JP2927863B2 - Semi-solid metal production method - Google Patents

Semi-solid metal production method

Info

Publication number
JP2927863B2
JP2927863B2 JP4458090A JP4458090A JP2927863B2 JP 2927863 B2 JP2927863 B2 JP 2927863B2 JP 4458090 A JP4458090 A JP 4458090A JP 4458090 A JP4458090 A JP 4458090A JP 2927863 B2 JP2927863 B2 JP 2927863B2
Authority
JP
Japan
Prior art keywords
semi
solid
cooling
metal
solid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4458090A
Other languages
Japanese (ja)
Other versions
JPH03248743A (en
Inventor
正純 平居
克浩 竹林
隆二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REOTETSUKU KK
Original Assignee
REOTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REOTETSUKU KK filed Critical REOTETSUKU KK
Priority to JP4458090A priority Critical patent/JP2927863B2/en
Publication of JPH03248743A publication Critical patent/JPH03248743A/en
Application granted granted Critical
Publication of JP2927863B2 publication Critical patent/JP2927863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非樹枝状初晶が金属融体中に分散した固体−
液体金属混合物(簡単のため単に半凝固金属と呼ぶ)を
安定に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a solid in which non-dendritic primary crystals are dispersed in a molten metal.
The present invention relates to a method for stably producing a liquid metal mixture (simply called semi-solid metal for simplicity).

(従来の技術) 半凝固金属を製造する方法には、例えば特公昭56−20
944号公報に開示されているように、溶融金属(一般に
は合金)を円筒状の冷却攪拌槽内において攪拌子の高速
回転により冷却しながら激しく攪拌して、溶融金属中に
生成しつつある樹枝状晶を、その枝部が消失ないし縮小
して丸みを帯びた形態に変え、これを分散させて金属融
体中に混在するようにしたスラリー状半凝固金属とし、
冷却攪拌槽の底部ノズルから連続的に排出するか、また
は連続的な排出はせずに上記スラリー状半凝固金属の冷
却攪拌装置過程を一回終える度毎に排出し再度の注入を
繰り返し行うことなども知られている。
(Prior Art) Methods for producing semi-solid metal include, for example, JP-B-56-20
As disclosed in Japanese Unexamined Patent Publication No. 944, a molten metal (generally an alloy) is vigorously stirred while being cooled by a high-speed rotation of a stirrer in a cylindrical cooling / stirring tank, and the dendrites being formed in the molten metal. The crystal form is changed to a rounded form in which the branches disappear or shrink, and this is dispersed to form a slurry-like semi-solid metal which is mixed in the metal melt,
Discharge continuously from the bottom nozzle of the cooling and stirring tank, or repeatedly discharge and re-inject each time the cooling and stirring device of the semi-solid metal slurry is completed without performing continuous discharging. Etc. are also known.

この冷却中の攪拌方法としては攪拌子による上記のよ
うな機械的攪拌の他にも、冷却攪拌槽内の溶融金属を電
磁気的に攪拌する電磁攪拌方法も知られている。
As a stirring method during the cooling, in addition to the mechanical stirring described above using a stirrer, an electromagnetic stirring method for electromagnetically stirring a molten metal in a cooling stirring tank is also known.

これらの方法によって半凝固金属の製造は可能である
が、いずれの方法にあっても固液共存状態における単位
時間当たりの固相率の増加速度(簡単のため単に固化速
度と呼ぶ)の違いによって、できた半凝固金属の流動性
が異なり、同一固相率であっても槽内の半凝固金属の流
動停止を来して排出不能や凝固閉塞の問題を生じるなど
のため安定した半凝固金属の製造を困難にすることが明
らかになった。
Although semi-solid metal can be produced by these methods, the difference in the rate of increase in the solid fraction per unit time in a solid-liquid coexisting state (simply called the solidification rate for simplicity) in any of the methods. Stable semi-solid metal because the fluidity of the formed semi-solid metal is different, and even if the solid phase ratio is the same, the flow of the semi-solid metal in the tank stops, causing problems such as discharge failure and solidification blockage. Has proven to be difficult to manufacture.

(発明が解決しようとする課題) 半凝固金属の流動性は一般にスラリー状半凝固金属の
全体積中に占める固相金属の体積の全体積に対する比で
あらわした固相率が高くなると悪くなり、ある固相率以
上、通常は0.65程度以上では、半凝固金属の製造装置か
ら次工程の多段半凝固金属装置や鋳造装置、ないしは保
持装置、あるいは加工装置への排出や移送ができなくな
って、該半凝固金属製造装置内での流動停止や閉塞凝固
等による排出不能の問題が発生する。
(Problems to be Solved by the Invention) The fluidity of the semi-solid metal generally becomes worse when the solid phase ratio, which is expressed as a ratio of the volume of the solid phase metal to the total volume of the slurry semi-solid metal, increases, Above a certain solid phase ratio, usually above about 0.65, it is not possible to discharge or transfer from the semi-solid metal production device to the next step multi-stage semi-solid metal device, casting device, or holding device, or processing device, The problem of inability to discharge due to stoppage of flow or blockage solidification in the semi-solid metal manufacturing apparatus occurs.

そればかりでなく固相率が0.65以下であっても凝固中
の固化速度が大きいほど、流動性が悪くなり、その影響
は殊の外著しいことがわかった。すなわち半凝固金属の
安定した製造ないしは次工程の多段半凝固金属製造装置
や鋳造装置、保持装置および加工装置への安定した排出
移送を行うためには、半凝固金属の固相率のみならず凝
固中の固化速度が流動性(粘性)に及ぼす関係を明確に
して、半凝固金属の固相率および流動性の適正な管理を
行う必要があるわけである。
Not only that, even when the solid phase ratio is 0.65 or less, the higher the solidification rate during solidification, the lower the fluidity, and the effect is particularly remarkable. In other words, in order to perform stable production of semi-solid metal or stable discharge and transfer to multi-stage semi-solid metal production equipment, casting equipment, holding equipment and processing equipment in the next process, not only solid phase ratio of semi-solid metal but also solidification It is necessary to clarify the relationship between the solidification rate in the fluid and the fluidity (viscosity), and to properly manage the solid phase ratio and fluidity of the semi-solidified metal.

(課題を解決するための手段) 種々の固化速度、攪拌条件でスラリー状半凝固金属の
製造実験を行い、該半凝固金属の流動性を確保すること
ができる固相率と固化速度との関係について解明し、固
化速度の如何によって、次工程への安定な排出を可能な
しめるように固相率を変えることによって上記問題が有
利に解決できたものである。
(Means for Solving the Problems) Production experiments of semi-solid metal in a slurry state under various solidification rates and stirring conditions, and the relationship between the solid fraction and solidification rate that can ensure the fluidity of the semi-solid metal. The above problem can be advantageously solved by changing the solid fraction so as to enable stable discharge to the next step depending on the solidification rate.

すなわち本発明は溶融金属を冷却攪拌槽内に注入し、
その冷却凝固過程において攪拌を与え固液共存状態のス
ラリー状半凝固金属を製造する際、スラリー状半凝固金
属の固相率fsが攪拌冷却時の固液共存状態における固化
速度の関数である下記の(1)式を満足する範囲の攪拌
冷却操業を行い、該半凝固金属を冷却攪拌槽より排出す
ることを特徴とする、半凝固金属の製造方法。
That is, the present invention injects the molten metal into the cooling and stirring tank,
When producing a slurry-like semi-solid metal in a solid-liquid coexistence state by providing stirring during the cooling and solidification process, the solid phase ratio f s of the slurry semi-solid metal is a function of the solidification rate in the solid-liquid coexistence state during stirring and cooling. A method for producing a semi-solid metal, comprising performing a stirring and cooling operation within a range satisfying the following formula (1), and discharging the semi-solid metal from a cooling and stirring tank.

(記) fs≦0.65−0.25×R−1/3 −−−−(1) R=(a/Co)×(0.4/C) fs;スラリー状半凝固金属の固相率〔−〕 a=1〔%/s〕 Co :全溶質濃度〔%〕 C :溶融金属の凝固開始温度(液相線温度)以下での
凝固中の平均固化速度〔s-1〕 である。
(SL) f s ≦ 0.65-0.25 × R -1/3 ---- (1) R = (a / Co) × (0.4 / C) f s; solid fraction of slurry semi-solid metal [-] a = 1 [% / s] Co: Total solute concentration [%] C: Average solidification rate [s -1 ] during solidification below the solidification onset temperature (liquidus temperature) of the molten metal.

本発明はまたスラリー状半凝固金属の攪拌冷却操業が
多段に設置した冷却攪拌槽内における順次的な繰返しに
よるものであること、ここに初段の冷却攪拌槽において
は比較的大きい固化速度で操業し、後段の冷却攪拌槽に
おいては順次に小さい固化速度で操業すること、さらに
溶融金属がアルミニウム合金であることが好適である。
The present invention also relates to the fact that the stirring and cooling operation of the slurry-like semi-solidified metal is performed by successive repetition in the cooling and stirring tanks provided in multiple stages, wherein the first stage of the cooling and stirring tank is operated at a relatively high solidification rate. It is preferred that the subsequent cooling and stirring tank be operated at a sequentially lower solidification rate, and that the molten metal be an aluminum alloy.

(作 用) 発明者らは、種々の組成の溶融金属を用いて種々の固
化速度、攪拌条件でスラリー状半凝固金属の製造実験を
行い、半凝固金属の流動性が確保できる液性限界固相率
fscrと固化速度C〔s-1〕との関係について調査し、第
1図に示す結果を得た。すなわち溶融金属の凝固開始温
度(液相線温度)以下での凝固中の固化速度C〔s-1
の関数である(1/Co)×(0.4×C)−1/3の値の如何に
よって流動性の限界を示す液性限界固相率(簡単のため
単に限界固相率fserと呼ぶ)が異なり fser=0.65−0.25×{(1/Co)×(0.4/C)}−1/3 の関係があることを見いだし、fs≦fscrの関係を満たす
ことにより流動性が安定に確保され得ることを発見し
た。
(Operation) The present inventors conducted experiments on the production of slurry-like semi-solid metal using various solidification rates and stirring conditions using molten metals of various compositions, and found that the liquidity limit solidity that can ensure the fluidity of the semi-solid metal. Phase ratio
The relationship between f scr and the solidification rate C [s -1 ] was investigated, and the results shown in FIG. 1 were obtained. That is, the solidification rate C [s -1 ] during the solidification below the solidification start temperature (liquidus temperature) of the molten metal.
Is a function (1 / Co) × (0.4 × C) -1/3 liquid limit solid fraction indicating the limit of fluidity depending upon which the value of (simply called critical solid fraction f ser for simplicity) found that different f ser = 0.65-0.25 × {(1 / Co) × (0.4 / C)} is related to -1/3, fluidity stably by satisfying the relationship of f s ≦ f scr I found that it could be secured.

ここでfsおよびfscrは測温値をもとに平衡状態図から
求めた固相率で、Cは凝固開始温度(液相線温度)以下
での凝固中の平均固化速度〔s-1〕であり、Coは溶融金
属に含有される全容質濃度である。
Here, f s and f scr are solid fractions obtained from the equilibrium diagram based on the measured temperature values, and C is the average solidification rate [s -1] during solidification at or below the solidification starting temperature (liquidus temperature). And Co is the total volume concentration contained in the molten metal.

この結果に従いスラリー状半凝固金属製造において冷
却攪拌を終了して次工程に排出する半凝固金属の固相率
fsは、この限界固相率fscr値よりも低い、望ましくは
(fscr×0.85)以下にするを好適とする。
According to this result, the solid-phase ratio of the semi-solid metal discharged from the slurry after the cooling and stirring in the production of the semi-solid metal is discharged to the next process
It is preferable that fs is lower than the critical solid fraction f scr , and desirably (f scr × 0.85) or less.

もっともスラリー状半凝固金属の結晶粒径を微細にす
るためには固化速度を大きくする必要があるが、固化速
度を大きくすると、上記のごとく限界固相率が低下する
ため、必然的に排出固相率を低くする必要がある。
However, it is necessary to increase the solidification rate in order to reduce the crystal grain size of the slurry-like semi-solid metal, but if the solidification rate is increased, the critical solid fraction decreases as described above. It is necessary to lower the phase ratio.

そのため固化速度を大きくして結晶粒径を微細にした
高固相率の半凝固金属を製造する場合には、多段装置に
よる製造法によって、前段の装置では高固化速度で低固
相率の半凝固金属を製造し、それを次工程の後段に低固
化速度の半凝固金属製造装置に移送し、固相率を上げる
ことによって、微細結晶の半凝固金属が有利に製造でき
るわけである。
Therefore, when producing a semi-solid metal with a high solidification rate in which the solidification rate is increased and the crystal grain size is reduced, the production method using a multi-stage apparatus requires a high solidification rate and a half of the low solid phase rate in the former apparatus. By producing a solidified metal and transferring it to a semi-solidified metal production apparatus having a low solidification rate at a later stage of the next step, and raising the solid phase ratio, a semi-solid metal of fine crystals can be advantageously produced.

かくして、前記問題点が解決され、低固相率から高固
相率までの目標の半凝固金属を非連続的、または連続的
に安定して製造することが可能になった。
Thus, the above-mentioned problems have been solved, and it has become possible to stably produce a target semi-solid metal from a low solid fraction to a high solid fraction discontinuously or continuously.

(実施例) 実施例1 第2図に示した半凝固金属装置にAl−4.5%Cu合金の
溶湯を注入し、攪拌子を600rpm(剪断歪速度=300/s)
で攪拌しながら冷却槽での凝固中の平均固化速度を0.06
8/sで冷却し、装置の底部ノズル出口で排出される半凝
固金属の温度を連続測定し、その温度から平衡状態図を
もとに換算した固相率が0.20の半凝固金属を排出した結
果連続的に安定して半凝固金属の製造ができ、流動の停
滞を生じることなく次工程の加工装置への排出ができ
た。
(Example) Example 1 A molten metal of Al-4.5% Cu alloy was poured into the semi-solid metal apparatus shown in FIG. 2, and the stirrer was set at 600 rpm (shear strain rate = 300 / s).
The average solidification rate during solidification in the cooling tank was 0.06
Cooled at 8 / s, continuously measured the temperature of the semi-solid metal discharged at the bottom nozzle outlet of the device, and discharged a semi-solid metal with a solid phase ratio of 0.20 converted from that temperature based on the equilibrium diagram As a result, semi-solid metal could be produced continuously and stably, and the metal could be discharged to the processing device in the next step without causing stagnation of the flow.

実施例2 第3図に示した半凝固金属製造装置にAl−10%Cu合金
の溶湯を注入し、攪拌子を600rpm(剪断歪速度=280/
s)攪拌しながら冷却槽での凝固中の平均固化速度を0.0
047/sで冷却し、攪拌槽内部の半凝固金属の温度換算の
固相率が0.35の半凝固金属を製造した結果、流動性のあ
る半凝固金属の製造ができた。
Example 2 A molten metal of an Al-10% Cu alloy was poured into the semi-solid metal production apparatus shown in FIG. 3, and the stirrer was set at 600 rpm (shear strain rate = 280 /
s) The average solidification rate during solidification in the cooling bath was 0.0
The solid was cooled at 047 / s to produce a semi-solid metal having a solid-phase ratio of 0.35 in terms of temperature of the semi-solid metal inside the stirring tank. As a result, a fluid semi-solid metal was produced.

実施例3 第4図に示した半凝固金属製造装置の一段目の装置に
Al−4.5%Cu合金の溶湯を注入し、攪拌子を900rpm(剪
断歪速度=450/s)で攪拌しながら、その冷却槽での凝
固中の平均固化速度を0.285/sで冷却し装置の底部ノズ
ル出口温度換算の固相率が0.12の半凝固金属を後段の装
置に排出移送し、後段の冷却槽での凝固中の平均固化速
度を0.0017/sで冷却し、底部ノズル出口温度換算の固相
率が0.45の半凝固金属を排出した結果、連続的に安定し
て半凝固金属の製造および排出ができた。
Example 3 In the first stage of the semi-solid metal production apparatus shown in FIG.
The molten metal of the Al-4.5% Cu alloy was poured, and while the stirrer was stirred at 900 rpm (shear strain rate = 450 / s), the average solidification rate during solidification in the cooling bath was cooled at 0.285 / s, and the apparatus was cooled. The semi-solid metal having a solid fraction of 0.12 in terms of the bottom nozzle outlet temperature is discharged and transferred to the subsequent device, and the average solidification rate during solidification in the cooling tank in the subsequent stage is cooled at 0.0017 / s, and the bottom nozzle outlet temperature conversion is performed. As a result of discharging the semi-solid metal having a solid phase ratio of 0.45, it was possible to continuously manufacture and discharge the semi-solid metal stably.

なお第2〜4図において1は保温槽、2は冷却攪拌
槽、3は攪拌子、4は駆動軸、5は取鍋、6は供給溶融
金属、7は冷却水、8は水冷ジャケット、9はスラリ状
の半凝固金属、10は測温用熱電対、11は排出ノズル、12
はスライドゲート、13は誘導加熱ヒーターまた18はタン
ディッシュ、19は加熱ヒーターコイルであり、とくに第
4図で14は前段半凝固金属連続製造装置、15は移送管、
16は後段半凝固金属連続製造装置、17は双ロール鋳造機
であり、さらに20はセラミックスコーティングである。
2 to 4, reference numeral 1 denotes a heat retaining tank, 2 denotes a cooling and stirring tank, 3 denotes a stirrer, 4 denotes a drive shaft, 5 denotes a ladle, 6 denotes molten metal supplied, 7 denotes cooling water, 8 denotes a water cooling jacket, 9 Is a slurry-like semi-solid metal, 10 is a thermocouple for temperature measurement, 11 is a discharge nozzle, 12
Is a slide gate, 13 is an induction heating heater, 18 is a tundish, 19 is a heating heater coil, and particularly in FIG.
Reference numeral 16 denotes an apparatus for continuously producing a semi-solid metal in the latter stage, reference numeral 17 denotes a twin roll casting machine, and reference numeral 20 denotes a ceramic coating.

上に述べた各実施例での固化速度の制御は冷却槽内壁
の材質、冷却水量、冷却槽内壁と攪拌子の間の間隙を変
えることによって行った。
The solidification rate in each of the above-described embodiments was controlled by changing the material of the cooling tank inner wall, the amount of cooling water, and the gap between the cooling tank inner wall and the stirrer.

上記の各実施例に加えそれら以外の実施例の結果を合
わせて表1にまとめて示す。
Table 1 summarizes the results of the other examples in addition to the above examples.

また、第5図に本発明による実施例の半凝固金属の製
造時における時間経過にともなう排出速度変化を比較例
とあわせて示す。本発明例では排出速度は安定している
が、比較例では途中で排出速度の変動および槽内閉塞に
よって排出が停止している。
FIG. 5 shows a change in the discharge rate over time during the production of the semi-solid metal of the example according to the present invention, together with a comparative example. In the example of the present invention, the discharging speed is stable, but in the comparative example, the discharging is stopped due to the fluctuation of the discharging speed and the clogging in the tank.

(発明の効果) この発明に従って半凝固金属を製造する方法はつぎに
列記する効果を発揮する。
(Effect of the Invention) The method for producing a semi-solid metal according to the present invention exhibits the following effects.

(1) 半凝固金属の流動性が悪く装置内で閉塞しやす
い高固化速度での半凝固金属連続製造装置でも、安定し
て連続的に製造でき排出が可能となる。
(1) Even a semi-solid metal continuous production apparatus with a high solidification rate at which the semi-solid metal has a poor fluidity and is easily clogged in the apparatus can be stably and continuously produced and discharged.

(2) 固相率が0.6のような高固相率の半凝固金属を
安定して連続的に製造することが可能となる。
(2) It is possible to stably and continuously produce a semi-solid metal having a high solid fraction such as 0.6.

(3) 非連続的半凝固金属製造装置でも、安定して流
動性のよい半凝固金属を製造することができる。
(3) It is possible to stably produce a semi-solid metal having good fluidity even with a discontinuous semi-solid metal production apparatus.

(4) したがって、半凝固金属製造装置から半凝固金
属が排出され、後段の装置への移送や次工程の保持装
置、鋳造機および加工装置への排出移送に対して、装置
内閉塞などの事故がなく、安定した操業が可能である。
(4) Therefore, the semi-solid metal is discharged from the semi-solid metal manufacturing apparatus, and an accident such as blockage in the apparatus due to transfer to a subsequent apparatus or discharge and transfer to a holding apparatus, a casting machine, and a processing apparatus in the next process. And stable operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図はスラリー状半凝固金属の固化速度と液性限界固
相率の関係グラフ、 第2図はこの発明の実施例に使用した半凝固金属連続製
造装置を示す説明図、 第3図は同じく実施例に使用した半凝固金属の非連続的
製造装置を示す説明図であり、 第4図は高固相率用の多段式半凝固金属連続製造装置の
説明図であり、 第5図は実施例1における排出経過時間に対する排出速
度及び排出固相率の比較グラフである。 1……保温槽、2……冷却攪拌槽 3……攪拌子、4……駆動軸 5……取鍋、6……供給溶融金属 7……冷却水、8……水冷ジャケット 9……半凝固金属、10……測温用熱電対 11……排出ノズル、12……スライドゲート 13……誘導加熱ヒーター 14……前段半凝固金属連続製造装置 15……移送管 16……後段半凝固金属連続製造装置 17……双ロール鋳造機、18……タンディッシュ 19……加熱ヒーターコイル 20……セラミックスコーティング
FIG. 1 is a graph showing a relationship between a solidification rate of a semi-solid metal in a slurry state and a liquid limit solid phase ratio, FIG. 2 is an explanatory view showing a semi-solid metal continuous production apparatus used in an embodiment of the present invention, and FIG. FIG. 4 is an explanatory view showing an apparatus for discontinuous production of semi-solid metal similarly used in Examples, FIG. 4 is an explanatory view of a multi-stage semi-solid metal continuous production apparatus for high solid phase ratio, FIG. 5 is a comparison graph of a discharge speed and a discharge solid phase ratio with respect to a discharge elapsed time in Example 1. DESCRIPTION OF SYMBOLS 1 ... Insulated tank, 2 ... Cooling and stirring tank 3 ... Stirrer 4, ... Drive shaft 5 ... Ladle, 6 ... Molten metal supply 7 ... Cooling water, 8 ... Water cooling jacket 9 ... Half Solidified metal, 10 ... Thermocouple for temperature measurement 11 ... Discharge nozzle, 12 ... Slide gate 13 ... Induction heater 14 ... Front-end semi-solidified metal continuous production equipment 15 ... Transfer pipe 16 ... Late-stage semi-solidified metal Continuous production equipment 17: Twin roll casting machine, 18: Tundish 19: Heating heater coil 20: Ceramic coating

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−44428(JP,A) 特開 平2−89540(JP,A) 特開 平1−170546(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 1/00 B22D 21/04 B22D 11/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-44428 (JP, A) JP-A-2-89540 (JP, A) JP-A-1-170546 (JP, A) (58) Field (Int. Cl. 6 , DB name) B22D 1/00 B22D 21/04 B22D 11/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融金属を冷却攪拌槽内に注入し、その冷
却凝固過程において攪拌を与え固液共存状態のスラリー
状半凝固金属を製造する際、スラリー状半凝固金属の固
相率fsが攪拌冷却時の固液共存状態における固化速度の
関数である下記の(1)の式を満足する範囲の攪拌冷却
操業を行い、該半凝固金属を冷却攪拌槽より排出するこ
とを特徴とする、半凝固金属の製造方法。 (記) fs≦0.65−0.25×R−1/3 −−−−(1) R=(a/Co)×(0.4/C) fs;スラリー状半凝固金属の固相率〔−〕 a=1〔%/s〕 Co :全溶質濃度〔%〕 C :溶融金属の凝固開始温度(液相線温度)以下での凝
固中の平均固化速度〔s-1
When a molten metal is poured into a cooling and stirring tank and stirred during the cooling and solidification process to produce a slurry-like semi-solid metal in a solid-liquid coexistence state, a solid phase ratio f s of the slurry-like semi-solid metal is produced. Performs a stirring and cooling operation within a range satisfying the following equation (1), which is a function of a solidification rate in a solid-liquid coexisting state during stirring and cooling, and discharges the semi-solid metal from a cooling and stirring tank. , Semi-solid metal production method. (SL) f s ≦ 0.65-0.25 × R -1/3 ---- (1) R = (a / Co) × (0.4 / C) f s; solid fraction of slurry semi-solid metal [-] a = 1 [% / s] Co: Total solute concentration [%] C: Average solidification rate [s -1 ] during solidification below the solidification onset temperature (liquidus temperature) of the molten metal
【請求項2】スラリー状半凝固金属の攪拌冷却操業が多
段に設置した冷却攪拌槽内における順次的な繰返しによ
るものである請求項第1項に記載した、高固相率の半凝
固金属の製造方法。
2. The method of claim 1, wherein the stirring and cooling operation of the slurry-like semi-solid metal is performed by successive repetition in a cooling and stirring tank provided in multiple stages. Production method.
【請求項3】初段の冷却攪拌槽においては比較的大きい
固化速度で操業し、後段の冷却攪拌槽においては順次に
小さい固化速度で操業する請求項第2項に記載した高固
相率の半凝固金属の製造方法。
3. A high-solids fraction having a high solid fraction according to claim 2, wherein the first cooling-stirring tank operates at a relatively high solidification rate, and the second cooling-stirring tank operates at a successively lower solidification rate. Method for producing solidified metal.
【請求項4】溶融金属がアルミニウム合金である請求項
第1項、第2項又は第3項に記載した半凝固金属の製造
方法。
4. A method for producing a semi-solid metal according to claim 1, wherein the molten metal is an aluminum alloy.
JP4458090A 1990-02-27 1990-02-27 Semi-solid metal production method Expired - Lifetime JP2927863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4458090A JP2927863B2 (en) 1990-02-27 1990-02-27 Semi-solid metal production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4458090A JP2927863B2 (en) 1990-02-27 1990-02-27 Semi-solid metal production method

Publications (2)

Publication Number Publication Date
JPH03248743A JPH03248743A (en) 1991-11-06
JP2927863B2 true JP2927863B2 (en) 1999-07-28

Family

ID=12695439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4458090A Expired - Lifetime JP2927863B2 (en) 1990-02-27 1990-02-27 Semi-solid metal production method

Country Status (1)

Country Link
JP (1) JP2927863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537650B (en) * 2013-09-30 2015-10-28 深圳市亚美联合压铸设备有限公司 The steady device of magnesium alloy cast weighing apparatus
CN106944603B (en) * 2017-05-17 2023-05-05 福建省鼎智新材料科技有限公司 Full-automatic water-cooling semi-solid pulping machine
CN106938326B (en) * 2017-05-17 2019-11-12 安徽中鑫压铸技术研发有限公司 Full-automatic air-cooled semi-solid slurrying machine

Also Published As

Publication number Publication date
JPH03248743A (en) 1991-11-06

Similar Documents

Publication Publication Date Title
EP0476843B1 (en) Process for the production of semi-solidified metal composition
US4434839A (en) Process for producing metallic slurries
US6640879B2 (en) Semi-solid casting apparatus and method
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP3188352B2 (en) Method for producing a rheocast ingot, especially for producing die castings with high mechanical properties
JP2927863B2 (en) Semi-solid metal production method
JP2804361B2 (en) Semi-solid metal production method
JP2874990B2 (en) Method for producing semi-solid metal
JP3249866B2 (en) Method and apparatus for producing semi-solid metal
JP2975189B2 (en) Die casting method of aluminum alloy
JPH115142A (en) Manufacturing method of casting metal slurry
JP2984065B2 (en) Method and apparatus for producing semi-solid metal
JPH04124234A (en) Manufacture of half-solidified metal
JP3062339B2 (en) Method for producing semi-solid metal
JPH06297097A (en) Production of half solidified metal
Borisov Process for production of aluminum-alloy ingots with non-dendritic thixotropic structure.
JPH07100589A (en) Production of half-solidified metal without deteriorated quality by stirrer rotating method and apparatus therefor
JPH07214245A (en) Production of half solidified metal having excellent workability
JPH06328200A (en) Manufacture of billet for rheo-working semi-molten metal
JPH05212498A (en) Manufacture of metal-base composite material cast ingot
JPH0957399A (en) Production of metallic slurry for casting
JPH06126388A (en) Production of semi-solidified metal
JPH05104226A (en) Method for die-casting aluminum alloy
JPH07256397A (en) Manufacture of semi-solidified metal
JPH07155905A (en) Method for continuously producing half-solidified metal having good workability