JP2930575B1 - Shock-absorbing link for seismic structure - Google Patents

Shock-absorbing link for seismic structure

Info

Publication number
JP2930575B1
JP2930575B1 JP7352098A JP7352098A JP2930575B1 JP 2930575 B1 JP2930575 B1 JP 2930575B1 JP 7352098 A JP7352098 A JP 7352098A JP 7352098 A JP7352098 A JP 7352098A JP 2930575 B1 JP2930575 B1 JP 2930575B1
Authority
JP
Japan
Prior art keywords
rubber
link
force
tensile force
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7352098A
Other languages
Japanese (ja)
Other versions
JPH11257425A (en
Inventor
満男 古川
俊二 松浦
Original Assignee
川重橋梁メンテナンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川重橋梁メンテナンス株式会社 filed Critical 川重橋梁メンテナンス株式会社
Priority to JP7352098A priority Critical patent/JP2930575B1/en
Application granted granted Critical
Publication of JP2930575B1 publication Critical patent/JP2930575B1/en
Publication of JPH11257425A publication Critical patent/JPH11257425A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【要約】 【課題】圧縮力と引張力に対する緩衝機能のある弾性連
結機構を設けた耐震構造用緩衝リンクを提供し、積層ゴ
ムに加えて引張力緩衝用ゴム体を組み込み地震時のアッ
プリフトに対する緩衝機能のある構造物用耐震支承装置
を提供する。 【解決手段】リンク部材1の長さ方向途中部に弾性連結
機構2が組み込まれ、この弾性連結機構2は、第1,第
2部材1a,1bの端板5a,5b間に挟着された1個
の圧縮力緩衝用ゴム体3、上下の計8個の引張力緩衝用
ゴム体4a,4b、引張力緩衝用ゴム体4a,4bに当
接された上下の座板12a,12b、4本の連結ロッド
13等を有し、地震時にリンク部材1に作用する圧縮力
は圧縮力緩衝用ゴム体3の圧縮弾性変形で緩衝され、引
張力は計8個の引張力緩衝用ゴム体4a,4bの圧縮弾
性変形で緩衝される。
The present invention provides a shock-absorbing structure shock-absorbing link provided with an elastic connecting mechanism having a shock-absorbing function against a compressive force and a tensile force. Provided is an earthquake-resistant bearing device for a structure having a buffer function. An elastic connecting mechanism is incorporated in a middle part of a link member in a longitudinal direction, and the elastic connecting mechanism is sandwiched between end plates of a first member and a second member. One compression-force buffer rubber body 3, eight upper and lower tension-force buffer rubber bodies 4a, 4b, and upper and lower seat plates 12a, 12b, 4 abutted on the tension-force buffer rubber bodies 4a, 4b. The compression force acting on the link member 1 during an earthquake is buffered by the compressive elastic deformation of the compression force buffering rubber body 3, and the tensile force is eight in total. , 4b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、耐震構造用緩衝
リンクに関し、特に圧縮力緩衝用ゴム体と引張力緩衝用
ゴム体とを含む弾性連結機構を設けた耐震構造用緩衝リ
ンクを提供するものである。
The present invention relates also relates to a buffer <br/> link seismic structure, seismic structure having the elastic coupling mechanism including in particular a compression-damping rubber member tensile force cushioning rubber member that provides a buffer link is also of the.

【0002】[0002]

【従来の技術】 種々の構造物を基礎構造に連結した
り、構造物同士を連結したり、構造物を支持する支持構
造物を基礎構造に連結したり、支持構造物同士を連結す
る為の種々の構造用リンク部材、或いは構造物自体を構
成する部材としての構造用リンク部材等が適用される。
例えば、橋桁を橋台や橋脚に連結するリンク部材、橋桁
の端部と橋桁の端部とを連結するリンク部材、球形タン
クを支持する柱体を補強するリンク部材、ビル骨組等に
おける斜材等の連結部材としてのリンク部材、トラス構
造の軸力部材としてのリンク部材等の種々の構造用リン
ク部材が適用されている。
2. Description of the Related Art For connecting various structures to a base structure, connecting structures to each other, connecting a support structure supporting a structure to the base structure, and connecting support structures to each other. Various structural link members or structural link members as members constituting the structure itself are applied.
For example, link members connecting the bridge girder to the abutment or pier, link members connecting the end of the bridge girder to the end of the bridge girder, link members reinforcing the pillar supporting the spherical tank, diagonal materials in building frames and the like. Various structural link members such as a link member as a connecting member and a link member as an axial force member of a truss structure have been applied.

【0003】従来、この種の構造用リンク部材は鋼部材
またはその他の金属部材で構成され、圧縮力や引張力に
対する緩衝機能を有するようには構成されていなかっ
た。但し、この種の構造用リンク部材の両端部にはボル
トやピンを連結する連結穴が形成されており、ボルトや
ピンを介して相手側部材に連結される。従来、ボルトや
ピンに筒状のラバーブッシュを外嵌固着してなる緩衝ピ
ンを連結穴に挿通連結することで、圧縮力や引張力に対
する緩衝機能を得るようにする技術は公知である。前記
緩衝ピンのラバーブッシュは、ゴム弾性体内に強度向上
用の繊維材料を埋入した材料で構成されている。しか
し、緩衝ピンを適用する場合、リンク部材自体が緩衝機
能を有する訳ではない
Heretofore, this type of structural link member has been formed of a steel member or other metal member, and has not been configured to have a buffering function against a compressive force or a tensile force. However, connecting holes for connecting bolts and pins are formed at both ends of this type of structural link member, and are connected to the mating member via the bolts and pins. 2. Description of the Related Art Conventionally, a technique is known in which a buffer pin, which is formed by externally fixing a cylindrical rubber bush to a bolt or a pin, is inserted into and connected to a connection hole so as to obtain a buffer function against a compressive force or a tensile force. The rubber bush of the buffer pin is made of a material in which a fiber material for improving strength is embedded in a rubber elastic body. However, when a buffer pin is applied, the link member itself does not have a buffer function .

【0004】[0004]

【発明が解決しようとする課題】 従来の構造用リンク
部材は、通常高剛性の鋼部材又はその他の金属部材で構
成され、圧縮力や引張力に対する緩衝機能を有するよう
には構成されていなかったので、構造用リンク部材を介
して構造物の耐震構造を実現することは出来なかった。
前記リンク部材の連結部を前記緩衝ピンを介して連結す
る構造は、基本的にリンク部材の熱変形(膨張や収縮)
に対処したり、組付けの際の自由度を確保する為に採用
されることが多く、連結穴やボルトやピンの径との関連
で制約を受けるからラバーブッシュの径や肉厚を大きく
するには限度がある。仮に、ラバーブッシュを大型化す
ると、連結部が大型化し、リンク部材の両端部の連結部
がリンク部材の端部以外の部分の幅よりも大型化し、リ
ンク部材の実用性が低くなり適用対象が著しく制約され
てしまう。
A conventional structural link member is usually formed of a high-rigidity steel member or other metal member, and is not configured to have a buffering function against a compressive force or a tensile force. Therefore, it was not possible to realize an earthquake-resistant structure of the structure via the structural link member.
The structure in which the connecting portions of the link members are connected via the buffer pins is basically a thermal deformation (expansion or contraction) of the link members.
It is often adopted to deal with the problem or to secure the degree of freedom during assembly, and the diameter and thickness of the rubber bush are increased because it is limited by the connection hole, bolt and pin diameter. Has a limit. If the rubber bushing is enlarged, the connecting part becomes larger, the connecting part at both ends of the link member becomes larger than the width of the part other than the end part of the link member, and the practicality of the link member becomes low, and the application target is It is severely restricted.

【0005】前記緩衝ピンを適用する場合には、リンク
部材の連結部の構造がボルトやピンによる連結構造に限
定されるが、リンク部材の端部を外部に連結する為にボ
ルトやピンによる連結構造以外の連結構造を採用したい
場合もある。しかも、緩衝ピンによる緩衝機能は、リン
ク部材自体の機能ではなく、リンク部材に組み合わせて
適用した緩衝ピンのラバーブッシュによる緩衝機能であ
When the cushioning pin is applied, the structure of the connecting portion of the link member is limited to a connecting structure using bolts and pins. However, in order to connect the end of the link member to the outside, the connecting portion is connected using bolts and pins. In some cases, it may be desirable to adopt a connection structure other than the structure. In addition, the buffer function of the buffer pin is not the function of the link member itself, but is the buffer function of the rubber bush of the buffer pin applied in combination with the link member .

【0006】本発明の目的は、圧縮力と引張力に対する
緩衝機能のある弾性連結機構を設けた耐震構造用緩衝リ
ンクを提供すること、等である。
An object of the present invention is to provide a seismic structural buffer link an elastic coupling mechanism with a buffering function with respect to compressive force and tensile force, and the like.

【0007】[0007]

【課題を解決するための手段】請求項1の耐震構造用緩
衝リンクは、リンク部材の長さ方向途中部の少なくとも
1個所に、圧縮力と引張力に対する緩衝機能のある弾性
連結機構であってリンク部材に作用する圧縮力と引張力
を伝達可能に前記少なくとも1箇所を連結する弾性連結
機構を設け、この弾性連結機構が、圧縮力緩衝用ゴム体
と、この圧縮力緩衝用ゴム体に直列的に配置された少な
くとも1組の引張力緩衝用ゴム体と、この引張力緩衝用
ゴム体に直列的に配置された引張力伝達用の連結ロッド
を有するものである。
According to a first aspect of the present invention, there is provided a shock-absorbing link for an earthquake-resistant structure having an elastic coupling mechanism having a buffering function against a compressive force and a tensile force at at least one portion in a longitudinal direction of the link member. Compressive and tensile forces acting on link members
Resilient connection for connecting the at least one location so as to be able to transmit
A mechanism for providing elasticity, the elastic coupling mechanism comprising: a rubber member for compressing a cushioning force; at least one set of rubber members for cushioning a tensile force arranged in series with the rubber body for compressing a cushioning force;
Connecting rod for transmitting tensile force arranged in series on a rubber body
And

【0008】ここで、リンク部材としては種々の断面形
状(例えば、円筒形、H形、角筒形、コ字形、その他)
を採用可能である。圧縮力緩衝用ゴム体の何れか一方の
片側に1又は複数の引張力緩衝用ゴム体を設けてもよ
く、圧縮力緩衝用ゴム体の両側に1又は複数の引張力緩
衝用ゴム体を設けてもよい。引張力緩衝用ゴム体を圧縮
力緩衝用ゴム体に直列的に配置するとは、両ゴム体間に
何等かの部材を介在させて直列的に配置することも含
む。リンク部材の長さ方向の、1個所に弾性連結機構を
設けてもよく、複数個所に弾性連結機構を設けてもよ
い。
Here, the link member has various cross-sectional shapes (for example, cylindrical, H-shaped, square cylindrical, U-shaped, etc.).
Can be adopted. One or more tensile force buffer rubber bodies may be provided on one side of the compressive force buffer rubber body, and one or more tensile force buffer rubber bodies may be provided on both sides of the compressive force buffer rubber body. You may. To arrange the rubber members for tensile force buffer in series with the rubber members for compressive force buffer includes to arrange the members in series with some member interposed between both rubber members. An elastic connecting mechanism may be provided at one location in the length direction of the link member, or may be provided at a plurality of locations.

【0009】この耐震構造用緩衝リンクに圧縮力が作用
する際には、その圧縮力がリンク部材の長さ方向途中部
を連結する弾性連結機構を介して伝達されるため、その
圧縮力が弾性連結機構の圧縮力緩衝用ゴムに作用して、
弾性連結機構の圧縮力緩衝用ゴム体が圧縮力を緩衝し、
引張力が作用する際には、その引張力が弾性連結機構を
介して伝達されるため、その引張力が弾性連結機構の連
結ロッドを介して引張力緩衝用ゴムに作用して、弾性連
結機構の引張力緩衝用ゴム体が引張力を緩衝する。尚、
引張力作用時に引張力緩衝用ゴム体が圧縮変形して緩衝
するように構成するものとする。
When a compressive force acts on the shock-absorbing link for an earthquake-resistant structure, the compressive force is applied to a part of the link member in the longitudinal direction.
Is transmitted through an elastic connecting mechanism that connects
The compressive force acts on the rubber for cushioning the compressive force of the elastic coupling mechanism,
Compressive force cushioning rubber of the elastic coupling mechanism buffers the compressive force,
When a tensile force acts, the tensile force activates the elastic coupling mechanism.
Is transmitted through the elastic coupling mechanism.
It acts to tension the buffer rubber via imaging rod, to buffer the tension cushioning rubber member tensile force of the elastic coupling mechanism. still,
It is configured such that the tensile force buffering rubber body is compressed and deformed to buffer during a tensile force action.

【0010】請求項2の耐震構造用緩衝リンクは、請求
項1の発明において、前記リンク部材は、弾性連結機構
の両側に位置する第1,第2部材と、第1,第2部材の
対向端にリンク部材の長さ方向と直交状に夫々固定され
た1対の端板とを有し、前記圧縮力緩衝用ゴム体を第
1,第2部材の両端板間に挟着し且つ引張力緩衝用ゴム
体を圧縮力緩衝用ゴム体と反対側から第1,第2部材の
両端板に夫々当接するように2組設け、前記2組の引張
力緩衝用ゴム体のうちの端板と反対側の面に夫々当接す
る座板を設け且つこれら2組の座板を前記連結ロッドを
介して連結したことを特徴とするものである。尚、1組
の引張力緩衝用ゴム体を1個のゴム体で構成してもよ
く、複数のゴム体で構成してもよい。
According to a second aspect of the present invention, in the first aspect of the present invention, the link member includes first and second members located on both sides of an elastic coupling mechanism, and opposing the first and second members. At one end, a pair of end plates fixed at right angles to the longitudinal direction of the link member are provided, and the rubber member for compressing force is sandwiched between both end plates of the first and second members and pulled. Two sets of rubber members for force buffering are provided from opposite sides of the rubber member for compressive force buffer so as to abut against both end plates of the first and second members, respectively, and an end plate of the two sets of rubber members for tensile force buffering is provided. And two sets of seat plates are connected to the connecting rods on the opposite surfaces.
It is characterized by being connected via the In addition, one set of the rubber members for tensile force buffer may be constituted by one rubber member, or may be constituted by a plurality of rubber members.

【0011】リンク部材に圧縮力が作用する際にはその
圧縮力が第1,第2部材、1対の端板を介して圧縮力緩
衝用ゴム体を圧縮するように作用し、圧縮力緩衝用ゴム
体が圧縮力を緩衝する。リンク部材に引張力が作用する
際にはその引張力が第1,第2部材と1対の端板と2組
の座板と連結ロッドを介して2組の引張力緩衝用ゴム体
を圧縮するように作用し、2組の引張力緩衝用ゴム体が
引張力を緩衝する。
When a compressive force acts on the link member, the compressive force acts to compress the rubber member for compressing the compression force via the first and second members and the pair of end plates. The rubber body absorbs the compressive force. When a tensile force acts on the link member, the tensile force compresses two sets of rubber members for buffering the tensile force via the first and second members, a pair of end plates, two sets of seat plates and a connecting rod. And two sets of rubber rubbers for tensile force buffer the tensile force.

【0012】請求項3の耐震構造用緩衝リンクは、請求
項2の発明において、前記連結ロッドを、圧縮力緩衝用
ゴム体と両端板と2組の引張力緩衝用ゴム体と2組の座
板を挿通する状態に設け、連結ロッドの両端部にナット
を夫々締結したことを特徴とするものである。つまり、
連結ロッドとその両端のナットは2組の座板が相離隔し
ないように連結しているが、この連結ロッドを圧縮力緩
衝用ゴム体と両端板と2組の引張力緩衝用ゴム体と2組
の座板を挿通する状態に設けたため、弾性連結機構の小
型化を図ることができる。
According to a third aspect of the present invention, in the shock-absorbing link for an earthquake-resistant structure according to the second aspect of the present invention, the connecting rod includes a rubber member for compressing force, two end plates, two sets of rubber members for tensile force, and two sets of seats. The plate is provided so as to be inserted, and nuts are fastened to both ends of the connecting rod. That is,
The connecting rod and the nuts at both ends thereof are connected so that the two sets of seat plates are not separated from each other. This connecting rod is composed of a rubber member for cushioning the compression force, both end plates, and two rubber members for cushioning the tensile force. Since the pair of seat plates are provided so as to be inserted, the size of the elastic coupling mechanism can be reduced.

【0013】請求項4の耐震構造用緩衝リンクは、請求
項1〜3の何れか1項の発明において、前記リンク部材
の長さ方向途中部の複数個所に前記弾性連結機構を設け
たことを特徴とするものである。この場合、圧縮力緩衝
機能及び引張力緩衝機能を格段に増強するか、或いは個
々の弾性連結機構の小型化を図ることができる。
According to a fourth aspect of the present invention, there is provided the shock-absorbing link for an earthquake-resistant structure according to any one of the first to third aspects, wherein the elastic connecting mechanism is provided at a plurality of locations along the length of the link member. It is a feature. In this case, the compression force buffering function and the tensile force buffering function can be remarkably enhanced, or the size of each elastic connection mechanism can be reduced.

【0014】前記圧縮力緩衝用ゴム体と引張力緩衝用ゴ
ム体を高減衰性ゴム材料で構成する場合(請求項5)に
は、それらゴム体のエネルギー吸収性能を高めて、緩衝
機能を強化することができる。また、前記圧縮力緩衝用
ゴム体をゴム板と金属板とを交互に複数層積層した積層
ゴムで構成した場合(請求項6)には、圧縮力緩衝用ゴ
ム体の圧縮弾性係数を大きくして、圧縮変形しにくいも
のとなる。また、前記引張力緩衝用ゴム体をゴム板と金
属板とを交互に複数層積層した積層ゴムで構成した場合
(請求項7)には、引張力緩衝用ゴム体の圧縮弾性係数
を大きくして、引張力で変形しにくいものとなる
In the case where the rubber member for compressive force buffer and the rubber member for tensile force buffer are made of a highly damping rubber material (claim 5), the energy absorbing performance of those rubber members is enhanced to enhance the buffer function. can do. In the case where the rubber member for compressing force is constituted by a laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated (claim 6), the compression elastic modulus of the rubber member for compressing force is increased. Therefore, it is difficult to deform by compression. Further, when the rubber member for tensile force buffer is composed of a laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated, the compression elastic coefficient of the rubber member for tensile force buffer is increased. Therefore, it is difficult to be deformed by tensile force .

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1〜図4に示すように、
本発明の耐震構造用緩衝リンクLは、リンク部材1の長
さ方向途中部の少なくとも1個所に、圧縮力と引張力に
対する緩衝機能のある弾性連結機構2を有し、この弾性
連結機構2が、圧縮力緩衝用ゴム体3と、この圧縮力緩
衝用ゴム体3の上下両側に直列的に配置された2組の引
張力緩衝用ゴム体4A,4Bとを有する。図1は耐震構
造用緩衝リンクの正面図、図2は耐震構造用緩衝リンク
の縦断側面図、図3は耐震構造用緩衝リンクの側面図、
図4は図1のIV−IV線断面図である。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS.
The shock-absorbing link L for an earthquake-resistant structure according to the present invention has an elastic connecting mechanism 2 having a buffering function against a compressive force and a tensile force at at least one portion in the longitudinal direction of the link member 1. , A compression-force buffer rubber body 3 and two sets of tensile-force buffer rubber bodies 4A and 4B arranged in series on the upper and lower sides of the compression force buffer rubber body 3. 1 is a front view of a shock-absorbing link for an earthquake-resistant structure, FIG. 2 is a longitudinal side view of the shock-absorbing link for an earthquake-resistant structure, FIG.
FIG. 4 is a sectional view taken along line IV-IV of FIG.

【0016】前記リンク部材1は、弾性連結機構2の両
側に位置する相対称な第1,第2部材1a,1bと、第
1,第2部材1a,1bの対向端にリンク部材1の長さ
方向と直交状に夫々固定された1対の端板5a,5bと
を有する。第1部材1aは、本体板6aと、この本体板
6aの左右両端部の下部に本体板6aと直交状に溶接さ
れた補強兼変形規制板7aと、本体板6aの左右方向中
央部の下部に本体板6aと直交状に溶接された補強兼変
形規制板8aとを有し、本体板6aの上部の連結部9a
にはボルトやピンを連結する為の連結穴10aが形成さ
れ、この連結部9aは前後1対の補強板11aにて補強
されている。
The link member 1 has symmetrical first and second members 1a and 1b located on both sides of the elastic connecting mechanism 2, and a long end of the link member 1 at an opposite end of the first and second members 1a and 1b. And a pair of end plates 5a and 5b which are respectively fixed in a direction perpendicular to the direction of the vertical direction. The first member 1a includes a main body plate 6a, a reinforcement / deformation restricting plate 7a which is welded to a lower portion of both left and right ends of the main body plate 6a in a manner orthogonal to the main body plate 6a, and a lower portion of a central portion of the main body plate 6a in the left-right direction. And a reinforcing and deformation restricting plate 8a welded orthogonally to the main body plate 6a, and a connecting portion 9a on an upper portion of the main body plate 6a.
Is formed with a connection hole 10a for connecting a bolt or a pin, and the connection portion 9a is reinforced by a pair of front and rear reinforcing plates 11a.

【0017】第2部材1bは、本体板6bと、この本体
板6bの左右両端部の上部に本体板6bと直交状に溶接
された補強兼変形規制板7bと、本体板6bの左右方向
中央部の上部に本体板6bと直交状に溶接された補強兼
変形規制板8bとを有し、本体板6bの下部の連結部9
bにはボルトやピンを連結する為の連結穴10bが形成
され、この連結部9bは前後1対の補強板11bにて補
強されている。
The second member 1b includes a main body plate 6b, a reinforcing / deformation restricting plate 7b which is welded to the upper part of the left and right ends of the main body plate 6b in a manner orthogonal to the main body plate 6b, and a center in the left and right direction of the main body plate 6b. The upper part has a main body plate 6b and a reinforcing and deformation regulating plate 8b welded orthogonally to the main body plate 6b.
A connection hole 10b for connecting a bolt or a pin is formed in b, and this connection portion 9b is reinforced by a pair of front and rear reinforcing plates 11b.

【0018】前記弾性連結機構2は、1個の圧縮力緩衝
用ゴム体3と、上側の1組の引張力緩衝用ゴム体4A
と、下側の1組の引張力緩衝用ゴム体4Bと、4枚の上
座板12aと4枚の下座板12bと、4本の連結ロッド
13と、それら連結ロッド13の両端部に螺合されたナ
ット14及び座金15等で構成されている。圧縮力緩衝
用ゴム体3は、例えば高減衰性ゴムの直方体からなり、
この圧縮力緩衝用ゴム体3は第1,第2部材1a,1b
の端部の端板5a,5b間に接着することなく挟着され
ている。
The elastic coupling mechanism 2 includes one rubber member 3 for cushioning compressive force and a pair of upper rubber members 4A for cushioning tensile force.
And a pair of lower rubber members 4B for cushioning tensile force, four upper seat plates 12a and four lower seat plates 12b, four connecting rods 13, and a screw on both ends of the connecting rods 13. It is composed of the combined nut 14 and washer 15. The rubber member 3 for cushioning the compression force is made of, for example, a rectangular parallelepiped made of high-damping rubber.
The rubber body 3 for buffering the compressive force comprises first and second members 1a and 1b.
Are sandwiched between the end plates 5a and 5b at the ends without bonding.

【0019】上側の1組の引張力緩衝用ゴム体4Aは4
個の張力緩衝用ゴム体4aからなり、各引張力緩衝用
ゴム体4aは、例えば高減衰性ゴムの直方体からなり、
この4個の引張力緩衝用ゴム体4aは、第1部材1aの
下端の端板5aの上面に当接させて載置され、前後両側
において、各張力緩衝用ゴム体4aは補強兼変形規制板
7a,8aの間に配置されている。尚、各張力緩衝用
ゴム体4aの3側面の外側には、ゴム体の変形代として
の約10mm程度の隙間16が形成されている。
The upper pair of rubber members 4A for buffering the tensile force
Consists number of pull tension cushioning rubber member 4a, the tensile force cushioning rubber member 4a is, for example, a rectangular parallelepiped high damping rubber,
These four rubber members 4a are placed in contact with the upper surface of the end plate 5a at the lower end of the first member 1a. It is arranged between the plates 7a, 8a. Incidentally, on the outside of three sides of the pull tension cushioning rubber member 4a, a gap 16 of the order of about 10mm as deformation allowance of the rubber body is formed.

【0020】下側の1組の引張力緩衝用ゴム体4Bは4
個の張力緩衝用ゴム体4bからなり、各引張力緩衝用
ゴム体4bは、例えば高減衰性ゴムの直方体からなり、
4個の引張力緩衝用ゴム体4bは、第2部材1bの上端
の端板5bの下面に当接させて配置され、前後両側にお
いて、各引張力緩衝用ゴム体4bは補強兼変形規制板7
b,8bの間に配置されている。尚、各引張力緩衝用ゴ
ム体4bの3側面の外側には、ゴム体の変形代としての
約10mm程度の隙間16が形成されている。
The pair of lower rubber members 4B for tensile force buffer are 4
Consists number of pull tension cushioning rubber member 4b, the tensile force cushioning rubber member 4b is made of, for example, cuboid high damping rubber,
The four rubber members 4b are arranged in contact with the lower surface of the end plate 5b at the upper end of the second member 1b. 7
b, 8b. A gap 16 of about 10 mm is formed outside the three side surfaces of each tensile force buffering rubber body 4b as a deformation allowance of the rubber body.

【0021】上側の各引張力緩衝用ゴム体4aの上面に
はゴム体よりも大きめの上座板12aが載置され、下側
の各引張力緩衝用ゴム体4bの下面にはゴム体よりも大
きめの下座板12bが当接状に配置されている。4組の
上下に対応する上座板12aと下座板12bとを引張力
伝達可能に夫々連結する4個の連結ロッド13が設けら
れ、各連結ロッド13は、上座板12aの中央部の穴
と、上側の引張力緩衝用ゴム体4aの中央部の穴と、1
対の端板5a,5bの穴と、圧縮力緩衝用ゴム体3の穴
と、下側の引張力緩衝用ゴム体4bの中央部の穴と、下
座板12bの中央部の穴とを挿通させて鉛直状に配設さ
れ、各連結ロッド13の上端部には上座板12aの上面
に当接するように座金15とナット14が螺合されてお
り、各連結ロッド13の下端部には下座板12bの下面
に当接するように座金15とナット14が螺合され、
連結ロッド13は、上下の引張力伝達用ゴム体4aに対
して直列的に配置されている。
An upper seat plate 12a larger than the rubber body is placed on the upper surface of each upper rubber member 4a for tension buffering, and the lower surface of each rubber member 4b for lowering tension force is mounted on the lower surface of each rubber member 4b. A large lower seat plate 12b is arranged in contact. There are provided four connecting rods 13 for connecting the upper and lower seat plates 12a and the lower seat plate 12b corresponding to the upper and lower parts so as to transmit the tensile force, and each of the connecting rods 13 has a hole at the center of the upper seat plate 12a. A hole in the center of the upper rubber member 4a for tensile force buffer;
The hole of the pair of end plates 5a and 5b, the hole of the rubber member 3 for cushioning the compression force, the hole at the center of the lower rubber member 4b for cushioning the tensile force, and the hole at the center of the lower seat plate 12b. The connecting rod 13 is vertically inserted, and a washer 15 and a nut 14 are screwed to the upper end of each connecting rod 13 so as to be in contact with the upper surface of the upper seat plate 12a. washer 15 and nut 14 so as to contact is screwed to the lower surface of the lower seat plate 12b, each
The connecting rod 13 is opposed to the upper and lower tensile force transmitting rubber members 4a.
And are arranged in series.

【0022】以上説明した耐震構造用緩衝リンクLの作
用について説明する。この耐震構造用緩衝リンクLは、
構造物同士を連結する構造用リンク、構造物と基礎構造
物とを連結する構造用リンク、構造物の内部構造部材同
士を連結する構造部材としての構造用リンク等に適用さ
れる。この耐震構造用緩衝リンクLの上部の連結部は外
部の構造部材にボルトやピンを介して連結され、下部の
連結部は前記の外部の構造部材とは異なる外部の構造部
材にボルトやピンを介して連結された状態で使用され
る。
The operation of the above-described shock-absorbing structure buffer link L will be described. This shock-absorbing link L for earthquake-resistant structure
The present invention is applied to a structural link for connecting structures, a structural link for connecting a structure and a substructure, a structural link as a structural member for connecting internal structural members of a structure, and the like. The upper connecting portion of the shock-absorbing structural shock link L is connected to an external structural member via a bolt or a pin, and the lower connecting portion is connected to an external structural member different from the external structural member by using a bolt or a pin. It is used in a state of being linked through

【0023】地震発生時に、リンク部材1に圧縮力が作
用すると、その圧縮力が第1,第2部材1a,1bから
1対の端板5a,5bを介して圧縮力緩衝用ゴム体3に
作用するので、圧縮力緩衝用ゴム体3が圧縮方向へ弾性
変形して圧縮力を緩衝し、地震終了時には圧縮力緩衝用
ゴム体3が復元する。圧縮力緩衝用ゴム体3を、前記の
ように上下の端板5a,5bに接着しない場合には、そ
の弾性変形が4本の連結ロッド13で多少邪魔されるだ
けであるので、その弾性係数は比較的小さくなる。但
し、圧縮力緩衝用ゴム体3の圧縮弾性係数は、耐震構造
用緩衝リンクLの機能に応じて適宜設定されるが、その
弾性係数を一層大きく設定したい場合には、圧縮力緩衝
用ゴム体3を、上下の端板5a,5bに接着してもよ
い。
When a compressive force acts on the link member 1 when an earthquake occurs, the compressive force is applied from the first and second members 1a and 1b to the compressive force buffering rubber body 3 via a pair of end plates 5a and 5b. As a result, the rubber body 3 for cushioning the compression force elastically deforms in the compression direction to buffer the compression force, and the rubber body 3 for cushioning the compression force is restored at the end of the earthquake. When the rubber member 3 for cushioning the compression force is not bonded to the upper and lower end plates 5a and 5b as described above, the elastic deformation thereof is only hindered by the four connecting rods 13 to some extent. Is relatively small. However, the compression elastic modulus of the rubber cushion 3 is appropriately set according to the function of the shock-absorbing link L for the seismic structure. 3 may be bonded to the upper and lower end plates 5a, 5b.

【0024】一方、上下に対応する上座板12aと下座
板12bとは連結ロッド13とナット14とで連結され
ているため、地震発生時に、リンク部材1に引張力が作
用すると、圧縮力緩衝用ゴム体3と端板5a,5b間に
隙間が発生して、上下2組(計8個)の引張力緩衝用ゴ
ム体4a,4bが圧縮方向へ弾性変形して引張力を緩衝
し、地震終了時には圧縮力緩衝用ゴム体3及び引張力緩
衝用ゴム体4a,4bが復元する。但し、圧縮力緩衝用
ゴム体3を1対の端板5a,5bに接着する場合には、
引張力の作用時に圧縮力緩衝用ゴム体3が引張方向へ変
形して、引張力緩衝用ゴム体4a,4bが圧縮方向へ弾
性変形することになる。
On the other hand, since the upper seat plate 12a and the lower seat plate 12b corresponding to the upper and lower sides are connected by the connecting rod 13 and the nut 14, when a tensile force acts on the link member 1 at the time of an earthquake, the compression force buffering is performed. A gap is generated between the rubber body 3 for use and the end plates 5a and 5b, and two sets (eight in total) of the upper and lower tensile force buffering rubber bodies 4a and 4b are elastically deformed in the compression direction to buffer the tensile force. At the end of the earthquake, the compressive rubber cushion 3 and the tensile rubber cushions 4a and 4b are restored. However, in the case where the rubber member 3 for cushioning the compression force is bonded to the pair of end plates 5a and 5b,
When a tensile force acts, the compressive force buffering rubber body 3 is deformed in the tensile direction, and the tensile force buffering rubber bodies 4a and 4b are elastically deformed in the compression direction.

【0025】各引張力緩衝用ゴム体4a,4bの圧縮弾
性係数は、耐震構造用緩衝リンクLの機能に応じて適宜
設定されるが、引張力緩衝用ゴム体4a,4bを前記の
ように対応する端板5a,5b及び上下の座板12a,
12bに接着しない場合にはその弾性係数は比較的小さ
くなる。しかし、各引張力緩衝用ゴム体4a,4bの3
側面の外側には約10mm程度の隙間16があるだけ
で、それ以上外側への弾性変形が規制されるためその弾
性変形規制後には各引張力緩衝用ゴム体4a,4bの弾
性係数は大きく変化する。このように、この耐震構造用
緩衝リンクLは地震による圧縮力と引張力の両方に対し
て緩衝機能を発揮し耐震構造を提供する。
The compression elastic modulus of each of the tensile force buffer rubber members 4a and 4b is appropriately set in accordance with the function of the shock-absorbing structure buffer link L. Corresponding end plates 5a, 5b and upper and lower seat plates 12a,
If it does not adhere to 12b, its modulus of elasticity is relatively small. However, each of the rubber members 4a and 4b
There is only a gap 16 of about 10 mm on the outside of the side surface, and the elastic deformation to the outside is restricted further. Therefore, after the elastic deformation is restricted, the elastic coefficient of each of the rubber members 4a, 4b for tensile force buffer greatly changes. I do. As described above, the shock-absorbing link L for the earthquake-resistant structure exhibits a shock-absorbing function against both the compressive force and the tensile force due to the earthquake and provides the earthquake-resistant structure.

【0026】圧縮力緩衝用ゴム体3と引張力緩衝用ゴム
体4a,4bとで弾性連結機構2の緩衝機能を得るた
め、弾性連結機構2の構造が簡単化し、小型化可能で、
製作コスト的にも有利である。圧縮力緩衝用ゴム体3や
引張力緩衝用ゴム体4a,4bの弾性特性設定の自由度
が大きいため、また、弾性連結機構2を複数個所に設け
ることも可能であるため、設計の自由度も大きい。リン
ク部材1の長さ方向途中部に弾性連結機構2を設けるた
め、リンク部材1の両端部の連結部9a,9bの構造が
何等制約を受けない。例えば、連結部9a,9bの連結
穴10a,10bを省略し、連結部9a,9bを溶接や
複数のボルトにて外部の構造部材に連結するような連結
部に構成してもよい。
In order to obtain the cushioning function of the elastic connecting mechanism 2 by the rubber member 3 for buffering the compressive force and the rubber members 4a and 4b for buffering the tensile force, the structure of the elastic connecting mechanism 2 can be simplified and the size can be reduced.
It is also advantageous in terms of manufacturing cost. Since the degree of freedom in setting the elastic characteristics of the rubber members 3 for compressing force and the rubber members 4a and 4b for buffering tensile force is large, and since the elastic coupling mechanism 2 can be provided at a plurality of locations, the degree of freedom in design is increased. Is also big. Since the elastic connecting mechanism 2 is provided at an intermediate portion in the longitudinal direction of the link member 1, the structure of the connecting portions 9a and 9b at both ends of the link member 1 is not restricted at all. For example, the connection holes 10a and 10b of the connection portions 9a and 9b may be omitted, and the connection portions 9a and 9b may be configured to be connected to an external structural member by welding or a plurality of bolts.

【0027】圧縮力緩衝用ゴム体3の上下両側に対称的
に引張力緩衝用ゴム体4a,4bを設けたので、引張力
緩衝性能を高めることができ、引張力緩衝の対称性を確
保でき、各組の引張力緩衝用ゴム体4a,4bの小型化
を図ることができる。上座板12aと下座板12bとが
相離隔側へ移動しないように連結する連結ロッド13を
圧縮力緩衝用ゴム体3と両端板5a,5bと上下1対の
引張力緩衝用ゴム体4a,4bと上座板12aと下座板
12bとを挿通する状態に設けたので、弾性連結機構2
の小型化を図ることができる。
Since the tensile force buffer rubber members 4a and 4b are provided symmetrically on both the upper and lower sides of the compressive force buffer rubber member 3, the tensile force buffering performance can be enhanced, and the symmetry of the tensile force buffer can be ensured. In addition, the size of the rubber members 4a and 4b for buffering the tensile force of each set can be reduced. The connecting rod 13 for connecting the upper seat plate 12a and the lower seat plate 12b so as not to move to the separated side is connected to the rubber member 3 for cushioning the compression force, the end plates 5a, 5b, and the pair of rubber members 4a for cushioning the tensile force. 4b, the upper seat plate 12a, and the lower seat plate 12b are provided so as to be inserted therethrough.
Can be reduced in size.

【0028】前記実施形態の耐震構造用緩衝リンクLを
部分的に変更する変更例について説明する。但し、前記
と同様のものに同一符号を付して説明を省略する。 1〕前記圧縮力緩衝用ゴム体3は、前記高減衰性ゴム以
外に、天然ゴム、または種々の合成ゴム(例えば、クロ
ロプレンゴム、ウレタンゴム、シリコンゴム等)で構成
してもよい。但し、耐震構造用緩衝リンクLの用途や機
能に応じて圧縮力緩衝用ゴム体3や引張力緩衝用ゴム体
4a,4bの弾性係数等の弾性特性を適宜設定するもの
とする。
Next, a description will be given of a modification in which the shock-absorbing link L for the earthquake-resistant structure of the embodiment is partially changed. However, the same reference numerals are given to the same components as described above, and the description will be omitted. 1) The rubber body 3 for buffering the compressive force may be made of natural rubber or various synthetic rubbers (for example, chloroprene rubber, urethane rubber, silicon rubber, etc.) in addition to the high damping rubber. However, elastic characteristics such as the elastic coefficient of the rubber member 3 for cushioning the compression force and the rubber members 4a and 4b for cushioning the tensile force are appropriately set according to the use and function of the shock-absorbing link L for the earthquake-resistant structure.

【0029】そして、前記圧縮力緩衝用ゴム体3の圧縮
耐力を大きくするとか、弾性係数を大きくしたい場合に
は、圧縮力緩衝用ゴム体3をゴム板と金属板とを交互に
複数層積層した積層ゴムで構成してもよい。このこと
は、引張力緩衝用ゴム体4a,4bについても同様で、
引張力緩衝用ゴム体4a,4bをゴム板と金属板とを交
互に複数層積層した積層ゴムで構成してもよい。
In order to increase the compressive strength of the rubber body 3 for compressing the compression force or to increase the elastic modulus, the rubber body 3 for cushioning the compression force is formed by alternately laminating a plurality of layers of a rubber plate and a metal plate. It may be made of laminated rubber. The same applies to the rubber members 4a and 4b for buffering the tensile force.
The rubber members 4a and 4b for buffering the tensile force may be made of laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated.

【0030】2〕前記各組の引張力緩衝用ゴム体4A,
4Bは、引張力を緩衝する機能があるので、上側の1組
の引張力緩衝用ゴム体4A又は下側の1組の引張力緩衝
用ゴム体4Bを省略してもよい。尚、引張力緩衝用ゴム
体を省略した側において、連結ロッド13の端部は端板
5a,5bにナットを当接させて連結すればよい。
2) Each set of rubber members 4A for buffering tensile force,
Since 4B has a function of buffering the tensile force, the upper pair of rubber members 4A for buffering the tensile force or the lower pair of rubber members 4B for buffering the tensile force may be omitted. The end of the connecting rod 13 may be connected to the end plates 5a and 5b by abutment of a nut on the side where the rubber member for tensile force buffer is omitted.

【0031】3〕前記リンク部材1の長さ方向途中部の
複数個所に前記弾性連結機構2を設けることもできる。
その場合、複数の弾性連結機構2の圧縮や引張の弾性係
数を設定する自由度を高めることができ、各弾性連結機
構2の小型化を図ったり、リンク部材1を細く形成した
りすることができる。
3) The elastic connecting mechanism 2 may be provided at a plurality of locations along the length of the link member 1 in the longitudinal direction.
In this case, the degree of freedom for setting the elastic modulus of compression and tension of the plurality of elastic connection mechanisms 2 can be increased, and the size of each elastic connection mechanism 2 can be reduced, and the link member 1 can be formed thin. it can.

【0032】例えば、図5に示す耐震構造用緩衝リンク
LAでは、リンク部材1Aの長さ方向途中部の異なる3
個所に前記同様の弾性連結機構2が組み込まれている。
このリンク部材1Aは、第1部材1aと、この第1部材
1aに対する第2部材としての部材1cと、この部材1
cに対する第1部材としての部材1dと、この部材1d
に対する第2部材1bとを有する。尚、必要に応じて長
さ方向中央部の1つの弾性連結機構2を省略して部材1
cと部材1dとを一体部材に構成してもよい。また、リ
ンク部材に4個所以上の弾性連結機構2を組み込んでも
よい。
For example, in the shock-absorbing link LA for an earthquake-resistant structure shown in FIG.
An elastic connection mechanism 2 similar to the above is incorporated at a location.
The link member 1A includes a first member 1a, a member 1c as a second member for the first member 1a,
c, a member 1d as a first member, and the member 1d
And the second member 1b. In addition, if necessary, one elastic connecting mechanism 2 at the center in the longitudinal direction is omitted and the member 1 is omitted.
c and the member 1d may be configured as an integral member. Further, four or more elastic connecting mechanisms 2 may be incorporated in the link member.

【0033】4〕耐震構造用緩衝リンクLにおけるリン
ク部材1の構造、形状、圧縮力緩衝用ゴム体3の数や形
状、引張力緩衝用ゴム体4a,4bの数や形状は、前記
実施形態のものに限定される訳ではなく、所期の機能を
達成できる範囲において適宜設定可能である。例えば、
図6、図7に示す耐震構造用緩衝リンクLBにおいて
は、第1,第2部材21a,21bが管材を主体にして
構成され、第1,第2部材21a,21bの対向端には
端板25a,25bが溶接され、弾性連結機構2Bは1
個の圧縮力緩衝用ゴム体23と、2個の引張力緩衝用ゴ
ム体24a,24bと、上下の座板26a,26bと、
連結ロッド27等を有する。
4] The structure and shape of the link member 1 in the shock-absorbing structural shock absorbing link L, the number and shape of the compression force damping rubber members 3, and the number and shape of the tensile force damping rubber members 4a and 4b are as described in the above embodiment. However, the present invention is not limited to this, and can be set as appropriate within a range in which the desired function can be achieved. For example,
In the shock-absorbing structure link LB shown in FIGS. 6 and 7, the first and second members 21a and 21b are mainly composed of a pipe material, and end plates are provided at opposite ends of the first and second members 21a and 21b. 25a and 25b are welded, and the elastic coupling mechanism 2B
Rubber members 23 for cushioning compression force, two rubber bodies 24a and 24b for cushioning tensile force, upper and lower seat plates 26a and 26b,
It has a connecting rod 27 and the like.

【0034】図8、図9に示す耐震構造用緩衝リンクL
Cにおいては、第1,第2部材41a,41bがH型鋼
を主体として構成され、第1,第2部材41a,41b
の対向端には端板42a,42bが溶接され、弾性連結
機構2Cは1個の圧縮力緩衝用ゴム体43と、計4個の
引張力緩衝用ゴム体44a,44bと、上下の計4枚の
座板45a,45bと、4本の連結ロッド46等を有す
る。また、第1,第2部材41a,41bの連結部47
a,47bは、夫々複数のボルト穴48を有し、複数の
ボルトを介して外部の部材に連結される。但し、前記連
結部9a,9bと同様の連結部に構成してもよい。
The shock-absorbing link L shown in FIGS. 8 and 9
In C, the first and second members 41a, 41b are mainly composed of H-shaped steel, and the first and second members 41a, 41b
End plates 42a and 42b are welded to the opposite ends of the elastic member. The elastic connecting mechanism 2C includes one compressive force buffering rubber member 43, a total of four tensile force buffering rubber members 44a and 44b, and a total of four upper and lower members. It has a plurality of seat plates 45a and 45b and four connecting rods 46. Further, the connecting portion 47 of the first and second members 41a and 41b.
Each of a and 47b has a plurality of bolt holes 48, and is connected to an external member via a plurality of bolts. However, it may be configured as a connecting portion similar to the connecting portions 9a and 9b.

【0035】5〕耐震構造用緩衝リンクL〜LCの用途
について補足説明する。図10に示すように、トラス構
造の橋桁50の端部が、ピン・ローラ支承装置51を介
して橋脚52に支持され、その橋桁50の端部が、1又
は複数の耐震構造用緩衝リンクLを介して橋脚52に連
結され、この耐震構造用緩衝リンクLは、水平姿勢から
約45度傾斜させた傾斜姿勢に配設されている。
5] Supplementary explanation of the uses of the shock-absorbing structural shock absorbing links L to LC will be given. As shown in FIG. 10, an end of a truss-structured bridge girder 50 is supported on a pier 52 via a pin / roller bearing device 51, and the end of the bridge girder 50 has one or more shock-absorbing links L for seismic structure. And the shock-absorbing link L for the earthquake-resistant structure is disposed in an inclined posture inclined about 45 degrees from the horizontal posture.

【0036】図11に示すように、トラス構造の橋桁5
0の端部が、ピン・ローラ支承装置51を介して橋脚5
2に支持され、もう1つのボックスガーダー構造の橋桁
53の端部が、ピン・ローラ支承装置54を介して橋脚
52に支持され、橋桁50の端部と橋桁53の端部が1
又は複数の耐震構造用緩衝リンクLを介して連結されて
いる。緩衝リンクLの右端部は、橋桁53の端部のブラ
ケット55の長穴56の中央部にピン連結されている。
それ故、橋桁53に作用する交通荷重による水平変位や
橋桁50,53の熱膨張や熱収縮による水平変位は長穴
56で吸収され、橋桁53に作用する交通荷重に起因す
る回転変位や鉛直変位は、耐震構造用緩衝リンクLの弾
性連結機構2で吸収される。地震時に弾性連結機構2に
作用する圧縮力や引張力に対しては緩衝機能が得られ
る。
As shown in FIG. 11, a bridge girder 5 having a truss structure is used.
0 is connected to the pier 5 via the pin roller bearing 51.
2 and the other end of the bridge girder 53 of the box girder structure is supported on the pier 52 via a pin roller bearing device 54, and the end of the bridge girder 50 and the end of the bridge girder 53
Alternatively, they are connected via a plurality of shock-absorbing links L for earthquake-resistant structures. The right end of the buffer link L is connected to the center of the long hole 56 of the bracket 55 at the end of the bridge girder 53 by a pin.
Therefore, the horizontal displacement due to the traffic load acting on the bridge girder 53 and the horizontal displacement due to the thermal expansion and thermal contraction of the bridge girder 50, 53 are absorbed by the elongated holes 56, and the rotational displacement and the vertical displacement caused by the traffic load acting on the bridge girder 53. Is absorbed by the elastic connecting mechanism 2 of the shock-absorbing link L for the earthquake-resistant structure. A cushioning function is obtained for a compressive force or a tensile force acting on the elastic coupling mechanism 2 during an earthquake.

【0037】図12に示すように、トラス構造の橋桁5
0の端部が、ピン・ローラ支承装置51を介して橋脚5
2に支持され、もう1つのボックスガーダー構造の橋桁
53の端部が、ピン・ローラ支承装置54を介して橋脚
52に支持され、橋桁50の端部と橋桁53の端部が1
又は複数の耐震構造用緩衝リンクLを介して連結されて
いる。緩衝リンクLの左端部は、橋桁50の端部の長穴
57の右端部にピン連結され、緩衝リンクLの右端部
は、橋桁53の端部のブラケット55の長穴56の左端
部にピン連結されている。通常の使用状態における水平
変位や鉛直変位は、長穴56,57と緩衝リンクLの弾
性連結機構2により吸収される。弾性連結機構2に圧縮
力は作用しにくく設定してあるが、地震時に弾性連結機
構2に作用する圧縮力や引張力に対しては緩衝機能が得
られる。
As shown in FIG. 12, a trussed bridge girder 5
0 is connected to the pier 5 via the pin roller bearing 51.
2 and the other end of the bridge girder 53 of the box girder structure is supported on the pier 52 via a pin roller bearing device 54, and the end of the bridge girder 50 and the end of the bridge girder 53 are
Alternatively, they are connected via a plurality of shock-absorbing links L for earthquake-resistant structures. The left end of the buffer link L is pin-connected to the right end of a long hole 57 at the end of the bridge girder 50, and the right end of the buffer link L is connected to the left end of the long hole 56 of the bracket 55 at the end of the bridge girder 53. Are linked. The horizontal displacement and the vertical displacement in the normal use state are absorbed by the elastic coupling mechanism 2 between the elongated holes 56 and 57 and the buffer link L. Although the compressive force is set to be hard to act on the elastic connecting mechanism 2, a cushioning function can be obtained with respect to the compressive force and the tensile force acting on the elastic connecting mechanism 2 during an earthquake.

【0038】図13に示すように、球形タンク60が複
数の支柱61で支持され、支柱61と支柱61の間には
ブレース62がX字状に設けられ、これらブレース62
を介して支柱61の上部が基礎構造63に連結されて補
強されている。図14は、X字状に配設される1対のブ
レース62A(これをX形ブレースと命名する)を示
し、このX形ブレース62A(耐震構造用緩衝リンクに
相当する)は、H型鋼と同じ断面形状の4つの腕部64
を一体的に接合してなる中央X形部材65と、夫々H型
鋼からなる4本のブレース部材66とを有し、各腕部6
4とそれに対応するブレース部材66とは、図8に示し
た耐震構造用緩衝リンクLCの弾性連結機構2Cと同様
の弾性連結機構2Dを介して連結されている。このよう
に、各対の支柱61をX形ブレース62Aで補強するこ
とにより、耐震構造の球形タンク支持構造にすることが
できる。
As shown in FIG. 13, a spherical tank 60 is supported by a plurality of columns 61, and a brace 62 is provided between the columns 61 in an X-shape.
The upper part of the support column 61 is connected to the foundation structure 63 and reinforced. FIG. 14 shows a pair of braces 62A (referred to as X-shaped braces) arranged in an X-shape. The X-braces 62A (corresponding to shock-absorbing links for seismic structure) are made of H-shaped steel. Four arms 64 of the same cross-sectional shape
And a central X-shaped member 65 formed by integrally joining the two, and four brace members 66 each made of H-shaped steel.
4 and the corresponding brace member 66 are connected via an elastic connecting mechanism 2D similar to the elastic connecting mechanism 2C of the shock-absorbing structure shock absorbing link LC shown in FIG. In this way, by reinforcing each pair of columns 61 with the X-shaped brace 62A, it is possible to provide a spherical tank support structure having an earthquake-resistant structure.

【0039】図15に示すように、鉄骨構造のビル骨組
み70のブレース71に、図5に示した耐震構造用緩衝
リンクLAが適用されている。図示のように耐震構造用
緩衝リンクLAからなるブレース71を組み込んだ構造
とすることにより、耐震構造のビル骨組みにすることが
できる。但し、図15の紙面と平行な構面以外に、紙面
と直交する構面にも同様のブレースを組み込むことが望
ましい。尚、各ブレース71の代わりに、図14に示し
たX形ブレース62Aと同様のX形ブレースを設けても
よい
As shown in FIG. 15, the shock-absorbing structural link LA shown in FIG. 5 is applied to a brace 71 of a steel frame building frame 70. As shown in the drawing, a structure incorporating the brace 71 made of the shock-absorbing structure buffer link LA can be used as a building frame having an earthquake-resistant structure. However, it is desirable to incorporate the same brace into a structure orthogonal to the paper surface in addition to the structure surface parallel to the paper surface of FIG. Note that instead of each brace 71, an X-shaped brace similar to the X-shaped brace 62A shown in FIG. 14 may be provided .

【0040】[0040]

【発明の効果】請求項1の耐震構造用緩衝リンクによれ
ば、リンク部材に圧縮力が作用する際には、その圧縮力
がリンク部材の長さ方向途中部を連結する弾性連結機構
を介して伝達され、その圧縮力が弾性連結機構の圧縮力
緩衝用ゴムに作用するため、弾性連結機構の圧縮力緩衝
用ゴム体により圧縮力を緩衝することができ、リンク部
材に引張力が作用する際には、その引張力が弾性連結機
構を介して伝達され、その引張力が弾性連結機構の連結
ロッドを介して引張力緩衝用ゴムに作用するため、弾性
連結機構の引張力緩衝用ゴム体により引張力を緩衝する
ことができる。この耐震構造用緩衝リンクは種々の構造
物の耐震構造を達成するのに適用可能なものであるので
汎用性に優れる。
According to the buffer linked seismic structure of claim 1 according to the present invention, when a compressive force to the link member acts, the compressive force
Elastic connecting mechanism that connects the middle part in the length direction of the link member
And the compression force is transmitted by the elastic coupling mechanism.
Since it acts on the rubber for cushioning, the compressive force can be buffered by the rubber body for compressing the elastic force of the elastic coupling mechanism. When a tensile force acts on the link member, the tensile force is applied to the elastic coupling machine.
Transmitted through the frame and the tensile force
Since it acts on the rubber for buffering the tensile force via the rod, the tensile force can be buffered by the rubber member for buffering the tensile force of the elastic connection mechanism. Since the shock-absorbing link for seismic structure is applicable to achieve the seismic structure of various structures, it is excellent in versatility.

【0041】圧縮力緩衝用ゴム体と引張力緩衝用ゴム体
とで弾性連結機構の緩衝機能を得るため、弾性連結機構
の構造が簡単化し、小型化可能で、製作コスト的にも有
利である。圧縮力緩衝用ゴム体や引張力緩衝用ゴム体の
弾性特性設定の自由度は大きいため、また、弾性連結機
構を複数設けることも可能であるため、設計の自由度も
大きい。リンク部材の長さ方向途中部に弾性連結機構を
設けるため、リンク部材の両端部の連結部の連結構造が
何等制約を受けない。
Since the elastic coupling mechanism has a cushioning function with the rubber member for compressing the tension and the rubber member for cushioning the tensile force, the structure of the elastic coupling mechanism can be simplified, the size can be reduced, and the manufacturing cost is advantageous. . The degree of freedom in setting the elastic characteristics of the rubber body for compressive force buffering and the rubber body for tensile force buffering is large, and since a plurality of elastic coupling mechanisms can be provided, the degree of freedom in design is also large. Since the elastic connecting mechanism is provided at an intermediate portion in the length direction of the link member, the connecting structure of the connecting portions at both ends of the link member is not restricted at all.

【0042】請求項2の発明によれば、リンク部材に圧
縮力が作用するとき、第1,第2部材、1対の端板を介
して圧縮力緩衝用ゴム体を圧縮させて圧縮力緩衝用ゴム
体で圧縮力を緩衝することができ、リンク部材に引張
が作用するとき、第1,第2部材と1対の端板と2組の
座板と連結ロッドを介して2組の引張力緩衝用ゴム体を
圧縮させて2組の引張力緩衝用ゴム体で引張力を緩衝す
ることができる。圧縮力緩衝用ゴム体の両側に対称的に
引張力緩衝用ゴム体を設けたので、引張力緩衝性能を高
めることができ、引張力緩衝の対称性を確保でき、各組
の引張力緩衝用ゴム体の小型化を図ることができる。そ
の他請求項1と同様の効果を奏する。
According to the second aspect of the present invention, when a compressive force is applied to the link member, the first and second members are compressed through the pair of end plates to compress the rubber member for compressing the compressive force, thereby reducing the compressive force. When the tensile force acts on the link member, two sets of the first and second members, a pair of end plates, two sets of seat plates, and the connecting rod can be used. The tensile force buffer rubber body is compressed, and the tensile force can be buffered by the two sets of tensile force buffer rubber bodies. Since the rubber body for tension buffer is provided symmetrically on both sides of the rubber body for compression buffer, the tension buffer performance can be enhanced, the symmetry of the tension buffer can be secured, The size of the rubber body can be reduced. The other effects are the same as those of the first aspect.

【0043】請求項3の発明によれば、2組の座板が相
離隔しないように連結する連結ロッドを圧縮力緩衝用ゴ
ム体と両端板と2組の引張力緩衝用ゴム体と2組の座板
を挿通する状態に設けたので、弾性連結機構の小型化を
図ることができる。その他請求項2と同様の効果を奏す
る。
According to the third aspect of the present invention, the connecting rods for connecting the two sets of seat plates so as not to be separated from each other are composed of the rubber members for cushioning the compression force, the two end plates, and the two rubber members for cushioning the tensile force. Since the seat plate is provided in a state of being inserted, the size of the elastic coupling mechanism can be reduced. Other effects are the same as those of the second aspect.

【0044】請求項4の発明によれば、リンク部材の長
さ方向の複数個所に弾性連結機構を設けるので、圧縮力
緩衝機能及び引張力緩衝機能を格段に増強するか、或い
は個々の弾性連結機構の小型化を図ることができる。そ
の他請求項1〜3の何れか1項と同様の効果を奏する。
According to the fourth aspect of the present invention, since the elastic connecting mechanism is provided at a plurality of positions in the length direction of the link member, the compressive force buffering function and the tensile force buffering function are remarkably enhanced, or individual elastic connecting mechanisms are provided. The size of the mechanism can be reduced. In addition, the same effect as any one of the first to third aspects is obtained.

【0045】請求項5の発明によれば、圧縮力緩衝用ゴ
ム体と引張力緩衝用ゴム体を高減衰性ゴム材料で構成す
るため、それらゴム体のエネルギー吸収性能を高めて、
緩衝機能を強化することができる。その他請求項1〜4
の何れか1項と同様の効果を奏する。
According to the fifth aspect of the present invention, since the rubber member for compressive force buffering and the rubber member for tensile force buffering are made of a high damping rubber material, the energy absorbing performance of these rubber members is enhanced.
The buffer function can be enhanced. Other claims 1-4
The same effect as any one of the above items is obtained.

【0046】請求項6の発明によれば、圧縮力緩衝用ゴ
ム体をゴム板と金属板とを交互に複数層積層した積層ゴ
ムで構成するため、圧縮力緩衝用ゴム体の圧縮弾性係数
を大きくして、圧縮変形しにくいものとすることができ
る。その他請求項1〜4の何れか1項と同様の効果を奏
する。
According to the sixth aspect of the present invention, since the rubber member for compressing force is composed of a laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated, the compression elastic modulus of the rubber member for compressing force is reduced. By increasing the size, it is possible to make it difficult to compressively deform. In addition, the same effects as in any one of the first to fourth aspects are exhibited.

【0047】請求項7の発明によれば、引張力緩衝用ゴ
ム体をゴム板と金属板とを交互に複数層積層した積層ゴ
ムで構成するため、引張力緩衝用ゴム体の圧縮弾性係数
を大きくして、引張力で変形しにくいものとすることが
できる。その他請求項6と同様の効果を奏する
According to the seventh aspect of the invention, since the rubber member for tensile force buffer is composed of a laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated, the compression elastic modulus of the rubber member for tensile force buffer is reduced. It can be made large so that it is not easily deformed by a tensile force. The other effects are the same as those of the sixth aspect .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の耐震構造用緩衝リンクの正
面である。
FIG. 1 is a front view of a shock-absorbing structure shock absorbing link according to an embodiment of the present invention.

【図2】耐震構造用緩衝リンクの縦断側面図である。FIG. 2 is a vertical sectional side view of a shock-absorbing link for an earthquake-resistant structure.

【図3】耐震構造用緩衝リンクの側面図である。FIG. 3 is a side view of a shock-absorbing link for an earthquake-resistant structure.

【図4】図1のIV−IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 1;

【図5】変更形態の耐震構造用緩衝リンクの正面図であ
る。
FIG. 5 is a front view of a modified shock-absorbing link for an earthquake-resistant structure.

【図6】変更形態の耐震構造用緩衝リンクの縦断正面図
である。
FIG. 6 is a longitudinal sectional front view of a shock-absorbing link for a seismic structure of a modified embodiment.

【図7】図6のVII −VII 線断面図である。FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6;

【図8】変更形態の耐震構造用緩衝リンクの正面図であ
る。
FIG. 8 is a front view of a shock-absorbing link for an earthquake-resistant structure according to a modified embodiment.

【図9】図8のIX−IX線断面図である。9 is a sectional view taken along line IX-IX of FIG.

【図10】耐震構造用緩衝リンクの適用例を示す図であ
る。
FIG. 10 is a diagram showing an application example of a shock-absorbing link for an earthquake-resistant structure.

【図11】耐震構造用緩衝リンクの適用例を示す図であ
る。
FIG. 11 is a diagram illustrating an application example of a shock-absorbing link for an earthquake-resistant structure.

【図12】耐震構造用緩衝リンクの適用例を示す図であ
る。
FIG. 12 is a diagram illustrating an application example of a shock-absorbing link for an earthquake-resistant structure.

【図13】耐震構造用緩衝リンクを球形タンクに適用し
た例を示す図である。
FIG. 13 is a diagram showing an example in which a shock-absorbing link for an earthquake-resistant structure is applied to a spherical tank.

【図14】図13のX形ブレースの正面図である。FIG. 14 is a front view of the X-shaped brace of FIG.

【図15】耐震構造用緩衝リンクをビル鉄骨に適用した
例を示す図である
FIG. 15 is a diagram illustrating an example in which a shock-absorbing link for an earthquake-resistant structure is applied to a building steel frame .

【符号の説明】[Explanation of symbols]

L,LA,LB,LC 耐震構造用緩衝リンク 1a,1b 第1,第2部材 1c,1d 部材 2,2B,2C,2D 弾性連結機構 3 圧縮力緩衝用ゴム体 4a,4b 引張力緩衝用ゴム体 5a,5b 端板 12a,12b 上座板,下座板 13 連結ロッド 21a,21b 第1,第2部材 23 圧縮力緩衝用ゴム体 24a,24b 引張力緩衝用ゴム体 25a,25b 端板 26a,26b 上座板,下座板 27 連結ロッド 41a,41b 第1,第2部材 42a,42b 端板 43 圧縮力緩衝用ゴム体 44a,44b 引張力緩衝用ゴム体 45a,45b 上座板,下座板 46 連結ロッド 62A X形ブレー L, LA, LB, LC Absorbing links for seismic structure 1a, 1b First and second members 1c, 1d members 2, 2B, 2C, 2D Elastic coupling mechanism 3 Rubber members for compressive force buffer 4a, 4b Rubber for tensile force buffer Body 5a, 5b End plate 12a, 12b Upper seat plate, lower seat plate 13 Connecting rods 21a, 21b First and second members 23 Rubber bodies for compressive force buffering 24a, 24b Rubber bodies for tensile force buffering 25a, 25b End plate 26a, 26b Upper seat plate, lower seat plate 27 Connecting rods 41a, 41b First and second members 42a, 42b End plate 43 Compressive force buffer rubber members 44a, 44b Tensile force buffer rubber members 45a, 45b Upper seat plate, lower seat plate 46 the connecting rod 62A X-shaped braces

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F16F 1/00 - 6/00 F16F 15/00 - 15/32 E01D 19/04 E04H 9/02 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) F16F 1/00-6/00 F16F 15/00-15/32 E01D 19/04 E04H 9/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リンク部材の長さ方向途中部の少なくと
も1個所に、圧縮力と引張力に対する緩衝機能のある弾
性連結機構であってリンク部材に作用する圧縮力と引張
力を伝達可能に前記少なくとも1箇所を連結する弾性連
結機構を設け、この弾性連結機構が、圧縮力緩衝用ゴム
体と、この圧縮力緩衝用ゴム体に直列的に配置された少
なくとも1組の引張力緩衝用ゴム体と、この引張力緩衝
用ゴム体に直列的に配置された引張力伝達用の連結ロッ
ドとを有することを特徴とする耐震構造用緩衝リンク。
An elastic coupling mechanism having a buffering function against a compressive force and a tensile force at at least one position in the longitudinal direction of the link member, the compressive force and the tensile force acting on the link member being provided.
An elastic link for connecting the at least one point so as to transmit a force
The binding mechanism is provided, the elastic coupling mechanism comprises a compression buffer rubber body, and at least one pair of tension cushioning rubber member are arranged in series in the compression buffer rubber member, the tension buffer
Connecting rods for transmitting tensile force
Seismic structure buffer link, characterized in that it comprises a de.
【請求項2】 前記リンク部材は、弾性連結機構の両側
に位置する第1,第2部材と、第1,第2部材の対向端
にリンク部材の長さ方向と直交状に夫々固定された1対
の端板とを有し、 前記圧縮力緩衝用ゴム体を第1,第2部材の両端板間に
挟着し且つ引張力緩衝用ゴム体を圧縮力緩衝用ゴム体と
反対側から第1,第2部材の両端板に夫々当接するよう
に2組設け、 前記2組の引張力緩衝用ゴム体のうちの端板と反対側の
面に夫々当接する座板を設け且つこれら2組の座板を
記連結ロッドを介して連結した、 ことを特徴とする請求項1に記載の耐震構造用緩衝リン
ク。
2. The link member is fixed to first and second members located on both sides of an elastic coupling mechanism and opposite ends of the first and second members, respectively, in a direction perpendicular to the length direction of the link member. And a pair of end plates, wherein the rubber member for compressing force is sandwiched between both end plates of the first and second members, and the rubber member for cushioning tensile force is from the side opposite to the rubber member for compressing force. Two sets are provided so as to be in contact with both end plates of the first and second members, respectively, and seat plates are provided which are in contact with surfaces of the two sets of tensile force buffering rubber members opposite to the end plate. In front of a pair of seats
The shock-absorbing link for an earthquake-resistant structure according to claim 1, wherein the shock-absorbing link is connected via the connecting rod .
【請求項3】 前記連結ロッドを、圧縮力緩衝用ゴム体
と両端板と2組の引張力緩衝用ゴム体と2組の座板を挿
通する状態に設け、連結ロッドの両端部にナットを夫々
締結したことを特徴とする請求項2に記載の耐震構造用
緩衝リンク。
3. The connecting rod is provided so as to pass through a rubber member for compressing force, both end plates, two sets of rubber members for tensile force and two sets of seat plates, and nuts are provided at both ends of the connecting rod. The shock-absorbing link for an earthquake-resistant structure according to claim 2, wherein the shock-absorbing link is fastened to each other.
【請求項4】 前記リンク部材の長さ方向途中部の複数
個所に前記弾性連結機構を設けたことを特徴とする請求
項1〜3の何れか1項に記載の耐震構造用緩衝リンク。
4. The shock-absorbing link for an earthquake-resistant structure according to claim 1, wherein the elastic connecting mechanism is provided at a plurality of positions in the middle of the link member in the longitudinal direction.
【請求項5】 前記圧縮力緩衝用ゴム体と引張力緩衝用
ゴム体は高減衰性ゴム材料で構成されたことを特徴とす
る請求項1〜4の何れか1項に記載の耐震構造用緩衝リ
ンク。
5. The earthquake-resistant structure according to claim 1, wherein the rubber member for compressing and the rubber member for tensile force are made of a high-damping rubber material. Buffer link.
【請求項6】 前記圧縮力緩衝用ゴム体はゴム板と金属
板とを交互に複数層積層した積層ゴムで構成されたこと
を特徴とする請求項1〜4の何れか1項に記載の耐震構
造用緩衝リンク。
6. The method according to claim 1, wherein the rubber body for cushioning the compressive force is formed of a laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated. Shock link for seismic structure.
【請求項7】 前記引張力緩衝用ゴム体はゴム板と金属
板とを交互に複数層積層した積層ゴムで構成されたこと
を特徴とする請求項6に記載の耐震構造用緩衝リンク
7. The shock-absorbing link according to claim 6, wherein the rubber member for tensile force buffering is formed of a laminated rubber in which a plurality of rubber plates and metal plates are alternately laminated .
JP7352098A 1998-03-06 1998-03-06 Shock-absorbing link for seismic structure Expired - Fee Related JP2930575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352098A JP2930575B1 (en) 1998-03-06 1998-03-06 Shock-absorbing link for seismic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352098A JP2930575B1 (en) 1998-03-06 1998-03-06 Shock-absorbing link for seismic structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6826299A Division JPH11325177A (en) 1999-03-15 1999-03-15 Vibration resistant support device for structure

Publications (2)

Publication Number Publication Date
JP2930575B1 true JP2930575B1 (en) 1999-08-03
JPH11257425A JPH11257425A (en) 1999-09-21

Family

ID=13520611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352098A Expired - Fee Related JP2930575B1 (en) 1998-03-06 1998-03-06 Shock-absorbing link for seismic structure

Country Status (1)

Country Link
JP (1) JP2930575B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307477A (en) * 2004-04-19 2005-11-04 Kawasaki Heavy Ind Ltd Continuous construction method of highway bridge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336857B1 (en) * 2008-04-17 2009-09-30 国立大学法人鳥取大学 Bridge group with shock absorber and shock absorbing method thereof
JP5173988B2 (en) * 2009-11-12 2013-04-03 中部電力株式会社 Seismic improvement structure of existing sluice pillar and coupled earthquake resistant structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307477A (en) * 2004-04-19 2005-11-04 Kawasaki Heavy Ind Ltd Continuous construction method of highway bridge

Also Published As

Publication number Publication date
JPH11257425A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP5515100B2 (en) Damping device for beam column structure
US3963099A (en) Hysteretic energy absorber
JP4794204B2 (en) Seismic isolation device
US7647733B2 (en) Reinforcing structure for building
JP2930575B1 (en) Shock-absorbing link for seismic structure
US5090166A (en) Rectilinear building structure
US20040079036A1 (en) Moment resistant structure with supporting member and method for the same
JP3791132B2 (en) Damping structure using a disc spring friction damper
JPH10220062A (en) Vibration damping structure for building
JP4242673B2 (en) Damping device and damping structure using the same
JPH11350778A (en) Vibration damper and vibration-damping structure
JP4346259B2 (en) Reinforced concrete seismic column
JP4828053B2 (en) Structure damping device
JPH11325177A (en) Vibration resistant support device for structure
JP2003096911A (en) Building or its reinforcement structure
JPH10280727A (en) Damping frame by composite type damper and damping method
JP6134099B2 (en) Vibration control device and building
JP2601439Y2 (en) Brace equipment
JPH1171934A (en) Vibration control structure
CN219840205U (en) Shock-resistant connecting rod piece
JP2019065532A (en) Axial force resistant member
JP3851542B2 (en) Structure damping device
JP3807497B2 (en) Seismic isolation damper
JPH0733685B2 (en) Brace type flexible mixed structure with seismic energy absorption function

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees