of JP2897039B2 publication Critical patent/JP2897039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外線照射の温度による電気抵抗変化で赤外
線量を検出する赤外線検出素子に関し、特に人体等の発
する比較的低温度の赤外線源からの赤外線の検出能力に
優れた検出素子に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element for detecting an amount of infrared rays by a change in electric resistance according to the temperature of infrared irradiation, and more particularly to an infrared detecting element from a relatively low temperature infrared source emitted from a human body or the like. The present invention relates to a detection element having an excellent infrared detection ability.

〔従来の技術〕 従来赤外線検出素子としては、一般に焦電効果を利用
した焦電素子や熱電対を集積したサーモパイル等を用い
たものが良く知られている。
[Prior Art] Conventionally, as infrared detecting elements, those using a pyroelectric element utilizing a pyroelectric effect, a thermopile in which thermocouples are integrated, and the like are well known.

しかしこれらの赤外線検出素子は、高度の応答速度が
要求される用途には応答時間の点で難点があり、また被
検出赤外線源の位置検出に限界が生ずるのが免がれず、
そして更にそれら構成に起因して価格の面でも不利であ
った。
However, these infrared detecting elements have drawbacks in response time in applications where a high response speed is required, and inevitably limit the position detection of the infrared source to be detected.
In addition, these arrangements are disadvantageous in terms of price.

発明者等は先に、温度により電気抵抗が変化する半導
体繊維を用いた赤外線検出素子を提案し(実願昭63−22
2506号)、さらに前記半導体繊維として特定された比抵
抗値及び/または組成を有する炭化ケイ素を主成分とす
る繊維モノフィラメントを用い上述の応答性を著しく改
良した赤外線検出素子(特願平1−131435号)、および
炭素繊維前駆体を熱処理してなり特定の比抵抗値、サー
ミスタ定数を有する繊維モノフィラメントで構成された
高感度の赤外線検出素子(特願平1−232888号)を夫々
提案して来た。
The present inventors have previously proposed an infrared detecting element using a semiconductor fiber whose electric resistance changes with temperature (Japanese Utility Model Application No. 63-22).
No. 2506), and an infrared detecting element (Japanese Patent Application No. 1-131435) in which the above-mentioned response is remarkably improved by using a fiber monofilament mainly containing silicon carbide having a specific resistance value and / or a composition specified as the semiconductor fiber. No. 1) and a high-sensitivity infrared detecting element (Japanese Patent Application No. 1-2232888) constituted by a fiber monofilament obtained by heat-treating a carbon fiber precursor and having a specific resistivity and a thermistor constant. Was.

これら発明者等の提案による赤外線検出素子は、それ
ぞれ上述した特徴を有し前記従来の赤外線検出素子の欠
点を解消し得た好適なものであり多大の成果を収めてい
る。
The infrared detecting elements proposed by the inventors have the above-mentioned characteristics, are preferable ones which can solve the disadvantages of the conventional infrared detecting elements, and have achieved great results.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしかかる赤外線検出素子が、例えば人体等の低温
(高波長)赤外線源からの赤外線を検出する目的で使用
された場合、それらの応答速度及び感度のそれぞれの面
で一層の改善が望まれていた。
However, when such an infrared detecting element is used for detecting infrared rays from a low-temperature (high-wavelength) infrared ray source such as a human body, it is desired to further improve the response speed and sensitivity thereof. .

一般に常温雰囲気下における建造物等の室内での床,
壁,天井などの表面温度は約15℃程度であるのに対し、
人体の表面温度は20〜23℃程度である。
In general, floors in rooms such as buildings under normal temperature atmosphere,
The surface temperature of walls and ceilings is about 15 ° C,
The surface temperature of the human body is about 20-23 ° C.

赤外線検出素子を受動式検知器として利用し、予期せ
ざる侵入者をチェックする検出器、即ち防犯用等に応用
する場合、上述の人体温度、20〜23℃(赤外線ピーク波
長9.8〜9.9μm)を他と峻別して制度良く検知する検出
能力に優れた赤外線検出素子が望ましいことになる。
Infrared detectors are used as passive detectors, and detectors that check for unexpected intruders, that is, when applied to crime prevention, etc., the above human body temperature, 20-23 ° C (infrared peak wavelength 9.8-9.9 μm) It is desirable to use an infrared detecting element having an excellent detection ability to detect the object clearly and accurately.

本発明の目的は、上述の人体等を発生源とする限られ
た波長の赤外線の検出能力にすぐれた高感度,低熱時定
数の赤外線検出素子を提供することにある。
It is an object of the present invention to provide a high-sensitivity, low-thermal-time-constant infrared detecting element which is excellent in the ability to detect infrared light of a limited wavelength using the above-mentioned human body as a source.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、前記課題を解決すべく鋭意研究の結
果、赤外線ピーク波長が9.8〜9.9μm程度の赤外線の検
出には、特に半導体繊維の種類,繊維直径のバラツキな
どがそれらの検出能力に非常に重要なファクターとなる
ことを見いだし本発明を完成した。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, in the detection of infrared light having an infrared peak wavelength of about 9.8 to 9.9 μm, in particular, variations in the type of semiconductor fiber, fiber diameter, and the like affect their detection capabilities. The inventors have found that this is a very important factor and completed the present invention.

即ち本発明は、ポリアクリロニトリル紡糸繊維フィラ
メントを不融化した後熱処理して得た、常温での比抵抗
値が100〜104Ω・cm、より好ましくは102〜104Ω・cm繊
維フィラメント平均直径が7〜9μm、そして該平均直
径のバラツキが前記平均直径±1μmの範囲の繊維モノ
フィラメントを電極間に配置してなる赤外線検出素子で
ある。
The present invention provides a polyacrylonitrile spun fiber filaments obtained by heat treatment after the infusibilized, specific resistance at room temperature is 10 0 ~10 4 Ω · cm, more preferably 10 2 ~10 4 Ω · cm fiber filaments An infrared detecting element in which a fiber monofilament having an average diameter of 7 to 9 μm and a variation of the average diameter in the range of the average diameter ± 1 μm is arranged between the electrodes.

この発明で用いるポリアクリルロトリルは、湿式紡糸
法により紡糸し、延伸をかけることにより、繊維フィラ
メント直径のバラツキを低度におさえることができる。
そしてさらに不融工程において、張力を付与して緊張下
で加熱すると、上述の繊維フィラメント直径のバラキツ
を低度に維持して炭素原子の配向を揃え、次の熱処理
(焼成)工程で限定された比抵抗値及び直径のバラツキ
を有する繊維フィラメントを比較的容易に得ることがで
きる。
The polyacrylrotrile used in the present invention is spun by a wet spinning method and stretched, whereby variation in the diameter of the fiber filament can be suppressed to a low level.
Further, in the infusible step, when heating under tension by applying tension, the above-mentioned variation in the diameter of the fiber filament was maintained at a low level, the orientation of the carbon atoms was aligned, and limited in the next heat treatment (firing) step. Fiber filaments having variations in specific resistance and diameter can be obtained relatively easily.

従って本発明の赤外線検出素子においては、ポリアク
リロニトリルの紡糸繊維フィラメントを採用するのが好
適である。
Therefore, in the infrared detecting element of the present invention, it is preferable to employ a spun fiber filament of polyacrylonitrile.

又上述のようにしてポリアクリロニトリルを紡糸し、
たとえば平均直径12〜15μm,バラツキ±0.8μmの繊維
フィラメントを得た場合、以下の条件で、不融化しつい
で熱処理(焼成)を行うことにより平均直径7〜9μm,
バラツキ±1μmの繊維フィラメントを得ることができ
る。
Also, spin polyacrylonitrile as described above,
For example, when a fiber filament having an average diameter of 12 to 15 μm and a dispersion of ± 0.8 μm is obtained, it is infused under the following conditions and then heat-treated (fired) to obtain an average diameter of 7 to 9 μm.
A fiber filament having a variation of ± 1 μm can be obtained.

そしてこのようにして上述の平均直径及びバラツキを
有する繊維フィラメントは、良好な熱放散性を有し、本
発明の赤外線検出素子として好ましい。ポリアクリロニ
トリル紡糸繊維フィラメントの不融化に際しては、酸化
性雰囲気(通常空気でよい)下、延伸比1.2〜1.3で張力
をかけた緊張下で10〜50℃/hrの昇温温度で300〜350℃
の範囲で行なうのがよい。不融化処理における昇温速度
が50℃/hrを越えたり不融化温度が300℃未満では繊維形
状を保持した炭素化が不可能であり好ましくない。
Thus, the fiber filament having the above-mentioned average diameter and variation has good heat dissipation, and is preferable as the infrared detecting element of the present invention. When the polyacrylonitrile spun fiber filament is made infusible, the temperature is raised to 10 to 50 ° C./hr at a temperature of 300 to 350 ° C. under an oxidizing atmosphere (usually air may be used) under a tension of 1.2 to 1.3 under a tension.
It is better to do within the range. If the rate of temperature rise in the infusibilization treatment exceeds 50 ° C./hr or the infusibilization temperature is less than 300 ° C., carbonization while maintaining the fiber shape is impossible, which is not preferable.

また昇温温度が10℃/hr未満、あるいは不融化温度が3
50℃を越えると繊維の脆弱化を起こすため好ましくな
い。不融化した繊維フィラメントはついでN2,Arガスな
どの不活性ガス雰囲気下あるいは、真空中にて緊張下ま
たは無緊張下で熱処理する。
In addition, the temperature rise temperature is less than 10 ° C / hr, or the
If the temperature exceeds 50 ° C., it is not preferable because the fibers become brittle. The infusibilized fiber filament is then heat-treated under an inert gas atmosphere such as N 2 or Ar gas or in a vacuum or under tension.

熱処理条件は5〜200℃/hrの速度にて昇温し、600〜8
00℃の温度まで行うが、必要に応じ前記温度で30〜60分
間保持するのがより好ましい。
The heat treatment condition is to raise the temperature at a rate of 5 to 200 ° C / hr, 600 to 8
The reaction is carried out up to a temperature of 00 ° C., but it is more preferable to maintain the temperature at the above temperature for 30 to 60 minutes as needed.

この温度領域での電気抵抗値の変化は急激であり、適
正な抵抗値を得るには、厳密な温度−時間のコントロー
ルが必要である。
The change in the electric resistance value in this temperature range is rapid, and strict temperature-time control is necessary to obtain an appropriate resistance value.

すなわち、熱処理温度が前記下限未満ではあったり保
持時間が前記下限未満である場合、熱処理が不十分で電
気比抵抗が高くなりすぎて104Ω・cmをこえ、本発明の
赤外線検出素子として適さず、熱時定数も大となりすぎ
て従来の焦電素子やサーモパイルに比較してメリットが
なくなる。
That is, if the heat treatment temperature is less than the lower limit or the holding time is less than the lower limit, the heat treatment is insufficient and the electrical resistivity is too high to exceed 10 4 Ωcm, which is suitable as the infrared detecting element of the present invention. In addition, the thermal time constant becomes too large, and there is no merit as compared with the conventional pyroelectric element or thermopile.

また、熱処理温度が前記上限を越えたり、保持時間が
前記上限を越える場合、熱処理が過度となり、電気比抵
抗が低くなりすぎて、100Ω・cm未満となり出力電圧変
化が小となり、赤外線受光エネルギーの多い黒体炉から
発する赤外線は検出できても、人体等から発する赤外線
は十分検出できず本発明の赤外線検出素子には使用でき
ない。
Also, or the heat treatment temperature exceeds the upper limit, if the retention time exceeds the upper limit, the heat treatment becomes excessive, too electric specific resistance is low, 10 0 Ω · cm less than the result output voltage change small, and the infrared receiver Although infrared rays emitted from a blackbody furnace with a large amount of energy can be detected, infrared rays emitted from a human body or the like cannot be sufficiently detected and cannot be used for the infrared detecting element of the present invention.

又上記繊維フィラメントの平均直径及びバラツキを7
〜9±1μmと限定する理由は、これら平均直径の範囲
外では繊維直径のバラツキを±1μmの範囲に保つため
には紡糸から焼成に至る各条件のコントロールに多大の
困難性をともなう。又それら±1μmのバラツキ範囲を
こえると、各繊維フィラメントの電気比抵抗値のバラツ
キが大となり結果として熱時定数が大きくなり、さらに
ノイズが増幅されSN比(シグナル/ノイズ)が悪くなっ
て、本発明の目的である赤外線ピーク波長9.8〜9.9μm
での検出能力が十分発揮できないからである。
In addition, the average diameter and variation of the fiber filaments are 7
The reason why the diameter is limited to 99 ± 1 μm is that in order to keep the variation of the fiber diameter within the range of ± 1 μm outside the range of the average diameter, it is very difficult to control each condition from spinning to firing. Further, when the variation range exceeds ± 1 μm, the variation of the electric resistivity of each fiber filament becomes large, and as a result, the thermal time constant becomes large, the noise is further amplified, and the SN ratio (signal / noise) becomes poor. The infrared peak wavelength of 9.8 to 9.9 μm which is the object of the present invention
The reason for this is that the detection capability cannot be sufficiently exhibited.

次に繊維モノフィラメントの配列に関しては、該フィ
ラメント相互が接触または絡み合っていると赤外線の受
光面積が減少し放熱性も悪くなり、かつ、ノイズの原因
になるので繊維モノフィラメントを互いに接触すること
なく配列するのがより好ましい。
Next, regarding the arrangement of the fiber monofilaments, if the filaments are in contact with or intertwined with each other, the infrared ray receiving area is reduced and the heat radiation is deteriorated, and the fiber monofilaments are arranged without contacting each other because they cause noise. Is more preferred.

かかる配列の具体例を図に示す。 A specific example of such an arrangement is shown in the figure.

第1図(a)は電極(A)(A)間にモノフィラメン
ト(F)の張り渡した図であつて、その配列形態を同図
(b)の(1)及び(2)の如くして相互の接触を回避
したものがより好ましい。
FIG. 1 (a) is a view in which a monofilament (F) is stretched between electrodes (A) and (A), and the arrangement is as shown in (1) and (2) of FIG. 1 (b). Those which avoid mutual contact are more preferred.

第2図は電極(A)(A)間及び(B)(B)間に同
様にモノフィラメント(F)を相互に交叉して張り渡し
た例である。
FIG. 2 shows an example in which monofilaments (F) are similarly crossed and stretched between electrodes (A) and (A) and between electrodes (B) and (B).

この場合は同様に同図(b)の(1)(4)及び
(2)(3)の組合せ、更に(1)(2)及び(3)
(4)の組合せ等を行えば良い。
In this case, similarly, the combination of (1) (4) and (2) (3) in FIG. 6B, and further (1) (2) and (3)
The combination of (4) may be performed.

〔作用〕[Action]

本発明においては、ポリアクリロニトリル紡糸繊維フ
ィラメントを不融化,熱処理して得た限定された比抵抗
及び直径のバラツキを有する繊維フィラメントを使用す
ることにより、赤外線ピーク波長9.8〜9.9μmでの検出
能力に特に優れた赤外線検出特性を示すものである。
In the present invention, polyacrylonitrile spun fiber filaments are made infusible and heat-treated, and by using fiber filaments having limited specific resistance and variation in diameter, the detection ability at an infrared peak wavelength of 9.8 to 9.9 μm is improved. It exhibits particularly excellent infrared detection characteristics.

そしてこの検出素子は、人体等を発生源とする赤外線
の検出に最適であって、防犯用等の受動式検知器に好適
に採用できるものとなる。
This detection element is most suitable for detecting infrared rays generated from a human body or the like, and can be suitably used for a passive detector for crime prevention or the like.

〔実施例〕〔Example〕

以下実施例によりこの発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

実施例1〜3 ポリアクリロニトリルを湿式紡糸し、150℃のグリセ
リン浴中で延伸して平均直径13μm,バラツキ,最大径−
最小径0.7μmの紡糸繊維フィラメントを得た。これを
延伸倍率1.3の緊張下、空気中で30℃/hr,300℃まで加熱
して不融化した。次に表−1に示す条件でN2ガス雰囲気
下熱処理して同表に示す比抵抗値、繊維直径及びバラツ
キの繊維フィラメントを得た。得られた繊維フィラメン
トを各々200本略平行に2.5mm間隔の電極間に配置した。
ついで600゜Kの黒体炉および人体(表面温度23℃)を赤
外線源とし、8Vの直流電圧を印加した素子にカメラシャ
ッター(開閉速度290μsec)を用いて赤外線を断続照射
させ、第3図に示すような繊維フィラメントの電気抵抗
変化による出力電圧変化の波形をストレージスコープと
X−Yプロッターで検出記録して熱時定数および出力電
圧変化を求めた。
Examples 1 to 3 Polyacrylonitrile was wet-spun and stretched in a glycerin bath at 150 ° C. to have an average diameter of 13 μm, variation, and maximum diameter.
A spun fiber filament having a minimum diameter of 0.7 μm was obtained. This was heated to 30 ° C./hr, 300 ° C. in air under tension of a draw ratio of 1.3 to make it infusible. Next, heat treatment was performed in an N 2 gas atmosphere under the conditions shown in Table 1 to obtain fiber filaments having specific resistance values, fiber diameters and variations shown in the same table. Each of the 200 obtained fiber filaments was arranged approximately in parallel between the electrodes at intervals of 2.5 mm.
Then, using a black body furnace at 600 ゜ K and a human body (surface temperature of 23 ° C) as an infrared source, the device to which a DC voltage of 8V was applied was intermittently irradiated with infrared rays using a camera shutter (opening / closing speed: 290μsec). The waveform of the output voltage change due to the change in the electrical resistance of the fiber filament was detected and recorded by a storage scope and an XY plotter to determine the thermal time constant and the output voltage change.

なお、熱時定数は飽和出力値の63%に達するまでの時
間とした。
The thermal time constant was the time required to reach 63% of the saturation output value.

これらの結果を同表に示す。 The results are shown in the same table.

比較例1〜3 実施例1と同様に不融化繊維フィラメントを、表1に
示す条件でN2ガス雰囲気下で熱処理し同表に示す比抵抗
値,繊維直径及びバラツキの繊維フィラメントを得た。
これらを実施例1と同一の方法で熱時定数,出力電圧変
化を求め結果を同表に示した。
Comparative Examples 1 to 3 Infusible fiber filaments were heat-treated in an N 2 gas atmosphere under the conditions shown in Table 1 in the same manner as in Example 1 to obtain fiber filaments having the specific resistance, fiber diameter and variation shown in the table.
The thermal time constant and the output voltage change were determined by the same method as in Example 1 and the results are shown in the same table.

比較例4 石炭ピッチを不融化,熱処理して得た比抵抗値2.5×1
03Ω・cm繊維平均直径7.1μm,バラツキ(最大径−最小
径):2.2μmの繊維フィラメントについて、実施例1と
同一の方法で熱時定数,出力電圧変化を求めた。その結
果、黒体炉での熱時定数55msec,出力電圧変化は16mVで
あったが、人体では検出することができなかった。
Comparative Example 4 Specific resistance value of 2.5 × 1 obtained by infusifying and heat-treating coal pitch
0 3 Ω · cm average fiber diameter 7.1 [mu] m, the variation (maximum diameter - minimum diameter): about fiber filaments of 2.2 .mu.m, the thermal time constant in the same manner as in Example 1 to obtain output voltage variations. As a result, the thermal time constant of the black body furnace was 55 msec and the output voltage change was 16 mV, but it could not be detected by the human body.

上記、特に表1の結果によれば、実施例品、即ち本発
明は比較例に比し熱時定数、即ち応答速度に著しく優
れ、また出力電圧変化が著しく高いことが明らかであっ
た。
According to the results shown in Table 1 above, in particular, it is clear that the product of the example, that is, the present invention, is remarkably excellent in the thermal time constant, that is, the response speed, and the output voltage change is remarkably high as compared with the comparative example.

〔発明の効果〕〔The invention's effect〕

以上の説明及び実施例の結果から明らかなように、本
発明赤外線検出素子は、低温赤外線源に対する特性、特
に応答速度及び出力電圧変化に著しく優れたものであ
り、上記防犯目的における要求に応じ得るものであり、
その工業的利用効果は著しく大きい。
As is clear from the above description and the results of the examples, the infrared detecting element of the present invention has remarkably excellent characteristics with respect to a low-temperature infrared source, particularly, a response speed and a change in output voltage, and can meet the demand for the above-described crime prevention purpose. Things,
Its industrial utilization effect is remarkably large.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の実施態様におけるフィラメ
ントの配列態様の模式説明図、第3図は本発明の実施例
における赤外線検知状況を示すグラフである。 A,B…電極、F…フィラメント。
FIG. 1 and FIG. 2 are schematic explanatory views of the arrangement of filaments in the embodiment of the present invention, and FIG. 3 is a graph showing the state of infrared detection in the embodiment of the present invention. A, B: electrodes, F: filaments.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 範雄 神奈川県相模原市宮下本町1―5―18 (72)発明者 梶原 貞次郎 東京都港区元赤坂1丁目6番6号 綜合 警備保障株式会社内 (72)発明者 森 憲寿 東京都港区元赤坂1丁目6番6号 綜合 警備保障株式会社内 (72)発明者 市川 宏 神奈川県横浜市栄区庄戸2―5―16 (72)発明者 原田 博文 神奈川県藤沢市辻堂太平台1―16―26 (56)参考文献 特開 平3−96824(JP,A) 特開 平2−310430(JP,A) 特開 平2−71121(JP,A) 特開 昭63−116312(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01J 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Norio Muto 1-5-18 Miyashita Honmachi, Sagamihara City, Kanagawa Prefecture (72) Inventor Teijiro Kajiwara 1-6-6 Moto-Akasaka, Minato-ku, Tokyo Inside Sogo Security Service Co., Ltd. (72) Inventor Norihisa Mori 1-6-6 Moto-Akasaka, Minato-ku, Tokyo Sogo Security Service Co., Ltd. (72) Inventor Hiroshi Ichikawa 2-5-16 Shodo, Sakae-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Hirofumi Harada 1-16-26 Tsudaido Taiheidai, Fujisawa City, Kanagawa Prefecture (56) References JP-A-3-96824 (JP, A) JP-A-2-310430 (JP, A) JP-A-2-71121 (JP, A) JP-A-63-116312 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01J 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリアクリロニトリル紡糸繊維フィラメン
トを不融化した後熱処理して得た、 常温での比抵抗値が100〜104Ω・cm、繊維フィラメント
平均直径が7〜9μm、そして該平均直径のバラツキが
前記平均直径±1μm、 の範囲にある繊維モノフィラメントを、電極間に配置し
て構成してなる赤外線検出素子。
1. A polyacrylonitrile spun fiber filaments obtained by heat treatment after the infusibilized, specific resistance at room temperature is 10 0 ~10 4 Ω · cm, the fiber filaments an average diameter 7~9μm and the average diameter, An infrared detecting element comprising a fiber monofilament having a variation in the average diameter ± 1 μm, which is arranged between electrodes.
JP27705089A 1989-10-26 1989-10-26 Infrared detector Expired - Lifetime JP2897039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27705089A JP2897039B2 (en) 1989-10-26 1989-10-26 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27705089A JP2897039B2 (en) 1989-10-26 1989-10-26 Infrared detector

Publications (2)

Publication Number Publication Date
JPH03140825A JPH03140825A (en) 1991-06-14
JP2897039B2 true JP2897039B2 (en) 1999-05-31

Family

ID=17578090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27705089A Expired - Lifetime JP2897039B2 (en) 1989-10-26 1989-10-26 Infrared detector

Country Status (1)

Country Link
JP (1) JP2897039B2 (en)

Also Published As

Publication number Publication date
JPH03140825A (en) 1991-06-14

Similar Documents

Publication Publication Date Title
Humphrey et al. Photoconductivity in lead selenide. Experimental
US3539295A (en) Thermal stabilization and carbonization of acrylic fibrous materials
US5328764A (en) Linear carbonaceous fiber with improved elongability
Harada et al. Photoemission from Polycyclic Aromatic Crystals in the Vacuum Ultraviolet Region
De La Moneda et al. Noise in phototransistors
JP2897039B2 (en) Infrared detector
JP2840735B2 (en) Infrared detector
JP2897033B2 (en) High sensitivity infrared detector
Blasse et al. Radiationless transitions in the Eu3+ center in LaAlO3
JP2935738B2 (en) Infrared detector
Solomon Effect of Forming Gas Anneal on AI-SiO, Internal Photoemission Characteristics
US4642664A (en) Electrical device made of partially pryolyzed polymer
US3900556A (en) Process for the continuous carbonization and graphitization of a stabilized acrylic fibrous material
EP0218235B1 (en) Production of partially carbonized polymeric fibrous material having an electrical resistivity of enhanced stability
US4577979A (en) Electrical temperature pyrolyzed polymer material detector and associated circuitry
Muto et al. Infrared Detection by Si‐Ti‐C‐O Fibers
Vis Photoconductivity in single‐crystal tellurium
US4938941A (en) Partially carbonized polymeric fibrous material having an electrical resistivity of enhanced stability
EP0419718B1 (en) Infrared detective element
JP2531231B2 (en) Thermal infrared sensor
US4856179A (en) Method of making an electrical device made of partially pyrolyzed polymer
Ruiz et al. Characterization of Off Stoichiometric Silicon Oxide by Thermo, Cathode, and Photo-Luminescence
Gross et al. Characteristics of infrared photodetectors produced by radiation doping
JPS63295761A (en) Antistatic fiber and its production
Toda et al. Photoconductivity in a Pb 2 CrO 5 ceramic disk with surface electrodes