JPH0258871B2 - - Google Patents

Info

Publication number
JPH0258871B2
JPH0258871B2 JP58162545A JP16254583A JPH0258871B2 JP H0258871 B2 JPH0258871 B2 JP H0258871B2 JP 58162545 A JP58162545 A JP 58162545A JP 16254583 A JP16254583 A JP 16254583A JP H0258871 B2 JPH0258871 B2 JP H0258871B2
Authority
JP
Japan
Prior art keywords
current
circuit
motor
signal
regenerative operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162545A
Other languages
Japanese (ja)
Other versions
JPS6055872A (en
Inventor
Hiromi Hosoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58162545A priority Critical patent/JPS6055872A/en
Publication of JPS6055872A publication Critical patent/JPS6055872A/en
Publication of JPH0258871B2 publication Critical patent/JPH0258871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/281Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices the DC motor being operated in four quadrants

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電動機制御装置に係り、特に回生運転
時に電流制限値を小さくする様にした電動機制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a motor control device, and particularly to a motor control device that reduces a current limit value during regenerative operation.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は一般の電動機制御装置の構成図であ
る。
FIG. 1 is a block diagram of a general electric motor control device.

速度基準信号1及び速度フイードバツク信号2
を速度制御回路3に入力し、電圧制御演算を行い
電流基準信号4を出力する。直流電動機13に流
れる電流に応じて交流主回路に流れる電流を交流
器5により検出し、それを電流検出回路6に入力
し、電流フイードバツク信号7を検出する。前記
電流基準信号4と前記電流フイードバツク信号7
をマイナー電流制御回路8に入力し、電流制御演
算を行い、位相制御信号9を位相制御回路10に
出力する。位相制御回路10では、位相制御演算
を行い切換ロジツク回路22により選択されたサ
イリスタ12A又は12Bに対しゲートパルス1
1A又は11Bを出力する。これにより直流電動
機13の電機子には直流電圧が印加される。さら
にこれとは別に、直流電動機13の界磁14は直
流電源15により励磁されており、直流電動機1
3は回転する。直流電動機13の回転は、回転検
出機16及び速度検出回路17を介して、速度フ
イードバツク信号2を作る。
Speed reference signal 1 and speed feedback signal 2
is input to the speed control circuit 3, voltage control calculation is performed, and a current reference signal 4 is output. An alternator 5 detects the current flowing through the AC main circuit in accordance with the current flowing through the DC motor 13, and inputs the detected current to a current detection circuit 6 to detect a current feedback signal 7. the current reference signal 4 and the current feedback signal 7
is input to the minor current control circuit 8, current control calculation is performed, and the phase control signal 9 is output to the phase control circuit 10. The phase control circuit 10 performs phase control calculation and applies a gate pulse 1 to the thyristor 12A or 12B selected by the switching logic circuit 22.
Outputs 1A or 11B. As a result, a DC voltage is applied to the armature of the DC motor 13. Furthermore, apart from this, the field 14 of the DC motor 13 is excited by a DC power supply 15, and the DC motor 1
3 rotates. The rotation of the DC motor 13 produces a speed feedback signal 2 via a rotation detector 16 and a speed detection circuit 17.

上記構成に於いては、直流電動機13に流れる
電流は、電流基準信号4に比例した値となる。一
方直流電動機13は過電流定格をもつており、こ
の定格以上の電流が流れない様に速度制御回路に
電流制限回路を設け、所定の値以上の電流が流れ
ない様に電流基準信号4に制限を設けている。
In the above configuration, the current flowing through the DC motor 13 has a value proportional to the current reference signal 4. On the other hand, the DC motor 13 has an overcurrent rating, and a current limiting circuit is provided in the speed control circuit to prevent a current exceeding this rating from flowing, and the current is limited to the current reference signal 4 to prevent a current exceeding a predetermined value from flowing. has been established.

第2図に従来の速度制御回路3の一例を示す。
速度基準信号1及び速度フイードバツク信号2を
速度制御回路3に入力する。前記信号は抵抗器1
8A,18Bを介して演算増幅器19に入力され
両者の偏差を抵抗器18C及びコンデンサ20よ
り構成される比例積分回路で電流基準信号4を出
力する。一方、電流基準信号4に制限を設ける為
にゼナーダイオード21A及び21Bが付加され
ており負電流に相当する電流基準信号4の正電圧
は、ゼナーダイオード21Bにより制限され、ま
た、正電流に相当する電流基準信号4の負電圧は
ゼナーダイオード21Aにより制限される。
FIG. 2 shows an example of a conventional speed control circuit 3. As shown in FIG.
A speed reference signal 1 and a speed feedback signal 2 are input to a speed control circuit 3. The signal is connected to resistor 1
The current reference signal 4 is input to the operational amplifier 19 via 8A and 18B, and the difference between the two is outputted as a current reference signal 4 by a proportional-integral circuit comprising a resistor 18C and a capacitor 20. On the other hand, Zener diodes 21A and 21B are added to limit the current reference signal 4, and the positive voltage of the current reference signal 4, which corresponds to a negative current, is limited by the Zener diode 21B. The negative voltage of the corresponding current reference signal 4 is limited by the Zener diode 21A.

このように、従来の電動機制御装置に於ては、
電動機の過電流定格に応じて、電流制限を有して
いた。また、制御整流器の容量が、正電流用及び
負電流用で異なる場合には、電流制限値を正電流
と負電流で異なる値として、制御整流器に流れる
電流を制限していた。
In this way, in the conventional motor control device,
It had a current limit depending on the overcurrent rating of the motor. Furthermore, when the capacity of the control rectifier is different for positive current and negative current, the current limit value is set to a different value for positive current and negative current to limit the current flowing through the control rectifier.

しかし、サイリスタを用いた変換器では、主回
路定数及び電流の大きさにより決まる転流重なり
角があり大きな回生電流を流すと、転流重なり角
が大きくなり転流失敗するという問題がある。
However, in a converter using a thyristor, there is a commutation overlap angle determined by the main circuit constant and the magnitude of the current, and when a large regenerative current is passed, the commutation overlap angle becomes large and there is a problem that commutation fails.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みてなされたもので、
通常の電流制限値とは別の回生時電流制限回路を
設け、この回路を回生運転中の信号により動作さ
せることにより電流の大きさを制限し、回生運転
時の重なり角が過大となるのを防ぎ、転流失敗を
未然に防止する電動機制御装置を提供することを
目的とする。
The present invention has been made in view of the above problems, and
A regenerative current limiting circuit that is different from the normal current limiting value is provided, and this circuit is activated by a signal during regenerative operation to limit the magnitude of the current and prevent the overlap angle from becoming excessive during regenerative operation. It is an object of the present invention to provide a motor control device that prevents commutation failure.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために電動機の速
度または電圧のいずれかを制御する制御回路と、
この制御回路の出力信号に応じて前記電動機の電
流を制御する電流制御回路を備えた電動機制御装
置において、前記電動機の速度または電圧のいず
れかの検出信号と電流検出信号から回生動作を検
知する回生運転検出回路と、この回生運転検出回
路の検出信号により前記制御回路の出力信号を制
限する回生時電流制限回路を設け回生運転時の電
流を制限して転流重なり角の増大を防ぎ転流失敗
を未然に防止する様にした電動機制御装置であ
る。
In order to achieve the above object, the present invention includes a control circuit that controls either the speed or the voltage of the electric motor;
In a motor control device including a current control circuit that controls the current of the motor according to an output signal of the control circuit, a regeneration system that detects regenerative operation from a detection signal of either speed or voltage of the motor and a current detection signal. A regenerative operation detection circuit and a regenerative current limiting circuit that limits the output signal of the control circuit based on the detection signal of the regenerative operation detection circuit are provided to limit the current during regenerative operation to prevent an increase in commutation overlap angle and prevent commutation failure. This is a motor control device designed to prevent this from happening.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の電動機制御装置に用いる回生
運転検出回路29と、回生時電流制限回路を付加
した速度制御回路3の構成を示す。他は第1図と
同じ構成とする。
FIG. 3 shows the configuration of a regenerative operation detection circuit 29 used in the motor control device of the present invention and a speed control circuit 3 to which a regeneration current limiting circuit is added. The rest of the configuration is the same as in FIG. 1.

正逆切換ロジツク回路22の出力信号23は正
電流時に“1”、負電流時に“0”となるロジツ
ク信号でこれを回生検出回路29に入力する。ま
た、直流電動機13が正転している時に正電圧と
なり、逆転している時に負電圧となる速度フイー
ドバツク信号2を回生検出回路29に入力する。
The output signal 23 of the forward/reverse switching logic circuit 22 is a logic signal that becomes "1" when the current is positive and becomes "0" when the current is negative, and is input to the regeneration detection circuit 29. Further, a speed feedback signal 2 which becomes a positive voltage when the DC motor 13 is rotating in the forward direction and a negative voltage when the DC motor 13 is rotating in the reverse direction is inputted to the regeneration detection circuit 29.

次に回生検出回路29の構成に付説明する。速
度フイードバツク信号2をコンパレータ24に入
力し逆転時に“1”、正転時に“0”となるロジ
ツク信号23Aを出力する。ロジツク信号23及
びロジツク信号23Aはアンド回路25Aに入力
され逆転回生運転時に“1”、その他では“0”
となるロジツク信号23Bを出力する。また、ロ
ジツク信号23及び23Aはノツト回路26A,
26Bを介してアンド回路25Bに入力され正転
回生運転時に“1”、その他では“0”となるロ
ジツク信号23Cを出力する。
Next, the configuration of the regeneration detection circuit 29 will be explained. The speed feedback signal 2 is input to a comparator 24, which outputs a logic signal 23A which becomes "1" during reverse rotation and "0" during forward rotation. The logic signal 23 and the logic signal 23A are input to the AND circuit 25A, and are set to "1" during reverse regenerative operation, and "0" at other times.
A logic signal 23B is output. In addition, the logic signals 23 and 23A are connected to the knot circuit 26A,
The AND circuit 25B outputs a logic signal 23C which is input to the AND circuit 25B through the AND circuit 26B and becomes "1" during normal rotation regenerative operation and "0" otherwise.

第3図中速度制御回路3及びゼナーダイオード
21A,21Bは、従来の実施例にて説明したも
のと同一である。
The speed control circuit 3 and Zener diodes 21A and 21B in FIG. 3 are the same as those described in the conventional embodiment.

FET30Aは、前記逆転回生運転検出のロジ
ツク信号23Bが“1”である時にオンし、“0”
の時にオフする。またFET30Bは前記正転回
生運転検出のロジツク信号23Cが“1”である
時にオンし、“0”の時にオフする。FET30
A,30Bの回路にはゼナーダイオード21C,
21D及びダイオード31A,31Bが設けてあ
る。
The FET 30A turns on when the logic signal 23B for detecting the reverse regenerative operation is "1" and becomes "0".
Turns off when. Further, the FET 30B is turned on when the logic signal 23C for detecting the normal rotation regenerative operation is "1" and turned off when it is "0". FET30
The circuits of A and 30B include Zener diode 21C,
21D and diodes 31A and 31B are provided.

アンド回路25Aの入力信号23は正電流時に
“1”となるロジツク信号であり、もう1つの入
力信号23Aは直流電動機13が逆転時に“1”
となるロジツク信号で逆転正電流の時に“1”と
なるロジツク信号23Bを出力する。この逆転正
電流の状態は逆転回生運転を示す。
The input signal 23 of the AND circuit 25A is a logic signal that becomes "1" when the current is positive, and the other input signal 23A becomes "1" when the DC motor 13 reverses.
A logic signal 23B is output which becomes "1" when there is a reverse positive current. This state of reverse positive current indicates reverse regenerative operation.

またアンド回路25Bの入力は、前記アンド回
路25Aの入力のロジツク信号を反転したロジツ
ク信号となつており、正転負電流の時に“1”と
なるロジツク信号23Cを出力する。この正転負
電流の状態は正転回生運転を示す。
The input of the AND circuit 25B is a logic signal obtained by inverting the logic signal input to the AND circuit 25A, and outputs a logic signal 23C which becomes "1" when the current is positive or negative. This state of forward rotation negative current indicates forward rotation regenerative operation.

ゼナーダイオード21Cのゼナー電圧をゼナー
ダイオード21Aのゼナー電圧よりも低い所定の
値とすれば、ロジツク信号23Bが“1”となる
とFET30Aがオンし、電流基準信号4の負電
圧の制限はゼナーダイオード21Cにより決ま
る。この為、逆転回生運転時には電流基準信号4
の制限値をゼナーダイオード21Cにより決める
ことができ、直流電動機13に流れる正極性の電
流の大きさが制限できる。
If the zener voltage of the zener diode 21C is set to a predetermined value lower than the zener voltage of the zener diode 21A, when the logic signal 23B becomes "1", the FET 30A is turned on, and the negative voltage limit of the current reference signal 4 is set to zero. determined by the inner diode 21C. For this reason, during reverse regenerative operation, the current reference signal 4
The limit value of can be determined by the Zener diode 21C, and the magnitude of the positive current flowing through the DC motor 13 can be limited.

同様にして、ゼナーダイオード21Dのゼナー
電圧をゼナーダイオード21Bのゼナー電圧より
も低い所定の値とすれば、ロジツク信号23Cが
“1”となるとFET30Bがオンし、電流基準信
号4の正電圧の制限はゼナーダイオード21Dに
より決まる。この為、正転回生運転時には電流基
準信号4の制限値をゼナーダイオード21Dによ
り決めることができ、直流電動機13に流れる負
極性の電流の大きさを制限できる。
Similarly, if the zener voltage of the zener diode 21D is set to a predetermined value lower than the zener voltage of the zener diode 21B, when the logic signal 23C becomes "1", the FET 30B turns on, and the positive voltage of the current reference signal 4 The limit is determined by the Zener diode 21D. Therefore, during normal rotation regenerative operation, the limit value of the current reference signal 4 can be determined by the zener diode 21D, and the magnitude of the negative polarity current flowing through the DC motor 13 can be limited.

以上の様に、回生運転中の電流制限値が独立に
設定できるため、これを低く設定することにより
回生運転中の転流重なり角を低減させることがで
き転流失敗することのない電動機の制御装置が得
られる。
As mentioned above, since the current limit value during regenerative operation can be set independently, by setting it low, the commutation overlap angle during regenerative operation can be reduced, and the motor can be controlled without commutation failure. A device is obtained.

この制御装置を圧延機等を用いる場合には、
正/逆転圧延であつても一般には、力行状態での
電流は圧延トルクを必要とする為に大きな電流を
必要とするが、回生状態での電流は、電動機の慣
性の減速トルクのみであり、力行状態と比べて小
さくて良く、回生運転中に電流制限値を小さくし
ても実用上は問題とならない。
When using this control device in a rolling mill, etc.,
Even in forward/reverse rolling, the current in the power running state generally requires a large current because it requires rolling torque, but the current in the regenerative state is only the deceleration torque of the inertia of the electric motor. It may be smaller than that in the power running state, and there is no practical problem even if the current limit value is made small during regenerative operation.

〔発明の他の実施例〕[Other embodiments of the invention]

第4図に本発明の他の実施例の回路図を示す。 FIG. 4 shows a circuit diagram of another embodiment of the present invention.

逆転回生運転を示すロジツク信号23Bと、正
転回生運転を示すロジツク信号23Cをオア回路
25Cに入力し、回生運転時に“1”となるロジ
ツク信号23Dを得る、ロジツク信号23Dが
“1”の時にFET30Cをオンし、回生運転時の
電流制限値を低減させる。
Logic signal 23B indicating reverse regenerative operation and logic signal 23C indicating forward regenerative operation are input to OR circuit 25C to obtain logic signal 23D which becomes "1" during regenerative operation, when logic signal 23D is "1" Turn on FET30C to reduce the current limit value during regenerative operation.

本発明の実施例では、ゼナーダイオードを用い
た制限回路に付説明したが、ゼナーダイオードで
なく周知の制限回路を用いても同等の効果が得ら
れる。また、回生運転検出回路29については電
動機の速度と電流により検出する回路で説明した
が、電圧と電流から検出する回路でも同様の効果
が得られる。
Although the embodiments of the present invention have been described with reference to a limiting circuit using a Zener diode, the same effect can be obtained by using a known limiting circuit instead of a Zener diode. Further, although the regenerative operation detection circuit 29 has been described as a circuit that detects based on the motor speed and current, the same effect can be obtained with a circuit that detects based on voltage and current.

また、本発明の実施例ではハードウエアの回路
で構成した例で説明したが、マイクロコンピユー
タ等を用いたデイジタル制御に於いて同様の機能
をソフトウエアで構成しても同等の効果が得られ
る。
Furthermore, although the embodiments of the present invention have been explained using examples constructed using hardware circuits, the same effect can be obtained by constructing similar functions using software in digital control using a microcomputer or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回生運転を検出する回生検出
回路、及び回生検出回路の出力により、回生運転
時に速度制御回路の出力である電流基準信号を所
定の値に制限する回生時電流制限回路により回生
運転中に電流制限値を低く抑制して転流重なり角
を減少させ、転流失敗することのない運転信頼性
の向上した電動機制御装置を提供することができ
る。
According to the present invention, regeneration is performed by a regeneration detection circuit that detects regeneration operation, and a regeneration current limiting circuit that limits a current reference signal, which is the output of the speed control circuit, to a predetermined value during regeneration operation using the output of the regeneration detection circuit. It is possible to provide a motor control device that suppresses the current limit value to a low value during operation, reduces the commutation overlap angle, and has improved operational reliability without commutation failure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の電動機制御装置の構成図、第2
図は第1図中に用いられる速度制御回路3の従来
の構成図、第3図は本発明の電動機制御装置で用
いられる回生運転検出回路と速度制御回路の構成
図、第4図は本発明の他の実施例による速度制御
回路の構成図である。 3……速度制御回路、5……変流器、6……電
流検出回路、8……電流制御回路、10……位相
制御回路、12A,12B……サイリスタ回路、
13……直流電動機、16……回転検出器、17
……速度検出回路、18A〜18C……抵抗器、
19……演算増幅器、20……コンデンサ、21
A〜21D……ゼナーダイオード、22……正逆
切換回路、24……コンパレータ、25A,25
B……アンド回路、25C……オア回路、26
A,26B……ノツト回路、29……回生運転検
出回路、30A,30B……FET、31A,3
1B……ダイオード。
Figure 1 is a configuration diagram of a general motor control device, Figure 2
The figure is a conventional configuration diagram of the speed control circuit 3 used in FIG. 1, FIG. 3 is a configuration diagram of the regenerative operation detection circuit and speed control circuit used in the motor control device of the present invention, and FIG. FIG. 3 is a configuration diagram of a speed control circuit according to another embodiment of the present invention. 3... Speed control circuit, 5... Current transformer, 6... Current detection circuit, 8... Current control circuit, 10... Phase control circuit, 12A, 12B... Thyristor circuit,
13...DC motor, 16...Rotation detector, 17
...Speed detection circuit, 18A to 18C...Resistor,
19... operational amplifier, 20... capacitor, 21
A~21D... Zener diode, 22... Forward/reverse switching circuit, 24... Comparator, 25A, 25
B...AND circuit, 25C...OR circuit, 26
A, 26B...Knot circuit, 29...Regenerative operation detection circuit, 30A, 30B...FET, 31A, 3
1B...diode.

Claims (1)

【特許請求の範囲】[Claims] 1 電動機の速度または電圧のいずれかを制御す
る制御回路と、この制御回路の出力信号に応じて
前記電動機の電流を制御する電流制御回路を備え
た電動機制御装置において、前記電動機の速度ま
たは電圧のいずれかの検出信号と電流検出信号か
ら回生動作を検知する回生運転検出回路と、この
回生運転検出回路の検出信号により前記制御回路
の出力信号を制限する回生時電流制限回路を設け
たことを特徴とする電動機制御装置。
1. In a motor control device comprising a control circuit that controls either the speed or voltage of the motor, and a current control circuit that controls the current of the motor according to an output signal of this control circuit, A regenerative operation detection circuit that detects a regenerative operation from one of the detection signals and a current detection signal, and a regeneration current limiting circuit that limits the output signal of the control circuit based on the detection signal of the regenerative operation detection circuit. Electric motor control device.
JP58162545A 1983-09-06 1983-09-06 Controller for motor Granted JPS6055872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162545A JPS6055872A (en) 1983-09-06 1983-09-06 Controller for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162545A JPS6055872A (en) 1983-09-06 1983-09-06 Controller for motor

Publications (2)

Publication Number Publication Date
JPS6055872A JPS6055872A (en) 1985-04-01
JPH0258871B2 true JPH0258871B2 (en) 1990-12-10

Family

ID=15756631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162545A Granted JPS6055872A (en) 1983-09-06 1983-09-06 Controller for motor

Country Status (1)

Country Link
JP (1) JPS6055872A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079299U (en) * 1983-11-02 1985-06-01 三菱電機株式会社 Inverter overcurrent protection device
JP2553776Y2 (en) * 1991-06-28 1997-11-12 東洋電機製造株式会社 Current limit circuit

Also Published As

Publication number Publication date
JPS6055872A (en) 1985-04-01

Similar Documents

Publication Publication Date Title
JPS609436B2 (en) AC motor control method
JPS59220092A (en) Burnout preventing circuit of commutatorless motor
JPH0258871B2 (en)
JPH0759384A (en) Inverter
JP4739541B2 (en) AC chopper device
JP4590658B2 (en) Control device
JPS6322159B2 (en)
JP3376617B2 (en) DC motor control device
JPS60176478A (en) Controller for motor
JP3446125B2 (en) Motor control device
JPS6031430Y2 (en) DC motor control device
JPH0337394B2 (en)
JPS58175995A (en) Protecting circuit for inverter motor
JPS63114527A (en) Inverter generator
JPS5943834Y2 (en) Commutation failure detection device for current source inverter
JPS622959Y2 (en)
JPH0235557B2 (en)
JPH0755055B2 (en) Output current limiting method for voltage source PWM inverter
JPS6031429Y2 (en) DC motor control device
JPH0373237B2 (en)
JPS5950785A (en) Single-phase capacitor motor
JP2611224B2 (en) Runaway prevention circuit of motor drive unit
JP2593708Y2 (en) Rotation control circuit of brushless motor
JPS623384B2 (en)
JPS6160651B2 (en)