JP2804361B2 - Semi-solid metal production method - Google Patents
Semi-solid metal production methodInfo
- Publication number
- JP2804361B2 JP2804361B2 JP2238871A JP23887190A JP2804361B2 JP 2804361 B2 JP2804361 B2 JP 2804361B2 JP 2238871 A JP2238871 A JP 2238871A JP 23887190 A JP23887190 A JP 23887190A JP 2804361 B2 JP2804361 B2 JP 2804361B2
- Authority
- JP
- Japan
- Prior art keywords
- semi
- solid
- cooling
- metal
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は非樹枝状初晶が金属融体中に分散した固体−
液体金属混合物(簡単のため単に半凝固金属と呼ぶ)を
安定に製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a solid in which non-dendritic primary crystals are dispersed in a molten metal.
The present invention relates to a method for stably producing a liquid metal mixture (simply called semi-solid metal for simplicity).
(従来の技術) 半凝固金属を製造する方法には、例えば特公昭56−20
944号公報に開示されているように、溶融金属(一般に
は合金)を円筒状の冷却撹拌槽内において撹拌子の高速
回転により冷却しながら激しく撹拌して、溶融金属中に
生成しつつある樹枝状晶を、その枝部が消失ないし縮小
して丸みを帯びた形態に変え、これを分散させて金属融
体中に混在するようにしたスラリー状半凝固金属とし、
冷却撹拌槽の底部ノズルから連続的に排出するか、また
は連続的な排出はせずに上記スラリー状半凝固金属の冷
却撹拌過程を一回終える度毎に排出し再度の注入を繰り
返し行うことなども知られている。(Prior Art) Methods for producing semi-solid metal include, for example, JP-B-56-20
As disclosed in Japanese Unexamined Patent Publication No. 944, a molten metal (generally, an alloy) is vigorously stirred while being cooled by a high-speed rotation of a stirrer in a cylindrical cooling and stirring tank, and the dendrites being formed in the molten metal. The crystal form is changed to a rounded form in which the branches disappear or shrink, and this is dispersed to form a slurry-like semi-solid metal which is mixed in the metal melt,
Continuously discharge from the bottom nozzle of the cooling and stirring tank, or repeatedly discharge and re-inject each time the cooling and stirring process of the slurry-like semi-solid metal is completed without continuous discharging. Is also known.
この冷却中の撹拌方法としては撹拌子による上記のよ
うな機械的撹拌の他にも、冷却撹拌槽内の溶融金属を電
磁気的に撹拌する電磁撹拌方法も知られている。As a stirring method during the cooling, in addition to the mechanical stirring described above using a stirrer, an electromagnetic stirring method for electromagnetically stirring a molten metal in a cooling stirring tank is also known.
これらの方法によって半凝固金属の製造は可能である
が、いずれの方法にあっても目標とする固相率(fs)と
固液共存状態における単位時間当たりの固相率の増加速
度(簡単のため単に固化速度に呼ぶ。)およびその撹拌
速度によって左右される流体の単位距離当たりの速度変
化の平均値(簡単のために単に剪断歪速度と呼ぶ。)に
よって、できた半凝固金属の流動性が異なり、同一の固
相率(fs)であっても槽内の半凝固金属の流動停止を来
して排出不能や凝固閉塞の問題を生じるなどの安定した
半凝固金属の製造を困難にすることが明らかになった。Although the production of semi-solid metal by these methods are possible, any of the solid phase rate to a target In the method (f s) and the solid-liquid rate of increase of the solid phase rate per unit time in the coexistence (Easy Flow of the semi-solid metal formed by the average value of the velocity change per unit distance of the fluid (referred to simply as the shear strain rate for simplicity), which depends on the stirring speed of the fluid. Difficult to produce a stable semi-solid metal, such as inability to discharge or solidification clogging due to flow stoppage of the semi-solid metal in the tank even at the same solid fraction (f s ) It became clear that.
(発明が解決しようとする課題) 半凝固金属の流動性は一般にスラリー状半凝固金属の
全体積中に占める固相金属の体積の全体積に対する比で
あらわした固相率が高くなると悪くなり、ある固相率以
上、通常は0.65程度以上では、半凝固金属の製造装置か
ら次工程の多段半凝固金属製造装置や鋳造装置、ないし
保持装置、あるいは加工装置への排出や移送ができなく
なって、該半凝固金属製造装置内での流動停止や閉塞凝
固等による排出不能や問題が発生する。(Problems to be Solved by the Invention) The fluidity of a semi-solid metal generally becomes worse when the solid phase ratio, which is expressed as a ratio of the volume of the solid phase metal to the total volume of the slurry semi-solid metal, increases, Above a certain solid phase ratio, usually above 0.65, it is impossible to discharge or transfer from the semi-solid metal manufacturing device to the next step multi-stage semi-solid metal manufacturing device or casting device, or to the holding device, or the processing device, Discharge is impossible or a problem occurs due to stoppage of flow or blockage solidification in the semi-solid metal production apparatus.
そればかりでなく連続的に冷却しながら半凝固金属を
製造するに当たって、固相率(fs)が0.65以下であって
も凝固中の固化速度が大きいほど、また剪断歪速度が小
さいほど流動性が悪くなることがわかった。すなわち半
凝固金属の安定した製造ないしは次工程の多段半凝固金
属製造装置や鋳造装置、保持装置および加工装置への安
定した排出移送を行うためには、半凝固金属の固相率、
凝固中の固化速度のみならず断歪速度が流動性(粘性)
に及ぼす関係を明確にして、冷却下における半凝固金属
の固相率および冷却速度に見合った剪断歪速度の撹拌、
または剪断歪速度に見合った冷却速度を行い、流動性の
適正な管理を行う必要があるわけである。In addition, when producing semi-solid metal with continuous cooling, the fluidity increases as the solidification rate during solidification increases and the shear strain rate decreases, even when the solid fraction (f s ) is 0.65 or less. Turned out to be worse. That is, in order to perform stable production of semi-solid metal or stable discharge and transfer to a multi-stage semi-solid metal production device or casting device, holding device and processing device in the next process, the solid phase ratio of semi-solid metal,
Flow rate (viscosity) as well as solidification rate during solidification
Agitation of the shear strain rate corresponding to the solid fraction and the cooling rate of the semi-solid metal under cooling,
Alternatively, it is necessary to perform a cooling rate commensurate with the shear strain rate and to appropriately manage fluidity.
(問題が解決するための手段) 種々の固化速度、撹拌条件でスラリー状半凝固金属の
製造実験を行い、該半凝固金属の流動性を確保すること
ができる固相率(fs)と固化速度と剪断歪速度の関係に
ついて解明し、次工程への安定な排出を可能ならしめる
ように該半凝固金属の固化速度の如何によって撹拌速度
の選択による必要剪断歪速度の確保や固相率(fs)を変
えること、または剪断歪速度の如何によって固化速度の
設定値や固相率(fs)を変えることによって上記問題が
有利に解決できるものである。(Means for Solving the Problems) Production experiments of semi-solid metal in a slurry state were performed at various solidification speeds and stirring conditions, and the solid phase ratio (f s ) and the solidification rate that could ensure the fluidity of the semi-solid metal were confirmed. The relationship between the speed and the shear strain rate is elucidated, and the required shear strain rate is secured by selecting the stirring rate depending on the solidification rate of the semi-solidified metal, and the solid phase ratio ( f s) by changing the, or settings and the solid fraction of the solidification rate depending upon which the shear strain rate (f s) above problems by changing the are those that can be advantageously solved.
すなわち本発明は溶融金属を冷却撹拌層内に注入し、
その冷却凝固過程において撹拌を与え固液共存状態のス
ラリー状半凝固金属を製造する際、操業条件として固相
率(fs)と平均の固化速度Rおよび剪断歪速度に従う
流動性指数ηの値が下記の(1)式を満足する範囲の撹
拌冷却操業を行い、該操業を経たスラリー状半凝固金属
を冷却撹拌槽より排出することを特徴とする半凝固金属
の製造方法。That is, the present invention injects the molten metal into the cooling and stirring layer,
Making the slurry semi-solid metal of the solid-liquid coexisting state giving stirred at that cooling solidification process, the solid phase ratio as operating conditions (f s) and the average solidification rate R and the values of fluidity index according shear strain rate η Performing a stirring and cooling operation within a range satisfying the following expression (1), and discharging the slurry-like semi-solid metal after the operation from a cooling and stirring tank.
(記) η=a/2(1/fs−1/fscr)≦10 …(1) a=35000・R0.5・−1.7〔−〕 fscr=0.65−1.4・R1/3・−1/3〔−〕 fscr>fs η;流動性指標値〔−〕 fs;スラリー状半凝固金属の固相率(目標とする固
相率)〔−〕 R;原料溶融金属の凝固中における平均の固化速度
〔%・s-1〕 ;撹拌速度によって決まる剪断歪速度〔s-1〕 である。(SL) η = a / 2 (1 / f s -1 / f scr) ≦ 10 ... (1) a = 35000 · R 0.5 · -1.7 [-] f scr = 0.65-1.4 · R 1/3 · - 1/3 [-] f scr > f s η; fluidity index [-] f s ; solid fraction of semi-solid metal in slurry (target solid fraction) [-] R; solidification of raw molten metal Average solidification rate [% · s −1 ]; shear strain rate [s −1 ] determined by stirring speed.
ここで、上記平均の固化速度R〔%・s-1〕とは前述
した如く、固液共存状態における単位時間当たりの固相
率の増加速度と定義され、この平均の固化速度Rは例え
ば原料溶融金属を液相線温度から固相線温度に至るまで
の間で冷却を行い固相率(fs)になる半凝固金属を造る
場合を例にとると、液相線温度から固相線温度に至るま
での固化速度は必ずしも同一にはならない(冷却開始時
のほうが固化速度は大きく固相線温度に近づくに従い小
さくなる)。このため固化速度Rは液相線温度から固相
線温度に至るまでの間の冷却において、目標とする固相
率(fs)になるまでの固相率の増加量をfs(ここに示し
たfsは実際には目標とする固相率(fs)と同じ)とし、
この間の時間をΔtとしてR=fs/Δt〔%・s-1〕で求
める。Here, as described above, the average solidification rate R [% · s −1 ] is defined as the rate of increase in the solid fraction per unit time in the solid-liquid coexistence state. For example, when the molten metal is cooled from the liquidus temperature to the solidus temperature to produce a semi-solidified metal having a solidus fraction (f s ), The solidification rate up to the temperature is not always the same (the solidification rate is larger at the start of cooling and becomes smaller as the temperature approaches the solidus temperature). In the cooling during this for solidification rate R from the liquidus temperature up to the solidus temperature, the solid phase ratio to target solid fraction increase in until the (f s) f s (here The indicated f s is actually the same as the target solid fraction (f s ))
During this period of time determined by R = f s / Δt as Delta] t [% · s -1].
また本発明はスラリー状半凝固金属の撹拌冷却操業が
多段に設置した冷却撹拌槽内における順次的な繰返しに
よるものであること、ここに初段の冷却撹拌槽において
は比較的大きい固化速度で操業し、後段の冷却撹拌槽に
おいて順次に小さい固化速度で操業すること、さらに溶
融金属がアルミニウム合金であることが好適である。Further, the present invention is based on the fact that the stirring and cooling operation of the slurry-like semi-solid metal is performed by successive repetition in the cooling and stirring tanks provided in multiple stages, and here, the first stage of the cooling and stirring tank is operated at a relatively high solidification rate. It is preferable that the operation is sequentially performed at a lower solidification rate in the subsequent cooling and stirring tank, and that the molten metal is an aluminum alloy.
(作 用) 発明者らは、種々の組成の合金の溶融金属を用いて種
々の固化速度、撹拌条件でスラリー状半凝固金属の製造
実験を行い、半凝固金属の流動性(粘性)の指標値ηと
流動性の限界を示す液性限界固相率fscrおよび固化速度
R〔%・s-1〕、剪断歪速度〔s-1〕との関係について
調査し、(1)式に示す関係を得た。また図1にその結
果の一例を示す。すなわち流動性指標値ηは固相率
(fs)とスラリー状半凝固金属の流動性の限界を示す液
性限界固相率(簡単のため単に限界固相率fscrと呼
ぶ。)および該半凝固金属中に懸濁する結晶の形状パラ
メーターaとの関数であり、fscrおよびaは溶融金属の
凝固中における平均の固化速度R〔%・s-1〕および剪
断歪速度との関数であり、 η=a/2(1/fs−1/fscr) a=35000・R0.5・−0.7〔−〕 fscr=0.65−1.4・R1/3・1/3〔−〕 の関係があることを見いだし、η≦10の関係を満たすこ
とにより流動性が安定に確保され得ることを発見した。(Operation) The inventors conducted experiments on the production of slurry-like semi-solidified metals using molten metals of alloys having various compositions at various solidification rates and stirring conditions, and obtained an index of the fluidity (viscosity) of the semi-solidified metal. The relationship between the value η, the liquid limit solid fraction fscr indicating the limit of fluidity, the solidification rate R [% · s −1 ], and the shear strain rate [s −1 ] was investigated, and the relation shown in the equation (1) was obtained. I got FIG. 1 shows an example of the result. In other words, the fluidity index value η is the solid phase fraction (f s ) and the liquidity critical solid phase fraction (for simplicity, simply referred to as the critical solid fraction f scr ) indicating the fluidity limit of the slurry-like semi-solidified metal. F scr and a are functions of the average solidification rate R [% · s −1 ] and the rate of shear strain during solidification of the molten metal. There, η = a / 2 (1 / f s -1 / f scr) a = 35000 · R 0.5 · -0.7 [-] f scr = 0.65-1.4 · R 1/3 · 1/3 [-] relationship And found that the fluidity can be stably secured by satisfying the relationship of η ≦ 10.
ここで(fs)は冷却撹拌槽の出側における測温値をも
とに平衡状態図から求めた固相率であり、fscr>fsであ
る。Here, (f s ) is the solid fraction obtained from the equilibrium diagram based on the temperature measurement value at the outlet side of the cooling and stirring tank, and f scr > f s .
この結果に従いスラリー状半凝固金属製造において冷
却撹拌を終了して次工程に排出する半凝固金属は、流動
性指標値ηが10以下、望ましくは5以下にするを好適と
する。According to this result, it is preferable that the fluidity index value η of the semi-solid metal to be discharged to the next step after finishing the cooling and stirring in the production of the slurry-like semi-solid metal is 10 or less, preferably 5 or less.
すなわち、排出される半凝固金属の流動性を確保する
ためには固相率(fs)および固化速度の如何によって最
低剪断歪速度が決まることになる。That is, the solid fraction in order to ensure the fluidity of the semi-solid metal (f s) and the minimum shear strain rate depending upon which the solidification rate is determined to be discharged.
もっともスラリー状半凝固金属の結晶粒径を微細にす
るためには固化速度を大きくする必要があるが、固化速
度を大きくすると、上記のごとく流動性が低下するた
め、必然的に剪断歪速度を大きくするか冷却撹拌槽の出
側より排出されるスラリー状半凝固金属の固相率(fs)
を低くする必要がある。However, it is necessary to increase the solidification rate in order to reduce the crystal grain size of the slurry-like semi-solid metal, but if the solidification rate is increased, the fluidity is reduced as described above, so the shear strain rate is inevitably increased. solid fraction of slurry semi-solid metal discharged from the outlet side of the or increasing cooling agitation tank (f s)
Need to be lowered.
そのため固化速度を大きくして結晶粒径を微細にした
高固相率の半凝固金属を製造する場合には、高剪断歪速
度が得られる装置または多段装置による製造法によっ
て、前段の装置では高固化速度で低固相率の半凝固金属
を製造し、それを次工程の後段の低固化速度の半凝固金
属製造装置に移送し、固相率を上げることによって、微
細結晶の高固相率の半凝固金属が製造できるわけであ
る。Therefore, when producing a semi-solid metal with a high solidification rate in which the solidification rate is increased and the crystal grain size is reduced, a high shear strain rate can be obtained by a device or a multi-stage device, and the former device has a high solidification rate. Produces a semi-solid metal with a low solid phase rate at the solidification rate, and transfers it to the semi-solid metal production equipment with a low solidification rate at the later stage of the next process, and raises the solid phase rate to increase the solid phase rate of the fine crystals. Can be produced.
かくして、前記問題点が解決され、低固相率から高固
相率までの目標とする固相率(fs)を有する半凝固金属
を非連続的、または連続的に安定して製造することが可
能になった。Thus, the above problems are solved, and a semi-solid metal having a target solid fraction (f s ) from a low solid fraction to a high solid fraction is discontinuously or continuously stably produced. Is now possible.
(実施例) 実施例1 第2図に示した半凝固金属製造装置にAl−4.5%Cu合
金の溶湯を注入し、撹拌子を600rpm(剪断歪速度=300/
s)で撹拌しながら冷却槽での凝固中の平均固化速度を
3.0%・s-1で冷却し、装置の底部ノズル出口で排出され
る半凝固金属の温度を連続測定し、その温度から平衡状
態図をもとに換算した固相率(fs)が0.25の半凝固金属
を排出した結果、連続的に安定して半凝固金属の製造が
でき、流動の停滞を生じることなく次工程の加工装置へ
の排出ができた。(Example) Example 1 A molten metal of an Al-4.5% Cu alloy was poured into a semi-solid metal manufacturing apparatus shown in FIG. 2, and a stirrer was set at 600 rpm (shear strain rate = 300 /
The average solidification rate during solidification in the cooling bath while stirring in s)
After cooling at 3.0% · s -1 , the temperature of the semi-solid metal discharged at the outlet of the bottom nozzle of the device was continuously measured, and the solid phase fraction (f s ) converted from the temperature based on the equilibrium diagram was 0.25. As a result, the semi-solid metal was continuously and stably produced, and was discharged to the processing device in the next step without causing a stagnation of the flow.
実施例2 第3図に示した半凝固金属製造装置にAl−10%Cu合金
の溶湯を注入し、撹拌子を600rpm(剪断歪速度=280/
s)で撹拌しながら冷却槽での凝固中の平均固化速度を
0.45%・s-1で冷却し、撹拌槽内部の半凝固金属の温度
換算の固相率(fs)が0.35の半凝固金属を製造した結
果、流動性のある半凝固金属の製造ができた。Example 2 A molten metal of an Al-10% Cu alloy was poured into the semi-solid metal producing apparatus shown in FIG. 3, and the stirring bar was rotated at 600 rpm (shear strain rate = 280 /
The average solidification rate during solidification in the cooling bath while stirring in s)
Cooled in 0.45% · s -1, results fraction solid of temperature conversion of semi-solid metal of the internal stirring tank (f s) is to produce a semi-solid metal of 0.35, it can be production of semi-solidified metal a flowable Was.
実施例3 第4図に示した半凝固金属製造装置の一段目の装置に
Al−4.5%Cu合金の溶湯を注入し、撹拌子を900rpm(剪
断歪速度=450/s)で撹拌しながら、その冷却槽での凝
固中の平均固化速度を23.0%・s-1で冷却し、装置の底
部ノズル出口温度換算の固相率(fs)が0.11の半凝固金
属を後段の装置に排出移送し、後段の冷却槽での凝固中
の平均固化速度を0.20%・s-1で冷却し、底部ノズル出
口温度換算の固相率(fs)が0.47の半凝固金属を排出し
た結果、連続的に安定して半凝固金属の製造および排出
ができた。Example 3 In the first stage of the semi-solid metal production apparatus shown in FIG.
Inject the molten metal of Al-4.5% Cu alloy and cool the average solidification rate during solidification in the cooling tank at 23.0% · s -1 while stirring the stirrer at 900 rpm (shear strain rate = 450 / s) and, bottom solid phase ratio of the nozzle exit temperature conversion apparatus (f s) is discharged transferring the semi-solid metal of 0.11 downstream of the device, the average solidification rate during solidification in the subsequent cooling bath 0.20% · s - After cooling at 1 and discharging the semi-solid metal having a solid phase ratio (f s ) of 0.47 in terms of the bottom nozzle outlet temperature, the production and discharge of the semi-solid metal could be continuously and stably performed.
なお第2〜4図において1は保温槽、2は冷却撹拌
槽、3は撹拌子、4は駆動軸、5は取鍋、6は供給溶融
金属、7は冷却水、8は水冷ジャケット、9はスラリー
状の半凝固金属、10は測温用熱電対、11は排出ノズル、
12はスライドゲート、13は誘導加熱ヒーターまたは18は
タンディシュ、19は加熱ヒーターコイルであり、とくに
第4図で14は前段半凝固金属連続製造装置、15は移送
管、16は後段半凝固金属連続製造装置、17は双ロール鋳
造機であり、さらに20はセラミックスコーティングであ
る。In FIGS. 2 to 4, 1 is a heat retention tank, 2 is a cooling and stirring tank, 3 is a stirrer, 4 is a drive shaft, 5 is a ladle, 6 is molten metal supplied, 7 is cooling water, 8 is a water cooling jacket, 9 Is a semi-solid metal in a slurry state, 10 is a thermocouple for temperature measurement, 11 is a discharge nozzle,
12 is a slide gate, 13 is an induction heater or 18 is a tundish, 19 is a heater coil, and particularly in FIG. 4, 14 is a continuous semi-solid metal production apparatus in the former stage, 15 is a transfer pipe, and 16 is a continuous semi-solid metal continuous. The production equipment, 17 is a twin-roll caster, and 20 is a ceramic coating.
上に述べた各実施例での固化速度の制御は冷却槽内壁
の材質、冷却水量、冷却槽内壁と撹拌子の間の間隙を変
えることによって行った。The solidification rate in each of the above embodiments was controlled by changing the material of the cooling tank inner wall, the amount of cooling water, and the gap between the cooling tank inner wall and the stirrer.
上記の各実施例に加えそれら以外の実施例の結果も合
わせて表1にまとめて示す。Table 1 summarizes the results of the other examples in addition to the above examples.
また、第5図に本発明による実施例1の半凝固金属の
製造時における時間経過にともなう排出速度変化を比較
例とあわせて示す。本発明例では排出速度は安定してい
るが、比較例では途中で排出速度の変動および槽内閉塞
によって排出が停止している。 FIG. 5 shows a change in the discharge rate over time during the production of the semi-solid metal of Example 1 according to the present invention, together with a comparative example. In the example of the present invention, the discharging speed is stable, but in the comparative example, the discharging is stopped due to the fluctuation of the discharging speed and the clogging in the tank.
(発明の効果) この発明に従って半凝固金属を製造する方法はつぎに
列記する効果を発揮する。(Effect of the Invention) The method for producing a semi-solid metal according to the present invention exhibits the following effects.
(1) 半凝固金属の流動性が悪く装置内で閉塞しやす
い高固化速度での半凝固金属連続製造装置でも、安定し
て連続的に製造でき排出が可能となる。(1) Even a semi-solid metal continuous production apparatus with a high solidification rate at which the semi-solid metal has a poor fluidity and is easily clogged in the apparatus can be stably and continuously produced and discharged.
(2) 固相率(fs)が0.6のような高固相率の半凝固
金属を安定して連続的に製造することが可能となる。
(3) 非連続的半凝固金属製造装置でも、安定して流
動性のよい半凝固金属を製造することができる。(2) the solid phase rate (f s) it is possible to manufacture stably and continuously the high fraction solid semi-solid metal, such as 0.6.
(3) It is possible to stably produce a semi-solid metal having good fluidity even with a discontinuous semi-solid metal production apparatus.
(4) したがって、半凝固金属製造装置から半凝固金
属が排出され、後段の装置への移送や次工程の保持装
置、鋳造機および加工装置への排出移送に対して、装置
内閉塞などの事故がなく、安定した操業が可能である。(4) Therefore, the semi-solid metal is discharged from the semi-solid metal manufacturing apparatus, and an accident such as blockage in the apparatus due to transfer to a subsequent apparatus or discharge and transfer to a holding apparatus, a casting machine, and a processing apparatus in the next process. And stable operation is possible.
第1図はスラリー状半凝固金属の流動性が一定となる固
化速度と剪断歪速度と固相率の関係グラフ、 第2図はこの発明の実施例に使用した半凝固金属連続製
造装置を示す説明図、 第3図は同じく実施例に使用した半凝固金属の非連続的
製造装置を示す説明図であり、 第4図は高固相率用の多段式半凝固金属連続製造装置の
説明図であり、 第5図は実施例1における排出経過時間に対する排出速
度及び排出固相率の比較グラフである。 1……保温槽、2……冷却撹拌槽 3……撹拌子、4……駆動軸 5……取鍋、6……供給溶融金属 7……冷却水、8……水冷ジャケット 9……半凝固金属、10……測温用熱電対 11……排出ノズル、12……スライドゲート 13……誘導加熱ヒーター、14……前段半凝固金属連続製
造装置 15……移送管、16……後段半凝固金属連続製造装置 17……双ロール鋳造機、18……タンディッシュ 19……加熱ヒーターコイル、20……セラミックスコーテ
ィングFIG. 1 is a graph showing a relationship between a solidification rate, a shear strain rate and a solid phase rate at which the fluidity of a slurry-like semi-solid metal becomes constant. FIG. 2 shows a semi-solid metal continuous production apparatus used in an embodiment of the present invention. FIG. 3 is an explanatory view showing a discontinuous production apparatus of semi-solid metal used in the same embodiment, and FIG. 4 is an explanatory view of a multi-stage semi-solid metal continuous production apparatus for high solid phase ratio. FIG. 5 is a comparison graph of the discharge speed and the discharge solid phase ratio with respect to the discharge elapsed time in Example 1. DESCRIPTION OF SYMBOLS 1 ... Insulated tank, 2 ... Cooling and stirring tank 3 ... Stirrer 4 ... Drive shaft 5 ... Ladle, 6 ... Molten metal supply 7 ... Cooling water, 8 ... Water cooling jacket 9 ... Half Solidified metal, 10 ... Thermocouple for temperature measurement 11 ... Discharge nozzle, 12 ... Slide gate 13 ... Induction heater, 14 ... Front-end semi-solid metal continuous production equipment 15 ... Transfer pipe, 16 ... Rear half Solidification metal continuous production equipment 17 Twin roll casting machine 18 Tundish 19 Heater coil 20 Ceramic coating
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 隆二 千葉県千葉市川崎町1番地 株式会社レ オテック内 (56)参考文献 特開 昭55−114455(JP,A) 特開 昭59−42172(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ryuji Yamaguchi 1 Kawasaki-cho, Chiba-shi, Chiba Pref. JP, A)
Claims (4)
却凝固過程において撹拌を与え固液共存状態のスラリー
状半凝固金属を製造する際、 操業条件として固相率(fs)と平均の固化速度(R)お
よび剪断歪速度()とに従う流動性指数(η)の値が
下記の(1)式を満足する範囲の撹拌冷却操業を行い、 該操業を経たスラリー状半凝固金属を冷却撹拌槽より排
出することを特徴とする半凝固金属の製造方法。 (記) η=a/2(1/fs−1/fscr)≦10 …(1) a=35000・R0.5・−1.7〔−〕 fscr=0.65−1.4・R1/3・−1/3〔−〕 fscr<fs η;流動性指標値〔−〕 fs;スラリー状半凝固金属の固相率(目標とする固相
率)〔−〕 R;原料溶融金属の凝固中における平均の固化速度〔%・
s-1〕 ;撹拌速度によって決まる剪断歪速度〔s-1〕When a molten metal is poured into a cooling and stirring tank, and stirring is performed during the cooling and solidification process to produce a slurry-like semi-solid metal in a solid-liquid coexistence state, the solid phase ratio (f s ) is determined as an operating condition. The stirring and cooling operation is performed in a range where the value of the fluidity index (η) according to the average solidification rate (R) and shear strain rate () satisfies the following formula (1), and the slurry-like semi-solidified metal that has passed through the operation is obtained. Is discharged from a cooling and stirring tank. (SL) η = a / 2 (1 / f s -1 / f scr) ≦ 10 ... (1) a = 35000 · R 0.5 · -1.7 [-] f scr = 0.65-1.4 · R 1/3 · - 1/3 [-] f scr <f s η; fluidity index [-] f s ; solid fraction of semi-solid metal in slurry (target solid fraction) [-] R; solidification of raw molten metal Average solidification rate [%
s -1 ]; shear strain rate [s -1 ] determined by stirring speed
段に設置した冷却撹拌槽内における順次的な繰返しによ
るものである請求項第1項に記載した半凝固金属の製造
方法。2. The method for producing a semi-solid metal according to claim 1, wherein the stirring and cooling operation of the slurry-like semi-solid metal is sequentially repeated in a cooling and stirring tank installed in multiple stages.
固化速度で操業し、後段の冷却撹拌槽においては順次に
小さい固化速度で操業する請求項第2項に記載した高固
相率の半凝固金属の製造方法。3. The high-solids fraction having a high solid phase ratio according to claim 2, wherein the first cooling-stirring tank operates at a relatively high solidification rate, and the second cooling-stirring tank operates at a successively lower solidification rate. Method for producing solidified metal.
第1項、第2項または第3項に記載した半凝固金属の製
造方法。4. The method for producing a semi-solid metal according to claim 1, wherein the molten metal is an aluminum alloy.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2238871A JP2804361B2 (en) | 1990-09-11 | 1990-09-11 | Semi-solid metal production method |
US07/747,637 US5144998A (en) | 1990-09-11 | 1991-08-20 | Process for the production of semi-solidified metal composition |
DE69107387T DE69107387T2 (en) | 1990-09-11 | 1991-08-21 | Process for the preparation of semi-rigid metal compositions. |
EP91307694A EP0476843B1 (en) | 1990-09-11 | 1991-08-21 | Process for the production of semi-solidified metal composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2238871A JP2804361B2 (en) | 1990-09-11 | 1990-09-11 | Semi-solid metal production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04120224A JPH04120224A (en) | 1992-04-21 |
JP2804361B2 true JP2804361B2 (en) | 1998-09-24 |
Family
ID=17036500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2238871A Expired - Lifetime JP2804361B2 (en) | 1990-09-11 | 1990-09-11 | Semi-solid metal production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2804361B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102626778A (en) * | 2012-04-25 | 2012-08-08 | 上海交通大学 | Method and device for preparing semi-solid alloy slurry by applying square wave pulse current |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106938328B (en) * | 2017-05-17 | 2023-07-25 | 安徽中鑫压铸技术研发有限公司 | Full-automatic closed semi-solid pulping machine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55114455A (en) * | 1979-02-27 | 1980-09-03 | Nippon Steel Corp | Production of cast ingot having solidification structure dispersed with primary crystal grain |
US4565241A (en) * | 1982-06-01 | 1986-01-21 | International Telephone And Telegraph Corporation | Process for preparing a slurry structured metal composition |
-
1990
- 1990-09-11 JP JP2238871A patent/JP2804361B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102626778A (en) * | 2012-04-25 | 2012-08-08 | 上海交通大学 | Method and device for preparing semi-solid alloy slurry by applying square wave pulse current |
Also Published As
Publication number | Publication date |
---|---|
JPH04120224A (en) | 1992-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4434839A (en) | Process for producing metallic slurries | |
EP0476843B1 (en) | Process for the production of semi-solidified metal composition | |
US6640879B2 (en) | Semi-solid casting apparatus and method | |
US5501266A (en) | Method and apparatus for injection molding of semi-solid metals | |
JP2804361B2 (en) | Semi-solid metal production method | |
JP2927863B2 (en) | Semi-solid metal production method | |
JP2003504509A (en) | Activation feed | |
JP2874990B2 (en) | Method for producing semi-solid metal | |
JP3249866B2 (en) | Method and apparatus for producing semi-solid metal | |
JPH06297098A (en) | Production of half solidified metal | |
JPH04124232A (en) | Method for starting continuous type half solidified metal producing apparatus | |
JPH05169193A (en) | Method for casting semi-solidified metal | |
JPS649106B2 (en) | ||
CN102806329A (en) | Continuous blank casting system capable of performing semi-solid processing on non-ferrous alloy | |
JPH06297097A (en) | Production of half solidified metal | |
JP2984065B2 (en) | Method and apparatus for producing semi-solid metal | |
JPH04124234A (en) | Manufacture of half-solidified metal | |
JP3062339B2 (en) | Method for producing semi-solid metal | |
CN1119569A (en) | Device for realizing semisolid casting | |
JPH06328200A (en) | Manufacture of billet for rheo-working semi-molten metal | |
Borisov | Process for production of aluminum-alloy ingots with non-dendritic thixotropic structure. | |
JPH06126388A (en) | Production of semi-solidified metal | |
JPH07214245A (en) | Production of half solidified metal having excellent workability | |
JPH07100589A (en) | Production of half-solidified metal without deteriorated quality by stirrer rotating method and apparatus therefor | |
JPH04274842A (en) | Method and apparatus for producing half-solidified metal |