JP2931451B2 - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JP2931451B2
JP2931451B2 JP3239139A JP23913991A JP2931451B2 JP 2931451 B2 JP2931451 B2 JP 2931451B2 JP 3239139 A JP3239139 A JP 3239139A JP 23913991 A JP23913991 A JP 23913991A JP 2931451 B2 JP2931451 B2 JP 2931451B2
Authority
JP
Japan
Prior art keywords
hole
silicon substrate
layer
region
electron attracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3239139A
Other languages
Japanese (ja)
Other versions
JPH0582811A (en
Inventor
健次 福井
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3239139A priority Critical patent/JP2931451B2/en
Publication of JPH0582811A publication Critical patent/JPH0582811A/en
Application granted granted Critical
Publication of JP2931451B2 publication Critical patent/JP2931451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は太陽電池素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell device.

【0002】[0002]

【発明の背景】第一次石油ショック時に代替エネルギー
の必要性がクローズアップされ、無尽蔵でクリーンな太
陽エネルギーを源とする太陽電池が注目を浴び実用化の
ための低コストな太陽電池の開発がスタートした。開発
は着実に成果をあげ、ここ10年間でコストは100分
の1まで低減した。しかし、電力用として見た場合一般
の商用電力と対比されるとコスト的には高く、実用化に
はまだ遠いという感があった。ところが、最近、地球環
境問題で脚光を浴び、開発は促進され実用化も間近なと
ころまでせまってきている。このような中で、低コスト
な太陽電池の実用化研究に加え、超高効率化を目的とし
た研究開発も新たに必要になってきた。すなわち、高効
率化は、低コスト化に非常に重要な因子となる。単結晶
シリコン太陽電池では、理論的には28%以上が達成可
能であることが予測されている。
BACKGROUND OF THE INVENTION The need for alternative energy during the first oil crisis has been highlighted, and solar cells using inexhaustible and clean solar energy have been receiving attention, and low-cost solar cells for practical use have been developed. It started. Development has been steadily successful and costs have been reduced by a factor of 100 in the last decade. However, when viewed as electric power, there is a feeling that the cost is high when compared with general commercial power, and it is still far from practical use. However, recently, it has been spotlighted on global environmental issues, and its development has been promoted and its practical use is approaching. Under such circumstances, in addition to research on practical use of low-cost solar cells, research and development for the purpose of ultra-high efficiency have been newly required. That is, high efficiency is a very important factor for cost reduction. For single crystal silicon solar cells, it is predicted that 28% or more is theoretically achievable.

【0003】超高効率太陽電池の研究開発には、高品質
単結晶シリコン基板の持つ特性を最大限に引き出すこと
が重要である。そのためには、キャリアや光の有効利用
およびキャリアのライフタイムが維持できるようなセル
構造および製造プロセスを開発する必要がある。そこ
で、本発明者等は、特願平2−226944号で、低反
射構造でかつキャリアの再結合を防ぐことができるスル
ーホールバックコンタクト型太陽電池素子を提案した。
この構造を図1に示す。図1において、1はp型単結晶
シリコン基板、2は単結晶シリコン基板1に形成された
スルーホール、3はシリコン基板1の裏面側のスルーホ
ール近傍に形成されたn+ 領域、4はn+ 領域の近傍に
形成されたp+ 領域、5はp+ 領域部に形成された正電
極、6はn+ 領域に形成された負電極、7、8、9はシ
リコン基板1の表面側とスルーホール2部分にそれぞれ
形成されたパシベーッション層、正電荷を有する電子引
付層、および反射防止層である。
In research and development of ultra-high efficiency solar cells, it is important to maximize the characteristics of a high quality single crystal silicon substrate. For that purpose, it is necessary to develop a cell structure and a manufacturing process that can maintain the effective use of carriers and light and maintain the lifetime of carriers. In view of this, the present inventors have proposed a through-hole back-contact solar cell element having a low reflection structure and capable of preventing carrier recombination in Japanese Patent Application No. 2-226944.
This structure is shown in FIG. In FIG. 1, 1 is a p-type single-crystal silicon substrate, 2 is a through-hole formed in the single-crystal silicon substrate 1, 3 is an n + region formed near the through-hole on the back side of the silicon substrate 1, and 4 is n The p + region formed near the + region, 5 is a positive electrode formed in the p + region, 6 is a negative electrode formed in the n + region, 7, 8, and 9 are the surface side of the silicon substrate 1. A passivation layer, a positively-charged electron attracting layer, and an anti-reflection layer respectively formed in the through-hole 2 portion.

【0004】シリコン基板1の表面側に正電荷を有する
電子引付層8を形成すると、この正電荷の影響でシリコ
ン基板1と電子引付層8の界面近くでは多数キャリアで
ある正孔が基板1の内部へ押しやられ、少数キャリアで
ある電子が基板1の表面に引きつけられる。この結果、
基板1の表面にごく薄いn型反転層10が生じる。この
表面付近のキャリアはスルーホール4部分のn型反転層
10を経由して、シリコン基板1の裏面側のn+ 領域3
へ導かれ、負電極5から取り出される。このように負電
極5がシリコン基板の裏面側に形成されることから、シ
リコン基板の表面には入射光を遮る電極は存在せず。変
換効率を著しく高めることが可能になる。
When an electron attracting layer 8 having a positive charge is formed on the surface side of the silicon substrate 1, holes serving as majority carriers are generated near the interface between the silicon substrate 1 and the electron attracting layer 8 under the influence of the positive charge. 1, and electrons serving as minority carriers are attracted to the surface of the substrate 1. As a result,
An extremely thin n-type inversion layer 10 is formed on the surface of the substrate 1. The carriers in the vicinity of the front surface pass through the n-type inversion layer 10 in the through hole 4 portion, and pass through the n + region 3 on the back surface side of the silicon substrate 1.
And taken out of the negative electrode 5. As described above, since the negative electrode 5 is formed on the back surface side of the silicon substrate, there is no electrode that blocks incident light on the surface of the silicon substrate. Conversion efficiency can be significantly increased.

【0005】ところが、上述のような反転層10を形成
して電子を裏面側から取り出す場合、反転層10の直列
抵抗が太陽電池素子の変換効率に大きく影響するので、
この反転層10は直列抵抗を下げるようなものでなけれ
ばならない。また、スルーホールの径が大きいと受光面
積が減少するので、径はできるだけ小さい方が望ましい
が、製造技術上からの制約がある。
However, when the above-described inversion layer 10 is formed and electrons are taken out from the back side, the series resistance of the inversion layer 10 greatly affects the conversion efficiency of the solar cell element.
This inversion layer 10 must be one that reduces the series resistance. Further, if the diameter of the through hole is large, the light receiving area is reduced. Therefore, it is desirable that the diameter is as small as possible, but there is a limitation in manufacturing technology.

【0006】[0006]

【発明の目的】本発明は、このような背景のもとに成さ
れたものであり、直列抵抗の増大化を解消した超高効率
の太陽電池素子を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made under such a background, and has as its object to provide an ultra-high-efficiency solar cell element in which an increase in series resistance is eliminated. .

【0007】[0007]

【発明の構成】本発明によれば、p型単結晶シリコン基
板に複数のスルーホールを設け、このシリコン基板裏面
側のスルーホール近傍にn+ 領域を設け、このn+ 領域
の近傍にp+ 領域を設け、このp+ 領域部に正電極を設
け、前記n+ 領域部に負電極を設け、前記シリコン基板
の表面側とスルーホール部の表面にパシベーション層、
電子引付層、および反射防止層を順次設けた太陽電池素
子において、前記電子引付層の電荷密度が3×1011
2×1013cm-2であり、且つ前記スルーホールの孔径
が5〜50μmで孔間ピッチが10〜200μmである
ことを特徴とする太陽電池素子が提供される。
According to the present invention DETAILED DESCRIPTION OF THE INVENTION, a plurality of through-holes in the p-type single crystal silicon substrate, an n + region disposed near the through holes of the silicon substrate backside, p in the vicinity of the n + region + A region, a positive electrode is provided in the p + region, a negative electrode is provided in the n + region, and a passivation layer is provided on the surface side of the silicon substrate and the surface of the through hole.
In a solar cell element in which an electron attracting layer and an antireflection layer are sequentially provided, the charge density of the electron attracting layer is 3 × 10 11 to
A solar cell element is provided, which has a size of 2 × 10 13 cm −2 , a hole diameter of the through hole of 5 to 50 μm, and a pitch between holes of 10 to 200 μm.

【0008】[0008]

【作用】上記のように、電荷密度が3×1011以上の電
子引付層を形成することによって、シリコン基板表面の
表面ポテンシャルが向上してシリコン基板の表面部分に
形成される反転層の直列抵抗を下げることができるとと
もに、電荷密度が2×1013cm-2以下の電荷引付層を
形成することによって、反転層が深くなりすぎることに
よって生じる変換効率の低下を防止でき、さらに孔径が
5〜50μmで孔間ピッチが10〜200μmのスルー
ホールを形成することによって、集光面積の低下に伴う
変換効率の低下が防止でき、高効率の太陽電池素子が得
られる。
As described above, by forming the electron attracting layer having a charge density of 3 × 10 11 or more, the surface potential of the silicon substrate surface is improved, and the inversion layer formed on the surface portion of the silicon substrate is connected in series. By forming a charge attracting layer having a charge density of 2 × 10 13 cm −2 or less, it is possible to prevent a decrease in conversion efficiency caused by the inversion layer being too deep, and to further reduce the pore size. By forming a through hole having a hole pitch of 5 to 50 μm and a hole pitch of 10 to 200 μm, it is possible to prevent a decrease in conversion efficiency due to a decrease in the light-collecting area, and to obtain a highly efficient solar cell element.

【0009】[0009]

【実施例】以下、本発明の実施例を添付図面に基づき詳
細に説明する。本発明に係る太陽電池素子の構造自体
は、図1に示す太陽電池素子の構造と同一である。シリ
コン基板1としては、CZ法などによって形成された比
抵抗1〜100Ωcm程度のp型単結晶シリコン基板な
どが好適に用いられる。n+ 領域3とp+ 領域4は熱拡
散法やイオン注入法によって形成され、正電極5と負電
極6はアルミニウム、クロム、ニッケル、金、銀などを
用いた蒸着法やスパッタリング法によって形成される。
この電極、特に正電極5は、シリコン基板1の裏面側に
達した光を反射してもう一度シリコン基板1内に戻すこ
とができるようにできるだけ広い領域に亘って形成する
ことが望ましい。また、シリコン基板1の表面とスルー
ホール2部分には、キャリアの再結合を防ぐための厚み
100Å程度の酸化シリコン(SiO2 )膜などから成
るパシベーション層7が熱酸化法やプラズマCVD法な
どによって形成される。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The structure itself of the solar cell element according to the present invention is the same as the structure of the solar cell element shown in FIG. As the silicon substrate 1, a p-type single crystal silicon substrate having a specific resistance of about 1 to 100 Ωcm formed by a CZ method or the like is preferably used. The n + region 3 and the p + region 4 are formed by a thermal diffusion method or an ion implantation method, and the positive electrode 5 and the negative electrode 6 are formed by a vapor deposition method or a sputtering method using aluminum, chromium, nickel, gold, silver, or the like. You.
This electrode, particularly the positive electrode 5, is desirably formed over an area as large as possible so that light reaching the back side of the silicon substrate 1 can be reflected and returned into the silicon substrate 1 again. A passivation layer 7 made of a silicon oxide (SiO 2 ) film or the like having a thickness of about 100 ° for preventing the recombination of carriers is formed on the surface of the silicon substrate 1 and the through hole 2 by thermal oxidation or plasma CVD. It is formed.

【0010】図2に電子引付層8の電荷密度とシリコン
基板1の表面ポテンシャルとの関係を示す。なお、図2
のシリコン基板は、アクセプタとしてボロンを1.5×
1016個含有するものである。図2で明らかなように、
電子引付層8の電荷密度が1×1011cm-2からシリコ
ン基板1の表面ポテンシャルは急上昇し、電子引付層8
の電荷密度が3×1011cm-2以上になると表面ポテン
シャルは0.75Vになり、それ以上電荷密度が増加し
ても表面ポテンシャルの増加率は鈍化する。すなわち、
電子引付層8の電荷密度は、3×1011cm-2以上あれ
ば、シリコン基板1表面のシート抵抗を充分下げること
ができ、この基板1の表面近傍に反転層10を形成する
ことができ、且つ反転層10の直列抵抗が下がることが
分かる。したがって、電子引付層8の電荷密度は、少な
くとも3×1011cm-2必要である。
FIG. 2 shows the relationship between the charge density of the electron attracting layer 8 and the surface potential of the silicon substrate 1. Note that FIG.
Silicon substrate is 1.5 × boron as acceptor
It contains 10 16 . As is evident in FIG.
When the charge density of the electron attracting layer 8 is 1 × 10 11 cm −2 , the surface potential of the silicon substrate 1 rises rapidly, and the electron attracting layer 8
When the charge density becomes 3 × 10 11 cm −2 or more, the surface potential becomes 0.75 V. Even if the charge density further increases, the rate of increase of the surface potential becomes slow. That is,
If the charge density of the electron attracting layer 8 is 3 × 10 11 cm −2 or more, the sheet resistance on the surface of the silicon substrate 1 can be sufficiently reduced, and the inversion layer 10 can be formed near the surface of the substrate 1. It can be seen that the series resistance of the inversion layer 10 is reduced. Therefore, the charge density of the electron attracting layer 8 needs to be at least 3 × 10 11 cm −2 .

【0011】図3に、電子引付層8の電荷密度と太陽電
池素子1の変換効率との関係を示す。なお、図3中、○
線はシリコン基板1の比抵抗が1Ωcmの場合、△線は
同じく10Ωcmの場合、□線は同じく100Ωcmの
場合であり、スルーホール2部分による入射光損失とシ
ート抵抗による損失は加味されていない。図3で明らか
なように、電子引付層8の電荷密度が2×1012cm-2
のときに変換効率は最も高く、それ以後電子引付層8の
電荷密度が増加するにつれて反転層10は深く形成さ
れ、太陽電池素子の変換効率は徐々に低下し、電子引付
層8の電荷密度が2×1013cm-2以上になると変換効
率は20%を切ってしまう。したがって、電子引付層8
の電荷密度は、多くても2×1013cm-2としなければ
ならない。
FIG. 3 shows the relationship between the charge density of the electron attracting layer 8 and the conversion efficiency of the solar cell element 1. Note that in FIG.
The line indicates the case where the specific resistance of the silicon substrate 1 is 1 Ωcm, the line 同 じ く indicates the case where the specific resistance is also 10 Ωcm, and the line □ indicates the case where the specific resistance is also 100 Ωcm. The incident light loss due to the through hole 2 and the loss due to the sheet resistance are not taken into account. As apparent from FIG. 3, the charge density of the electron attracting layer 8 is 2 × 10 12 cm −2.
In this case, the conversion efficiency is the highest, and thereafter, as the charge density of the electron attracting layer 8 increases, the inversion layer 10 is formed deeper, the conversion efficiency of the solar cell element gradually decreases, and the charge of the electron attracting layer 8 decreases. When the density exceeds 2 × 10 13 cm −2 , the conversion efficiency drops below 20%. Therefore, the electron attracting layer 8
Must be at most 2 × 10 13 cm −2 .

【0012】上述のような電子引付層8は、例えばシラ
ンガス(SiH4 )とアンモニアガス(NH3 )を用い
たプラズマCVD法などで形成される。この場合、基板
温度を例えば400℃に設定して、シランガスとアンモ
ニアガスの流量比(SiH4 /NH3 )を例えば0.1
4〜0.59などに設定して厚み800Å程度に形成す
る。
The above-described electron attracting layer 8 is formed by, for example, a plasma CVD method using silane gas (SiH 4 ) and ammonia gas (NH 3 ). In this case, the substrate temperature is set to, for example, 400 ° C., and the flow ratio (SiH 4 / NH 3 ) of the silane gas to the ammonia gas is set to, for example, 0.1.
The thickness is set to about 800.degree.

【0013】図4に電子引付層8の電荷密度が2×10
13cm-2のときの、スルーホール2の孔径と変換効率の
関係を示す。なお、図4中、黒丸線は孔間ピッチが20
μm、白丸線は孔間ピッチが50μm、黒三角線は孔間
ピッチが100μm、黒四角線は孔間ピッチが150μ
m、白四角線は孔間ピッチが200μm、白六角線は孔
間ピッチが300μmである。図5に、電子引付層8の
電荷密度が2×1012cm-2のときのスルーホール2の
孔径と変換効率の関係を示す。なお、孔間ピッチとは、
スルーホール2の中心から隣接するスルーホール2の中
心までの間隔をいう。図4および図5で明らかなよう
に、孔径が50μm以下で孔間ピッチが200μm以下
であれば、変換効率が20%以上になる。特に、孔径が
10μmで孔間ピッチが50μmの場合は最適である。
孔径が50μm以上の場合、および孔間ピッチが200
μm以上の場合は、変換効率は20%以上にはならな
い。なお、孔径が5μm以下で孔間ピッチが10μm以
下のスルーホール2を形成することは、実際的な問題と
して製造技術上の困難が伴う。したがって、スルーホー
ル2の孔径は5〜50μmで孔間ピッチは10〜200
μmに設定しなければならない。
FIG. 4 shows that the charge density of the electron attracting layer 8 is 2 × 10
The relationship between the diameter of the through hole 2 and the conversion efficiency at 13 cm -2 is shown. In FIG. 4, the black circles indicate a pitch between holes of 20.
μm, the white circle line has a hole pitch of 50 μm, the black triangle line has a hole pitch of 100 μm, and the black square line has a hole pitch of 150 μm.
m, the white square line has a hole pitch of 200 μm, and the white hexagonal line has a hole pitch of 300 μm. FIG. 5 shows the relationship between the hole diameter of the through hole 2 and the conversion efficiency when the charge density of the electron attracting layer 8 is 2 × 10 12 cm −2 . The pitch between holes is
The distance from the center of the through hole 2 to the center of the adjacent through hole 2. As is clear from FIGS. 4 and 5, when the hole diameter is 50 μm or less and the pitch between the holes is 200 μm or less, the conversion efficiency becomes 20% or more. In particular, when the hole diameter is 10 μm and the pitch between the holes is 50 μm, it is optimal.
When the hole diameter is 50 μm or more, and when the pitch between the holes is 200
In the case of μm or more, the conversion efficiency does not become 20% or more. Forming the through-holes 2 having a hole diameter of 5 μm or less and a hole pitch of 10 μm or less involves difficulties in manufacturing technology as a practical problem. Therefore, the hole diameter of the through hole 2 is 5 to 50 μm, and the pitch between the holes is 10 to 200 μm.
It must be set to μm.

【0014】上述のようなスルーホール2は、YAGレ
ーザーあるいはフッ硝酸溶液を用いたエッチングなどに
よって形成することができる。
The above-described through hole 2 can be formed by etching using a YAG laser or a hydrofluoric / nitric acid solution.

【0015】[0015]

【発明の効果】以上のように、本発明に係る太陽電池素
子によれば、p型単結晶シリコン基板に複数のスルーホ
ールを設け、このシリコン基板裏面側のスルーホール近
傍にn+ 領域を設け、このn+ 領域の近傍にp+ 領域を
設け、このp+ 領域部に正電極を設け、前記n+ 領域部
に負電極を設け、前記シリコン基板の表面側とスルーホ
ール部の表面にパシベーション層、電子引付層、および
反射防止層を順次設けた太陽電池素子において、前記電
子引付層の電荷密度が3×1011〜2×1013cm-2
あり、且つ前記スルーホールの孔径が5〜50μmで孔
間ピッチが10〜200μmであることから、シリコン
基板表面の表面ポテンシャルが向上してシリコン基板の
表面に形成される反転層の直列抵抗を下げることができ
るとともに、反転層をシリコン基板の表面近傍に形成し
て変換効率を高めることができ、さらに集光面積の低下
に伴う変換効率の低下も防止でき、高効率の太陽電池素
子が得られる。
As described above, according to the solar cell element of the present invention, a plurality of through holes are provided in a p-type single crystal silicon substrate, and an n + region is provided in the vicinity of the through hole on the back side of the silicon substrate. A p + region is provided in the vicinity of the n + region, a positive electrode is provided in the p + region, a negative electrode is provided in the n + region, and a passivation is provided on the surface side of the silicon substrate and the surface of the through hole. Layer, an electron attracting layer, and an antireflection layer, the charge density of the electron attracting layer is 3 × 10 11 to 2 × 10 13 cm −2 , and the hole diameter of the through hole is Is 5 to 50 μm and the pitch between holes is 10 to 200 μm, so that the surface potential of the silicon substrate surface is improved and the series resistance of the inversion layer formed on the surface of the silicon substrate can be reduced. Formed near the surface of the silicon substrate can be enhanced conversion efficiency, further can be prevented reduction in conversion efficiency due to the decrease of the light collecting area, high efficiency solar cell element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】太陽電池素子の構造を示す図である。FIG. 1 is a diagram showing a structure of a solar cell element.

【図2】電子引付層の電荷密度とシリコン基板の表面ポ
テンシャルとの関係を示す図である。
FIG. 2 is a diagram showing a relationship between a charge density of an electron attracting layer and a surface potential of a silicon substrate.

【図3】電子引付層の電荷密度と太陽電池素子の変換効
率との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the charge density of an electron attracting layer and the conversion efficiency of a solar cell element.

【図4】電子引付層の電荷密度が2×1013cm-2のと
きのスルーホールの孔径と変換効率の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a hole diameter of a through hole and a conversion efficiency when the charge density of the electron attracting layer is 2 × 10 13 cm −2 .

【図5】電子引付層の電荷密度が2×1012cm-2のと
きのスルーホールの孔径と変換効率の関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a hole diameter of a through hole and a conversion efficiency when the charge density of the electron attracting layer is 2 × 10 12 cm −2 .

【符号の説明】[Explanation of symbols]

1・・・p型単結晶シリコン基板、2・・・スルーホー
ル、3・・・n+領域、4・・・p+ 領域、5・・・正
電極、6・・・負電極、7・・・パシベーッション層、
8・・・電子引付層、9・・・反射防止層。
DESCRIPTION OF SYMBOLS 1 ... p-type single crystal silicon substrate, 2 ... through hole, 3 ... n + region, 4 ... p + region, 5 ... positive electrode, 6 ... negative electrode, 7 ..Passivation layers,
8: electron attracting layer, 9: anti-reflection layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p型単結晶シリコン基板に複数のスルー
ホールを設け、このシリコン基板裏面側のスルーホール
近傍にn+ 領域を設け、このn+ 領域の近傍にp+ 領域
を設け、このp+ 領域部に正電極を設け、前記n+ 領域
部に負電極を設け、前記シリコン基板の表面側とスルー
ホール部の表面にパシベーション層、電子引付層、およ
び反射防止層を順次設けた太陽電池素子において、前記
電子引付層の電荷密度が3×1011〜2×1013cm-2
であり、且つ前記スルーホールの孔径が5〜50μmで
孔間ピッチが10〜200μmであることを特徴とする
太陽電池素子。
A plurality of through holes are provided in a p-type single crystal silicon substrate, an n + region is provided in the vicinity of the through hole on the back side of the silicon substrate, a p + region is provided in the vicinity of the n + region, A positive electrode is provided in the + region portion, a negative electrode is provided in the n + region portion, and a passivation layer, an electron attracting layer, and an antireflection layer are sequentially provided on the surface side of the silicon substrate and the surface of the through hole portion. In the battery element, the charge density of the electron attracting layer is 3 × 10 11 to 2 × 10 13 cm −2.
And a hole diameter of the through holes is 5 to 50 μm and a pitch between the holes is 10 to 200 μm.
JP3239139A 1991-09-19 1991-09-19 Solar cell element Expired - Fee Related JP2931451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239139A JP2931451B2 (en) 1991-09-19 1991-09-19 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239139A JP2931451B2 (en) 1991-09-19 1991-09-19 Solar cell element

Publications (2)

Publication Number Publication Date
JPH0582811A JPH0582811A (en) 1993-04-02
JP2931451B2 true JP2931451B2 (en) 1999-08-09

Family

ID=17040349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239139A Expired - Fee Related JP2931451B2 (en) 1991-09-19 1991-09-19 Solar cell element

Country Status (1)

Country Link
JP (1) JP2931451B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554031B2 (en) * 2005-03-03 2009-06-30 Sunpower Corporation Preventing harmful polarization of solar cells
JP5172783B2 (en) * 2009-06-18 2013-03-27 シャープ株式会社 Solar cell with wiring sheet and solar cell module
CN102484151A (en) 2009-09-28 2012-05-30 京瓷株式会社 Solar cell element and method of manufacture thereof

Also Published As

Publication number Publication date
JPH0582811A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
US9608131B2 (en) Solar cell having doped semiconductor heterojunction contacts
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
US6452090B2 (en) Photovoltaic device
US8906733B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
US5356488A (en) Solar cell and method for its manufacture
US4070206A (en) Polycrystalline or amorphous semiconductor photovoltaic device having improved collection efficiency
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JP2011512687A (en) Asymmetric wafer etching method, solar cell including asymmetric etching wafer, and solar cell manufacturing method
JPH07101752B2 (en) Solar cell element and method of manufacturing the same
JP2013513964A (en) Back contact / heterojunction solar cell
JP2023549905A (en) Solar power cells and solar power modules
CN107104165A (en) One kind is based on graphene silicon inverted pyramid array Schottky photovoltaic cell manufacture method
CN110326119A (en) Heterojunction solar battery and preparation method thereof
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
KR20170143074A (en) Bifacial silicon solar cell and method for manufacturing the same
JP2931451B2 (en) Solar cell element
JP2003152205A (en) Photoelectric conversion element and its manufacturing method
JP2997363B2 (en) Solar cell element
JP3623642B2 (en) Method for manufacturing photoelectric conversion device
CN111524982A (en) Solar cell
JP7425232B1 (en) Cell, photovoltaic module and method for manufacturing photovoltaic module
CN220290821U (en) Battery structure and solar battery
JPH0548123A (en) Photoelectric conversion element
CN219371038U (en) Solar cell back structure and N-TBC back contact solar cell
JPH0945945A (en) Solar cell element and fabrication thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees