JP2931185B2 - Inverter dead time compensation circuit - Google Patents

Inverter dead time compensation circuit

Info

Publication number
JP2931185B2
JP2931185B2 JP5239939A JP23993993A JP2931185B2 JP 2931185 B2 JP2931185 B2 JP 2931185B2 JP 5239939 A JP5239939 A JP 5239939A JP 23993993 A JP23993993 A JP 23993993A JP 2931185 B2 JP2931185 B2 JP 2931185B2
Authority
JP
Japan
Prior art keywords
current
zero
current detection
time
zero current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5239939A
Other languages
Japanese (ja)
Other versions
JPH0799793A (en
Inventor
裕明 湯浅
幸彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5239939A priority Critical patent/JP2931185B2/en
Publication of JPH0799793A publication Critical patent/JPH0799793A/en
Application granted granted Critical
Publication of JP2931185B2 publication Critical patent/JP2931185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機のコイルに
流れる電流を検出し、電流の極性に応じて指令電圧を補
正するインバータのデッドタイム補償回路に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dead time compensation circuit for an inverter which detects a current flowing through a coil of an induction motor and corrects a command voltage according to the polarity of the current.

【0002】[0002]

【従来の技術】一般に、インバータのデッドタイム補償
回路では、誘導電動機のコイル電流を検出し、その電流
が、正電流、零電流、負電流のいずれであるかを判断
し、指令電圧を補正するようにしてある。
2. Description of the Related Art Generally, a dead time compensation circuit of an inverter detects a coil current of an induction motor, determines whether the current is a positive current, a zero current, or a negative current, and corrects a command voltage. It is like that.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のインバ
ータのデッドタイム補償回路においては、ノイズカット
のためにコイルに流れる電流をCRフィルタ回路に通
し、CRフィルタ回路に通した電流に基づいて正電流、
零電流、負電流を判断していた。このため、検出電流が
高周波であると、実際の電流変化よりも判断が遅れる欠
点があった。 また、検出電流が零電流であるか否かを決
定する零電流検出時間が、低周波・高周波に関係なく同
じ時間であった。このため、周波数の違いによって、実
際の零電流と検出された零電流が異なり、且つ時間的に
もずれを生じる欠点があった。
However, in the conventional inverter dead time compensation circuit, noise
The current flowing through the coil through the CR filter circuit
And a positive current based on the current passed through the CR filter circuit,
Zero current and negative current were judged. Therefore, the detection current
If the frequency is high, the judgment is delayed compared to the actual current change.
There was a point. Further, the zero current detection time for determining whether the detection current is the zero current is the same time regardless of the low frequency and the high frequency. Therefore, the difference in frequency, different zero current detected with the actual zero current, and temporal also has a disadvantage to slip.

【0004】さらに、始動時には、各相の指令電圧から
誘導電動機の位置を演算し、その位置における各相の指
令電圧の補正を行っていた。このため、始動時の指令電
圧の補正に時間がかかる欠点があった。
[0004] In addition, at the time of start-up, calculates the position of the induction motor from each phase of the command voltage, the correction was carried out in each phase of the command voltage at that location. For this reason, there is a disadvantage that it takes time to correct the command voltage at the time of starting.

【0005】本発明は上述の点に鑑みて為されたもので
あり、その第1の目的とするところは、始動時の指令電
圧を補正に時間がかからないようにすることにあり、第
2の目的とするところは、実際の零電流をより正確に検
出することにあり、第3の目的とするところは、周波数
に関係なく、実際の零電流をより正確に検出することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and a first object of the present invention is to prevent a command voltage at the time of starting from being corrected in a long time. The purpose is to detect the actual zero current more accurately, and the third purpose is to more accurately detect the actual zero current regardless of the frequency.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、上記
第1、第2の目的を達成するために、電流値の零を中心
として所定の電流幅で設定した零電流検出幅内における
上記電流の存在時間が規定の零電流検出時間に達すると
零電流を検出したとする手段と、零電流を検出した後に
上記電流が零電流検出幅を出てから零電流検出幅内に戻
らない期間が連続して規定の正負電流検出時間に達した
ときに上記電流の極性の反転を検出したとする手段と、
極性の反転後から規定の正負電流保持時間が経過するま
で連続して上記電流が零電流検出幅に存在することがな
ければ上記電流の極性を確定する手段とを備えている。
請求項2の発明は、請求項1の発明において、上記零電
流検出時間を短く設定し、前記正負電流保持時間を長く
設定するものである。
According to the first aspect of the present invention,
In order to achieve the first and second objects, the current value is centered on zero.
Within the zero current detection width set with the predetermined current width as
When the existing time of the current reaches the specified zero current detection time
Means for detecting zero current, and after detecting zero current
After the above current exits the zero current detection width, it returns to within the zero current detection width.
Over time has reached the specified positive / negative current detection time
Means for detecting the reversal of the polarity of the current,
After the polarity inversion, the specified positive / negative current holding time elapses.
The above current does not exist in the zero current detection width continuously.
Means for determining the polarity of the current, if any.
According to a second aspect of the present invention, in the first aspect, the zero current
Current detection time is set short, and the positive / negative current holding time is lengthened.
To set.

【0007】請求項3の発明では、請求項1または請求
項2の発明において、上記零電流検出時間は上記電流が
上記零電流検出幅内に入った時点から時限され、時限中
に上記電流が上記零電流検出幅外に一旦出ると再時限さ
れ、上記正負電流検出時間は上記電流が上記零電流検出
幅外に出た時点から時限され、時限中に上記電流が上記
零電流検出幅内に一旦入ると再時限される。 請求項4の
発明では、請求項1または請求項2の発明において、上
記零電流検出時間は上記電流が上記零電流検出幅内に入
った時点からの一定時間として時限され、上記正負電流
検出時間は上記電流が上記零電流検出幅外に出た時点か
ら時限され、時限中に上記電流が上記零電流検出幅内に
一旦入ると再時限される。
[0007] In the invention of claim 3, claim 1 or claim
In the invention of Item 2, the zero current detection time is such that the current is
It is timed from the point when it enters the above-mentioned zero current detection width, and timed
Once the current goes out of the zero current detection range,
The positive and negative current detection time is equal to the zero current detection
It is timed from the point when it goes outside the width, and the above current is
Once within the zero current detection width, it is timed again. Claim 4
In the invention, in the invention of claim 1 or claim 2,
During the zero current detection time, the above current falls within the above zero current detection width.
The positive and negative current
The detection time is the time when the above current goes out of the above zero current detection width.
The current is within the zero current detection width during the time period.
Once entered, it will be retimed.

【0008】[0008]

【0009】請求項5の発明は、上記第3の目的を達成
するために、請求項1の発明において、上記零電流検出
時間の長さは上記電流の周波数に反比例させて変化させ
るものである。
[0009] The invention of claim 5 achieves the third object.
In order to achieve this, in the invention of claim 1, the zero current detection is performed.
Change the length of time in inverse proportion to the frequency of the current
Things.

【0010】[0010]

【作用】請求項1の発明では、電流値に対して零電流検
出幅を設定し、誘導電動機のコイルに流れる電流と零電
流検出幅との大小関係及び時間の関係に基づいて零電流
を検出しているから、CRフィルタ回路を用いることな
く、ノイズの影響を除去し、ノイズの影響を受けること
なく、実際の零電流とずれのない零電流を検出すること
を可能とする。請求項2の発明では、零電流検出時間を
短く設定し、正負電流保持時間を長く設定するから、零
電流を迅速に検出し、かつ指令電圧を正確に補正するこ
とを可能とする。
According to the first aspect of the present invention, zero current detection is performed on the current value.
Set the output width, the current flowing through the induction motor coil and the zero current
Zero current based on magnitude relationship with current detection width and time relationship
Is detected , the effect of noise is removed without using a CR filter circuit, and it is possible to detect a zero current having no deviation from an actual zero current without being affected by noise. In the invention of claim 2, the zero current detection time is
Set a shorter value and a longer positive / negative current holding time.
Detect current quickly and correct command voltage accurately.
And enable.

【0011】請求項の発明では、周波数に反比例して
零電流検出時間の長さを変化させることにより、周波数
の影響を除去し、低周波でも高周波でも、実際の零電流
と検出した零電流とが異なったり時間的にずれたりする
のを防止できる。
According to the fifth aspect of the present invention, the influence of the frequency is removed by changing the length of the zero current detection time in inverse proportion to the frequency. and the detected zero current or shift different or temporally
Can be prevented.

【0012】[0012]

【実施例】まず、インバータのデッドタイム補償につい
て説明する。インバータの出力電圧は電圧指令信号に従
って制御される。しかし、後述する原因で出力電圧は電
圧指令値に対して制御誤差を生じる。その結果、誘導電
動機の回転速度やトルクの制御特性の劣化が起こる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, dead time compensation of an inverter will be described. The output voltage of the inverter is controlled according to the voltage command signal. However, the output voltage causes a control error with respect to the voltage command value for the reason described later. As a result, the rotational speed and torque control characteristics of the induction motor are degraded.

【0013】例えば、誘導電動機の駆動装置に用いられ
る一般的なインバータは、図8に示すように、フライホ
イール(回生)ダイオードD1 〜D6 が逆並列に接続さ
れた複数個のトランジスタなどのスイッチング素子Q1
〜Q6 をブリッジ接続して構成した主回路1と、この主
回路1のスイッチング素子Q1 〜Q6 の点弧を制御する
図示しないPWM制御回路とで構成してある。なお、主
回路1には整流回路3と平滑コンデンサ4とで三相交流
を直流に変換した電圧を電源として印加してある。
For example, as shown in FIG. 8, a general inverter used in an induction motor driving device includes a plurality of transistors in which flywheel (regeneration) diodes D 1 to D 6 are connected in anti-parallel. Switching element Q 1
To Q 6 and the main circuit 1 constituted by bridge-connecting, are constituted by a PWM control circuit (not shown) for controlling the ignition of the switching elements Q 1 to Q 6 of the main circuit 1. Note that a voltage obtained by converting three-phase alternating current into direct current by the rectifier circuit 3 and the smoothing capacitor 4 is applied to the main circuit 1 as a power supply.

【0014】PWM制御回路では、図9(c)に示す制
御電圧信号aと三角波bとの比較によってPWM波形の
電圧指令信号を作成し、この電圧指令信号に応じて主回
路1のスイッチング素子の点弧を制御し、インバータの
出力電圧を制御する。上記主回路1において、電源(平
滑コンデンサ4の両端)に直列に接続されたスイッチン
グ素子(例えばQ1 とQ2 )の転流時に両スイッチング
素子が同時に点弧状態にある期間が生じると、その期間
には電源短絡状態となる。そこで、この電源短絡を防止
するために、一方のスイッチング素子がターンオフして
から僅かに遅らせて他方のスイッチング素子をターンオ
ンさせるようにしてある。この点弧遅れ時間がいわゆる
デットタイムである。
In the PWM control circuit, a voltage command signal having a PWM waveform is created by comparing the control voltage signal a and the triangular wave b shown in FIG. 9C, and the switching element of the main circuit 1 is generated in accordance with the voltage command signal. It controls the firing and controls the output voltage of the inverter. In the main circuit 1, when commutation of switching elements (for example, Q 1 and Q 2 ) connected in series to a power supply (both ends of the smoothing capacitor 4) occurs during a period in which both switching elements are in a firing state simultaneously, During the period, the power supply is short-circuited. Therefore, in order to prevent the power supply short circuit, one switching element is turned off and then slightly delayed to turn on the other switching element. This ignition delay time is a so-called dead time.

【0015】この点を図9を用いてさらに詳述する。い
ま、電流iが図8における矢印方向に流れる場合、制御
電圧信号aと三角波bとの比較によって得られるPWM
波形に従ってトランジスタQ1 ,Q2 を交互にオン,オ
フするのに際し、スイッチング素子Q1 とスイッチング
素子Q2 との接続点Xが、負の電位から正の電位に変化
するのは、スイッチング素子Q1 のデッドタイムTD
け遅れる。逆に、電流iが図8の矢印と反対の方向に流
れる場合には、接続点Xが正の電位から負の電位に変化
するまでに、スイッチング素子Q2 のデッドタイムTD
だけ遅れる。その結果、図9(d)に太い実線で示す希
望の波形に対して、図中斜線で示す部分がデッドタイム
D により無くなったり、一部追加されたりして、同図
(f)に示す波形となってしまう。これは、図9(e)
に示すように幅TD のパルス状電圧が逆極性で加わった
ものと等価となる。従って、インバータの出力電圧は上
記パルス状電圧により低下する。
This will be described in more detail with reference to FIG. Now, when the current i flows in the direction of the arrow in FIG. 8, the PWM obtained by comparing the control voltage signal a with the triangular wave b
When the transistors Q 1 and Q 2 are turned on and off alternately according to the waveform, the connection point X between the switching element Q 1 and the switching element Q 2 changes from a negative potential to a positive potential because the switching element Q Delay by one dead time T D. Conversely, when the current i flows in the direction opposite to the arrow in FIG. 8, before the connection point X is changed from the positive potential to a negative potential, the dead time T D of the switching element Q 2
Only late. As a result, with respect to the desired waveform shown by thick solid lines in FIG. 9 (d), or missing a portion dead time T D indicated by hatching in the figure, with or added partially, shown in FIG. (F) It becomes a waveform. This is shown in FIG.
It becomes equivalent to the pulse-like voltage is applied in opposite polarity of width T D as shown in FIG. Therefore, the output voltage of the inverter is reduced by the pulse voltage.

【0016】上記パルス状電圧は、同図(a)に示す回
転磁束より角度φだけ位相が進んだ電流iの極性と関係
がある。この角度φは図10に示すd軸電流(励磁電
流)とq軸電流(トルク電流)のなす角である。ここ
で、電流iが正の時はパルス状電圧が負、電流iが負の
時はパルス状電圧が正である。このパルス状電圧は方形
波電圧に近似でき、その振幅ΔVは、ΔV=Ed・td
・fc(Edはパルス電圧、tdはパルス幅、fcは周
波数)となる。そこで、その電流iの極性に応じて、近
似された方形波電圧(補正電圧)を加えることにより、
電流が零と検出されたときに今まで補正していた極性と
反対極性の方形波電圧(補正電圧)を加える。但し、零
電流のときの補正は、電流が零と検出されたときに、今
まで補正していた極性と反対の方形波電圧(補正電圧)
を加える。このようにしてインバータのデッドタイムに
よる出力電圧の低下を防止する補償を行っている。
The pulse voltage has a relationship with the polarity of the current i whose phase is advanced by an angle φ from the rotating magnetic flux shown in FIG. This angle φ is an angle between the d-axis current (excitation current) and the q-axis current (torque current) shown in FIG. Here, when the current i is positive, the pulse voltage is negative, and when the current i is negative, the pulse voltage is positive. This pulse voltage can be approximated to a square wave voltage, and its amplitude ΔV is ΔV = Ed · td
Fc (Ed is a pulse voltage, td is a pulse width, and fc is a frequency). Therefore, by adding an approximated square wave voltage (correction voltage) according to the polarity of the current i,
When the current is detected as zero, a square wave voltage (correction voltage) having a polarity opposite to the polarity corrected so far is added. However, when the current is detected as zero, the correction at the time of zero current is a square wave voltage (correction voltage) opposite to the polarity which has been corrected so far.
Add. In this manner, compensation is performed to prevent a decrease in output voltage due to the dead time of the inverter.

【0017】以下に、本実施例の説明を行う。まず、本
実施例における電流iの極性の検出方法について説明す
る。まず、始動時には電流iが流れていないので、図1
のように各相の指令電圧から補正範囲を決定し、その補
正範囲と誘導電動機の回転方向から表1のように補正電
圧の極性を決定する。
Hereinafter, the present embodiment will be described. First, a method for detecting the polarity of the current i in the present embodiment will be described. First, since the current i is not flowing at the time of starting, FIG.
As shown in Table 1, the correction range is determined from the command voltage of each phase, and the polarity of the correction voltage is determined as shown in Table 1 from the correction range and the rotation direction of the induction motor.

【0018】[0018]

【表1】 [Table 1]

【0019】電流が流れ始めると、その電流を電流検出
器で検出して電流の極性を決定し、その極性を用いて補
正電圧の極性を決定する。その電流の極性の検出方法
は、電流検出器で検出した電流にノイズの影響があるこ
とを考慮して、図2のように零電流検出幅を設け、ヒス
テリシスを持たせている。なお、図2(b)は同図
(a)のイ部分の拡大図である。
When the current starts flowing, the current is detected by a current detector to determine the polarity of the current, and the polarity is used to determine the polarity of the correction voltage. In the method of detecting the polarity of the current, a zero current detection width is provided as shown in FIG. 2 to provide hysteresis in consideration of the influence of noise on the current detected by the current detector. FIG. 2B is an enlarged view of a portion A in FIG.

【0020】補正電圧の極性を決定するためには、まず
検出電流が零電流かどうかを検出する。零電流なら今ま
で行っていた補正電圧の極性を反転させ、それ以外は検
出電流の極性と同じ極性の電圧を加えるのである。零電
は次の方法で検出する。まず、零電流を検出するため
に、図3に示すように、検出電流を2つの期間に分け
る。つまり、零電流の検出を行う期間と、極性の反転な
いし維持を行う期間とに分ける。 検出電流を2つの期間
に分ける方法としては、図3(a)に示すように、電流
の大きさが増加しているか、減少しているかによって
つの期間に分ける方法がある。つまり、検出電流が、零
電流に向かって流れる(図中のA)か、零電流から離れ
て流れる(図中のB)かの2つの期間に分けるのであ
る。
In order to determine the polarity of the correction voltage, it is first detected whether or not the detected current is zero current . If the current is zero, the polarity of the correction voltage, which has been performed so far, is reversed, and a voltage having the same polarity as the polarity of the detection current is applied to the other portions . Zero current is detected by the following method. First, in order to detect zero current, the detected current is divided into two periods as shown in FIG. In other words, the period during which zero current is detected and the polarity inversion
It is divided into the period for maintaining the chair. Detect current for two periods
To The method of dividing, as shown in FIG. 3 (a), or the magnitude of the current is increased, depending on whether you are reduced 2
There is a method of dividing into two periods. That is, the detection current is divided into two periods, that is, the current flowing toward zero current (A in the figure) and the current flowing away from the zero current (B in the figure).
You.

【0021】また、別の方法としては、図3(b)に示
すように、指令電圧から求めた補正範囲と検出零電流
用い、補正範囲が終わってから次に零電流が検出され
るまでの期間Aと、零電流が検出されてから次の補正範
囲が終わるまでの期間Bとに分けるのである。以上のい
ずれかの方法を用いて、零電流検出を行えばよい。な
お、以下の説明は、補正範囲と検出零電流を用いた方法
(図3(b))での零電流検出について説明する。
As another method, as shown in FIG. 3B, the correction range obtained from the command voltage, the detected zero current ,
It was used, and the period A to the next zero current after the end of the correction range is detected, it divide the zero current is detected in the period B until the end of the next correction range. Using any of the methods described above, it may be performed to detect the zero current. In the following description, zero current detection by a method using the correction range and the detected zero current (FIG. 3B) will be described.

【0022】いま、図4に示すように、検出電流が正極
性から負極性に流れているものとする。検出電流が零電
流検出幅内に入ったときから、連続してこの零電流検出
内に存在する時間が規定の零電流検出時間に達したと
きに、零電流であるとして検出する。つまり、まず零電
流を検出する。次に、検出電流が連続して零電流検出幅
外の負極性側に存在する期間が規定の正負電流検出時間
に達したときに、負電流であるとして検出する。つま
り、零電流の検出後に、零電流検出幅外において検出電
流の極性が反転したと検出するのである。さらに、負電
流が検出されてから、検出電流が零電流検出幅内に連続
して規定の正負電流保持時間存在することがなければ、
負電流として検出する
Now, as shown in FIG. 4, it is assumed that a detection current is flowing from a positive polarity to a negative polarity. From the time the detected current is within the zero current detection width, continuous to the zero current detection
The time within the width reaches the specified zero current detection time
Is detected as zero current. In other words, first
Detect flow. Then, a period in which the detected current is present on the negative polarity side of the outer zero current detection band to continue communicating the positive and negative current detection time defined
Is reached, it is detected as a negative current. Toes
After the zero current is detected, the detected
It detects that the polarity of the flow has reversed. Furthermore, continuous from the detection is negative current, the detection current in the zero current detection width
If the specified positive / negative current holding time does not exist,
Detected as negative current .

【0023】ここで、検出電流にノイズが入ったときに
は、図5のような方法で、零電流、負電流を検出する。
つまりは、一旦零電流検出幅内に検出電流が入ると、
電流検出時間が時限されるが、零電流検出時間が経過
る前に、零電流検出幅外のノイズが入った場合には、ノ
イズが入った時点から零電流検出時間を再度時限し
す。また、正負電流検出時間は零電流の検出後に検出電
流が零電流検出幅外に出た時点から時限されるが、時限
中に零電流検出幅内のノイズが入った場合には、正負電
流検出時間を再度時限し直す。この場合に、より速く零
電流を検出し、より正確に指令電圧を補正するために、
できる限り零電流検出時間を短くし、正負電流保持時間
を長くすることが望ましい。
Here, when noise is included in the detected current, a zero current and a negative current are detected by a method as shown in FIG.
In other words, once the detection current enters the zero current detection width , the zero current detection time is limited, but before the zero current detection time elapses , noise outside the zero current detection width enters. when the can, again timed the time or Raleigh current detection time noise is entered to straight <br/>. The positive / negative current detection time is the detection current after the zero current is detected.
The time is limited from when the current goes out of the zero current detection width.
When containing the noise in the zero current detection width in the re-timed positive negative current detection time again. In this case, in order to detect the zero current faster and correct the command voltage more accurately,
It is desirable to shorten the zero current detection time and extend the positive and negative current holding time as much as possible.

【0024】上述したものとは別に、図6のように、零
電流検出時間及び正負電流保持時間では、ノイズを無視
し、正負電流検出時間では、ノイズが入ったときに再度
時限をし直すようにしてもよい。なお、この場合にもで
きる限り零電流検出時間を短く、正負電流保持時間を長
くすることが望ましい。なお、以上の説明は検出電流が
正極性から負極性に変化する場合について説明したが、
検出電流が負極性から正極性に変化する場合にも同様の
処理を行う
[0024] Apart from those described above, as shown in FIG. 6, in the zero-current detection time and the positive and negative current holding time, ignoring noise, the positive and negative current detection time again when the noise enters
The time limit may be reset. In this case as well, it is desirable to shorten the zero current detection time and extend the positive / negative current holding time as much as possible. In the above description, the case where the detection current changes from the positive polarity to the negative polarity has been described.
Similar processing is performed when the detected current changes from negative polarity to positive polarity .

【0025】また、零電流検出時間を周波数に応じて変
化させる。図7(a)のように零電流検出時間を一定に
しておくと、周波数によって、検出零電流と実際の零電
流との違いが大きく現れてくる。そこで、図7(b)に
示すように、零電流検出時間を周波数に反比例させて変
化させる。このようにすれば、周波数の影響を受けるこ
となく、零電流を検出できる。
Further, the zero current detection time is changed according to the frequency. If the zero current detection time is kept constant as shown in FIG. 7A, the difference between the detected zero current and the actual zero current greatly appears depending on the frequency. Therefore, as shown in FIG. 7B, the zero current detection time is changed in inverse proportion to the frequency. In this way, the zero current can be detected without being affected by the frequency.

【0026】[0026]

【発明の効果】請求項1の発明は、電流値に対して零電
流検出幅を設定し、誘導電動機のコイルに流れる電流と
零電流検出幅との大小関係及び時間の関係に基づいて零
電流を検出しているので、CRフィルタ回路を用いるこ
となく、ノイズの影響を除去し、ノイズの影響を受ける
ことなく、実際の零電流とずれのない零電流を検出でき
る。請求項2の発明では、零電流検出時間を短く設定
し、正負電流保持時間を長く設定するから、零電流を迅
速に検出し、かつ指令電圧を正確に補正することを可能
とする。
According to the first aspect of the present invention , zero current is applied to the current value.
The current detection width is set, and the current flowing through the induction motor coil is
Zero based on the magnitude relationship with the zero current detection width and the time relationship
Since the current is detected , the effect of noise can be removed without using a CR filter circuit , and the zero current having no deviation from the actual zero current can be detected without being affected by the noise. According to the second aspect of the invention, the zero current detection time is set short.
Since the positive and negative current holding time is set longer, the zero current
Fast detection and accurate correction of command voltage
And

【0027】請求項の発明では、周波数に反比例して
零電流検出時間の長さを変化させているので、周波数の
影響を除去し、低周波でも高周波でも、実際の零電流と
検出した零電流とが異なったり時間的にずれたりするの
を防止できる。
According to the fifth aspect of the present invention, since the length of the zero current detection time is changed in inverse proportion to the frequency, the influence of the frequency is removed, and the actual zero current is detected at both the low frequency and the high frequency. It detected zero current and are different or to or deviated temporally and
Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の始動時の補正電圧の極性の
決定方法の説明図である。
FIG. 1 is an explanatory diagram of a method of determining the polarity of a correction voltage at the time of starting according to an embodiment of the present invention.

【図2】(a),(b)は零電流の検出方法の説明図、
及び要部の拡大説明図である。
2 (a) and 2 (b) are explanatory diagrams of a method for detecting a zero current,
FIG. 3 is an enlarged explanatory view of a main part.

【図3】(a),(b)は夫々零電流の検出方法を切り
換える方法の説明図である。
FIGS. 3A and 3B are explanatory diagrams of a method of switching a method of detecting a zero current, respectively.

【図4】具体的な零電流の検出方法の説明図である。FIG. 4 is an explanatory diagram of a specific method of detecting a zero current.

【図5】他の具体的な零電流の検出方法の説明図であ
る。
FIG. 5 is an explanatory diagram of another specific method of detecting a zero current.

【図6】さらに他の具体的な零電流の検出方法の説明図
である。
FIG. 6 is an explanatory diagram of still another specific method of detecting a zero current.

【図7】(a),(b)は、夫々周波数が異なる場合の
問題点の説明図と、その問題点を解決するために周波数
に応じて零電流検出時間を変化させた場合の説明図であ
る。
FIGS. 7 (a) and 7 (b) are explanatory diagrams of a problem when frequencies are different from each other, and explanatory diagrams of changing a zero current detection time according to a frequency in order to solve the problem. It is.

【図8】インバータの主回路を示す回路図である。FIG. 8 is a circuit diagram showing a main circuit of the inverter.

【図9】同上の動作説明図である。FIG. 9 is an operation explanatory view of the above.

【図10】電流を励磁電流とトルク電流とに分離した場
合の説明図である。
FIG. 10 is an explanatory diagram when a current is separated into an excitation current and a torque current.

【符号の説明】[Explanation of symbols]

1 主回路 2 誘導電動機 1 Main circuit 2 Induction motor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H02P 5/408 - 5/412 H02P 7/628 - 7/632 H02P 21/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H02P 5/408-5/412 H02P 7/628-7/632 H02P 21/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘導電動機のコイルに流れる電流を検出
し、上記電流の極性に応じて指令電圧を補正するインバ
ータのデッドタイム補償回路において、電流値の零を中
心として所定の電流幅で設定した零電流検出幅内におけ
る上記電流の存在時間が規定の零電流検出時間に達する
と零電流を検出したとする手段と、零電流を検出した後
に上記電流が零電流検出幅を出てから零電流検出幅内に
戻らない期間が連続して規定の正負電流検出時間に達し
たときに上記電流の極性の反転を検出したとする手段
と、極性の反転後から規定の正負電流保持時間が経過す
るまで連続して上記電流が零電流検出幅に存在すること
がなければ上記電流の極性を確定する手段とを備える
とを特徴とするインバータのデッドタイム補償回路。
1. A detects the current flowing in the coil of the induction motor, the dead time compensation circuit of the inverter for correcting the command voltage according to the polarity of the current, medium a zero current value
Within the zero current detection width set with the predetermined current width as the center
Time of the current reaches the specified zero current detection time
And means for detecting zero current, and after detecting zero current
After the above current exits the zero current detection width,
The non-return period continues to reach the specified positive / negative current detection time.
Means to detect the reversal of the polarity of the current when
And the specified positive / negative current holding time elapses after polarity reversal.
The above current must be continuously within the zero current detection width until
Means for determining the polarity of the current if there is no such dead time compensation circuit.
【請求項2】 上記零電流検出時間を短く設定し、前記
正負電流保持時間を長く設定することを特徴とする請求
項1記載のインバータのデッドタイム補償回路。
2. The method according to claim 1 , wherein the zero current detection time is set short.
Claim: The positive and negative current holding time is set long.
Item 3. An inverter dead time compensation circuit according to Item 1 .
【請求項3】 上記零電流検出時間は上記電流が上記零
電流検出幅内に入った時点から時限され、時限中に上記
電流が上記零電流検出幅外に一旦出ると再時限され、上
記正負電流検出時間は上記電流が上記零電流検出幅外に
出た時点から時限され、時限中に上記電流が上記零電流
検出幅内に一旦入ると再時限されることを特徴とする請
求項1または請求項2記載のインバータのデッドタイム
補償回路。
3. The zero current detection time is such that the current is zero.
It is timed from the point when it enters the current detection width, and during the timed
Once the current goes out of the zero current detection range, it is timed again and
The positive / negative current detection time is such that the current is outside the zero current detection width.
It is timed from the point of exit, and during the timed
The contract is characterized by being retimed once it enters the detection width.
3. The inverter dead time compensating circuit according to claim 1 or claim 2.
【請求項4】 上記零電流検出時間は上記電流が上記零
電流検出幅内に入った時点からの一定時間として時限さ
れ、上記正負電流検出時間は上記電流が上記零電流検出
幅外に出た時点から時限され、時限中に上記電流が上記
零電流検出幅内に一旦入ると再時限されることを特徴と
する請求項1または請求項2記載のインバータのデッド
タイム補償回路。
4. The zero current detection time is such that the current is zero.
Timed as a fixed time from the point of entering the current detection width
The positive and negative current detection time is equal to the zero current detection
It is timed from the point when it goes outside the width, and the above current is
Once it enters the zero current detection width, it is timed again.
3. The inverter dead time compensating circuit according to claim 1 or claim 2.
【請求項5】 上記零電流検出時間の長さは上記電流の
周波数に反比例させて変化させることを特徴とする請求
項1記載のインバータのデッドタイム補償回路
5. The length of the zero current detection time is equal to the current
The characteristic is varied in inverse proportion to the frequency.
Item 3. An inverter dead time compensation circuit according to Item 1 .
JP5239939A 1993-09-27 1993-09-27 Inverter dead time compensation circuit Expired - Fee Related JP2931185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239939A JP2931185B2 (en) 1993-09-27 1993-09-27 Inverter dead time compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239939A JP2931185B2 (en) 1993-09-27 1993-09-27 Inverter dead time compensation circuit

Publications (2)

Publication Number Publication Date
JPH0799793A JPH0799793A (en) 1995-04-11
JP2931185B2 true JP2931185B2 (en) 1999-08-09

Family

ID=17052073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239939A Expired - Fee Related JP2931185B2 (en) 1993-09-27 1993-09-27 Inverter dead time compensation circuit

Country Status (1)

Country Link
JP (1) JP2931185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299555B2 (en) * 2011-11-28 2013-09-25 ダイキン工業株式会社 Power conversion control device

Also Published As

Publication number Publication date
JPH0799793A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
KR100791814B1 (en) Control Method of Sensorless BLDC Motor
JP3239426B2 (en) Drive device for brushless DC motor
JPH078146B2 (en) Inverter control device
JP2783623B2 (en) Inverter device
JP2931185B2 (en) Inverter dead time compensation circuit
JP3206866B2 (en) Inverter dead time compensation method
JPH11164580A (en) Brushless motor driving equipment
JP3424307B2 (en) Brushless DC motor
JP3296636B2 (en) Driving method of brushless DC motor
JPS63228992A (en) Inverter controller
JPH01311889A (en) Controller for induction motor
JPH0947064A (en) Dead time compensation method for inverter
JP3386688B2 (en) Brushless motor position detection circuit
JPH05176594A (en) Inverter device for induction motor
JPS58195490A (en) Position detector for brushless motor
JPH0519397B2 (en)
JP2531607B2 (en) Detection speed correction method
JP3301165B2 (en) Induction motor control device
JP3023257B2 (en) Induction generator control method and control device
JP3085741B2 (en) Induction generator control
JP3255368B2 (en) Inverter drive for two-phase induction motor
JPS60216793A (en) Drive circuit for stepping motor
JPS583586A (en) Torque controller for thyristor motor
JPS6322160B2 (en)
JPH0412798Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees