JP2927044B2 - Semiconductor laser device and method of manufacturing the same - Google Patents
Semiconductor laser device and method of manufacturing the sameInfo
- Publication number
- JP2927044B2 JP2927044B2 JP12799391A JP12799391A JP2927044B2 JP 2927044 B2 JP2927044 B2 JP 2927044B2 JP 12799391 A JP12799391 A JP 12799391A JP 12799391 A JP12799391 A JP 12799391A JP 2927044 B2 JP2927044 B2 JP 2927044B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- semiconductor laser
- laser device
- light emitting
- emitting surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
Landscapes
- Die Bonding (AREA)
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザ光出射面を樹脂で
被覆する半導体レーザ素子とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device in which a laser beam emitting surface is covered with a resin, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】図9に従来の半導体レーザ素子の形状と
構成を説明するための一部剥離模式図を示す。図9にお
いて半導体レーザ素子は、チップ1がリードフレーム2
aに設けられたサブマウント3上に取り付けられてお
り、チップ1と、同じくサブマウント3上のフォトダイ
オード4から、それぞれリードフレーム2bにリード線
5を接続し、エポキシ樹脂6によりモールドしてある。2. Description of the Related Art FIG. 9 is a schematic diagram showing a partial exfoliation for explaining the shape and configuration of a conventional semiconductor laser device. In FIG. 9, the semiconductor laser device has a chip 1 of a lead frame 2
The lead wire 5 is connected to the lead frame 2 b from the chip 1 and the photodiode 4 on the sub mount 3, respectively, and is molded with an epoxy resin 6. .
【0003】この半導体レーザ素子のチップ1は、互い
に反対面にあって光共振器を形成する一対の劈開面に、
Al2 O3 やSiO2などの誘電体多層膜を被着し、劈
開面の劣化を防止するとともに、反射率の制御を行なっ
ている。その状態を図10に示す。図10はチップ1の
周辺を側面からみた模式断面図であり、チップ1の二つ
の劈開面に、それぞれ誘電体多層膜7が被着され全体が
エポキシ樹脂6で覆われている。矢印はレーザ光の出射
方向を示す。A chip 1 of this semiconductor laser device has a pair of cleavage planes on opposite surfaces forming an optical resonator.
A dielectric multilayer film such as Al 2 O 3 or SiO 2 is applied to prevent the cleavage plane from deteriorating and to control the reflectance. FIG. 10 shows this state. FIG. 10 is a schematic cross-sectional view of the periphery of the chip 1 as viewed from the side. Dielectric multilayer films 7 are respectively applied to two cleavage planes of the chip 1, and the whole is covered with an epoxy resin 6. The arrow indicates the emission direction of the laser light.
【0004】チップ1の二つの劈開面の反射率は、しき
い値電流,微分量子効率,強度雑音などの素子特性に大
きく影響し、素子の用途に合わせて制御される。例え
ば、高光出力型レーザ素子では、後面反射率を90%程
度に上げ、光出射面の前面反射率を10%程度に下げる
ことにより、効率的に前面からレーザ光を取り出すこと
ができる。The reflectivity of the two cleavage planes of the chip 1 greatly affects device characteristics such as threshold current, differential quantum efficiency, and intensity noise, and is controlled according to the application of the device. For example, in a high light output type laser device, the laser light can be efficiently extracted from the front surface by increasing the rear surface reflectance to approximately 90% and decreasing the front surface reflectance of the light emitting surface to approximately 10%.
【0005】誘電体多層膜7の反射率は、低屈折率のA
l2 O3(屈折率:1.65)やSiO2 (屈折率:
1.50)と、高屈折率の非晶質Si(屈折率:3.
4)やTiO2 (屈折率:2.2)を各々発振波長
(λ)の1/4の膜厚で交互に積層して、可変にしてい
る。例えば、Al2 O3 とTiO2 で多層膜をつくり、
60%程度の反射率を得る場合、いずれも膜厚がλ/4
のAl2 O3 ,TiO2 ,Al 2 O3 ,TiO2 をこの
順に積層するか、または最終層に膜厚λ/2のAl2 O
3 を積む。このとき誘電体多層膜7は厚さ0.5μm程
度となる。またチップ1をエポキシ樹脂6で被覆するこ
とにより、反射率の制御性が向上し、コストも下げるこ
とができる。[0005] The reflectivity of the dielectric multilayer film 7 is a low refractive index A
lTwoOThree(Refractive index: 1.65) or SiOTwo(Refractive index:
1.50) and amorphous Si having a high refractive index (refractive index: 3.
4) and TiOTwo(Refractive index: 2.2) for each oscillation wavelength
(Λ) is alternately laminated with a film thickness of 1/4 to be variable
You. For example, AlTwoOThreeAnd TiOTwoTo make a multilayer film,
When a reflectance of about 60% is obtained, the film thickness is λ / 4 in all cases.
AlTwoOThree, TiOTwo, Al TwoOThree, TiOTwoThis
Layered in this order, or as a final layer,TwoO
ThreeStack. At this time, the dielectric multilayer film 7 has a thickness of about 0.5 μm.
Degree. Also, the chip 1 may be covered with an epoxy resin 6.
This improves reflectivity controllability and reduces costs.
Can be.
【0006】一方、チップ1の一対の劈開面に、保護膜
として0.1〜0.5μm程度の半導体薄膜を成長させ
る試みがある。例えば、GaAs/AlGaAsレーザ
の劈開面(110面)に、高抵抗Al0.5 Ga0.5 As
をエピタキシャル成長し、出射レーザ光の光吸収による
破壊レベルを向上させようとするものである。On the other hand, there is an attempt to grow a semiconductor thin film of about 0.1 to 0.5 μm as a protective film on a pair of cleavage planes of the chip 1. For example, a high resistance Al 0.5 Ga 0.5 As is formed on a cleavage plane (110 plane) of a GaAs / AlGaAs laser.
Is epitaxially grown to improve the destruction level due to light absorption of the emitted laser light.
【0007】また、半導体多層膜で反射率を制御する試
みが分布反射形の面発光レーザ素子で行なわれている。
例えば、第35回応用物理関係連合講演会(1989年
春)に講演番号zp−2c−13として、川島らにより
報告されているものは、屈折率3.6のAl0.1 Ga
0.9 Asと屈折率2.9のAlAsとを、それぞれレー
ザ光の1/4波長の膜厚で25対積み重ねて多層膜とす
ることにより、90%以上の高い反射率を得ている。Attempts to control the reflectivity of a semiconductor multilayer film have been made with a distributed reflection type surface emitting laser device.
For example, the one reported by Kawashima et al. As the lecture number zp-2c-13 at the 35th Lecture Meeting on Applied Physics (Spring 1989) is Al 0.1 Ga having a refractive index of 3.6.
A high reflectance of 90% or more is obtained by stacking 25 pairs of 0.9 As and AlAs having a refractive index of 2.9 at a film thickness of 1 / wavelength of the laser beam to form a multilayer film.
【0008】[0008]
【発明が解決しようとする課題】以上述べたように、チ
ップ1の劈開面に誘電体多層膜7を形成し、エポキシ樹
脂6でモールドした半導体レーザ素子は、レーザ光出射
スポット径が2μm×4μm程度であり、この素子をレ
ーザ光出力5mWで連続動作させると、数百時間でレー
ザ光出射スポットに近接するエポキシ樹脂6の部分が損
傷を受け、この損傷により出射レーザ光が散乱されて、
素子の光出射効率が低下するという問題がある。エポキ
シ樹脂6のレーザ光による損傷は、レーザ光の過大なパ
ワー密度に起因するものであるから、エポキシ樹脂6に
対してレーザ光のパワー密度を下げるには、光出射スポ
ット径を拡大するか、またはチップ1の端面とエポキシ
樹脂6との距離を大きくとればよい。しかし、光出射ス
ポット径を拡大するのは、発振領域を拡げることにより
達成されるが、単一モード発振を維持することができな
くなることや、動作電流が増加するという点で好ましく
ない。したがって、チップ1の端面とエポキシ樹脂6と
の距離を拡げることにより、レーザ光のパワー密度を減
少させることが望まれる。As described above, the semiconductor laser device in which the dielectric multilayer film 7 is formed on the cleavage surface of the chip 1 and molded with the epoxy resin 6 has a laser beam emission spot diameter of 2 μm × 4 μm. When the device is operated continuously with a laser light output of 5 mW, the portion of the epoxy resin 6 adjacent to the laser light emission spot is damaged in several hundred hours, and the emitted laser light is scattered by this damage,
There is a problem that the light emission efficiency of the element is reduced. The damage of the epoxy resin 6 due to the laser beam is caused by an excessive power density of the laser beam. Therefore, in order to reduce the power density of the laser beam with respect to the epoxy resin 6, the diameter of the light emitting spot must be increased or Alternatively, the distance between the end face of the chip 1 and the epoxy resin 6 may be increased. However, although the enlargement of the light emitting spot diameter is achieved by enlarging the oscillation region, it is not preferable in that the single mode oscillation cannot be maintained and the operating current increases. Therefore, it is desired to reduce the power density of the laser beam by increasing the distance between the end face of the chip 1 and the epoxy resin 6.
【0009】また、チップ1の端面とエポキシ樹脂6と
の距離を拡げるために、チップ1の劈開面に半導体多層
膜をエピタキシャル成長して、厚い窓層を形成した後、
樹脂でモールドするのは、まず基板上に半導体積層膜を
エピタキシャル成長し、両面電極形成後に劈開し、チッ
プを並び変えてから窓層の形成を行なうが、このときエ
ピタキシャル成長温度が500〜800℃と高いため
に、電極の変質が起きるという問題もある。In order to increase the distance between the end surface of the chip 1 and the epoxy resin 6, a semiconductor multilayer film is epitaxially grown on the cleavage surface of the chip 1 to form a thick window layer.
Molding with a resin is performed by first epitaxially growing a semiconductor laminated film on a substrate, cleaving after forming double-sided electrodes, rearranging chips, and then forming a window layer. At this time, the epitaxial growth temperature is as high as 500 to 800 ° C. Therefore, there is also a problem that the electrode is deteriorated.
【0010】さらに半導体レーザ素子をモールドするエ
ポキシ樹脂6自体にも問題がある。エポキシ樹脂6のみ
に関して言えば、これはレーザ光による劣化が大きい。
図11は、モールド樹脂の劣化試験結果を示したもので
あり、素子を600℃でエージングしたときの時間と動
作電流の関係を表わした線図であるが、短時間で動作電
流が急激に増加するのは、モールド樹脂であるエポキシ
樹脂6がレーザ光による劣化を生じていることを示すも
のである。そこで、チップ1のレーザ光出射面と封止用
のエポキシ樹脂6との間の保護樹脂として、チップ1の
レーザ光出射面を含む表面に、紫外線硬化アクリル樹脂
やシリコン樹脂をバッファコートした構造の素子もある
が、紫外線硬化アクリル樹脂は光劣化し、シリコン樹脂
は密着性が悪くいずれも十分ではない。Further, there is a problem in the epoxy resin 6 itself for molding the semiconductor laser device. As far as the epoxy resin 6 alone is concerned, this is greatly deteriorated by the laser beam.
FIG. 11 shows the results of a deterioration test of the mold resin, and is a graph showing the relationship between the time and the operating current when the element is aged at 600 ° C. The operating current rapidly increases in a short time. This indicates that the epoxy resin 6 as the mold resin has been degraded by the laser beam. Therefore, as a protective resin between the laser light emitting surface of the chip 1 and the epoxy resin 6 for sealing, the surface including the laser light emitting surface of the chip 1 has a structure in which an ultraviolet curable acrylic resin or a silicon resin is buffer-coated. Although there are elements, ultraviolet curable acrylic resin is deteriorated by light, and silicone resin has poor adhesion, and neither is sufficient.
【0011】本発明は上述の点に鑑みてなされたもので
あり、その目的は、チップ端面に形成する誘電体多層膜
の膜厚を厚くするか、または誘電体多層膜とエポキシ樹
脂との間に緩衝材を挿入し、レーザ光によりエポキシ樹
脂が損傷を受けることのない半導体レーザ素子、および
チップ劈開面にレーザ光に対して透明な厚い窓層をエピ
タキシャル成長させ、同じくレーザ光によりエポキシ樹
脂が損傷を受けることのない半導体レーザ素子の構造と
その製造方法、さらにレーザ光出射面とエポキシ樹脂6
との間に保護樹脂を有する素子については、適切な保護
樹脂を選択しレーザ光による劣化を生ずることのない半
導体レーザ素子を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to increase the thickness of a dielectric multilayer film formed on an end face of a chip or to increase the thickness between a dielectric multilayer film and an epoxy resin. A semiconductor laser device that does not damage the epoxy resin by laser light, and a thick window layer that is transparent to laser light is epitaxially grown on the cleavage plane of the chip, and the epoxy resin is similarly damaged by the laser light. Structure of semiconductor laser element which is not subjected to heat, method of manufacturing the same, laser light emitting surface and epoxy resin 6
An object of the present invention is to provide a semiconductor laser element which does not deteriorate by laser light by selecting an appropriate protective resin for an element having a protective resin between the two.
【0012】[0012]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明の半導体レーザ素子は、チップのレーザ光
出射面とエポキシ樹脂との間に形成する誘電体多層膜の
厚さを10μm以上とし、また誘電体多層膜の一部をシ
リコン樹脂で置き換え、もしくはレーザ光出射面とエポ
キシ樹脂との間にエピタキシャル成長させる窓層の厚さ
をほぼ20μmとし、この窓層は1層がレーザ光波長の
1/4の厚さを持ち組成の異なる半導体多層膜として形
成することができ、さらにこの半導体レーザ素子を形成
するに当たって、素子を構成する積層膜の上にSiO2
膜を被着した後、劈開面に窓層をエピタキシャル成長さ
せる工程を含むものである。In order to solve the above-mentioned problems, a semiconductor laser device according to the present invention has a dielectric multilayer film formed between a laser light emitting surface of a chip and an epoxy resin having a thickness of 10 μm. In addition, a part of the dielectric multilayer film is replaced with silicon resin, or the thickness of the window layer for epitaxial growth between the laser light emitting surface and the epoxy resin is set to approximately 20 μm. It can be formed as a semiconductor multilayer film having a thickness of の of the wavelength and having a different composition. Further, in forming this semiconductor laser device, SiO 2 is deposited on the laminated film constituting the device.
After the film is deposited, a step of epitaxially growing a window layer on the cleavage plane is included.
【0013】また、チップのレーザ光出射面とエポキシ
樹脂との間に保護樹脂としてポリエン・ポリチオール系
樹脂を介在させることにより、エポキシ樹脂がレーザ光
により損傷を受けることのない構造とすることができ
る。Further, by interposing a polyene / polythiol-based resin as a protective resin between the laser light emitting surface of the chip and the epoxy resin, a structure in which the epoxy resin is not damaged by the laser light can be obtained. .
【0014】[0014]
【作用】本発明の半導体レーザ素子は、上記のようにレ
ーザ光出射面とエポキシ樹脂間の距離を大きくしたた
め、エポキシ樹脂内での光密度が非常に低くなり、レー
ザ光に起因する樹脂の損傷を生ずることなく、素子の効
率が低下することもない。また、レーザ光出射面にレー
ザ光に対して透明な窓層をエピタキシャル成長させると
きに、電極を保護するためにSiO2 膜を被着し電極同
士が直接接触しないようにしているので、エピタキシャ
ル成長を容易に行なうことができ、電極の変質を起こす
こともなく、素子の歩留りを下げることがない。According to the semiconductor laser device of the present invention, since the distance between the laser light emitting surface and the epoxy resin is increased as described above, the light density in the epoxy resin becomes very low, and the resin is damaged by the laser light. Does not occur, and the efficiency of the device does not decrease. Further, when a window layer transparent to laser light is epitaxially grown on the laser light emitting surface, an SiO 2 film is applied to protect the electrodes so that the electrodes are not in direct contact with each other. Without changing the quality of the electrodes and without lowering the yield of the device.
【0015】一方、レーザ光出射面とエポキシ樹脂間に
保護樹脂を有する構造の素子では、保護樹脂として用い
るポリエン・ポリチオール系樹脂はレーザ光の吸収がな
いから、モールド樹脂のエポキシ樹脂がレーザ光による
損傷を受けることがない。On the other hand, in an element having a structure in which a protective resin is provided between the laser light emitting surface and the epoxy resin, the polyene / polythiol resin used as the protective resin does not absorb laser light. No damage.
【0016】[0016]
【実施例】以下、本発明を実施例に基づき説明する。こ
こでは本発明を発振波長780nmのGaAs/AlG
aAs系半導体レーザ素子のチップに、Al2 O3 とT
iO2 の誘電体多層膜を被覆する場合について説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Here, the present invention is applied to a GaAs / AlG having an oscillation wavelength of 780 nm.
Al 2 O 3 and T
The case of coating a dielectric multilayer film of iO 2 will be described.
【0017】はじめに製造方法について述べる。まず、
GaAs基板上にMOCVD法(有機金属気相成長法)
により、GaAs/AlGaAsダブルヘテロ構造を形
成し、フォトプロセス,電極形成プロセスを経た後、こ
のウェハを幅260μm,長さ10mm程度のバー状に劈
開する。次にそのバーの互いに反対の面をなす一対の劈
開面に誘電体多層膜の被覆を施す。誘電体多層膜の堆積
は真空蒸着法を用い、Al2 O3 は蒸着温度400℃,
堆積速度5Å/秒とし、TiO2 は蒸着温度200℃,
堆積速度0.4Å/秒として、Al2 O3 ,TiO2 ,
Al2O3 ,TiO2 の順にλ/4の膜厚で交互に積層
した後、Al2 O3 を膜厚λ/2で40層堆積させる
が、これを同じ条件で二つの劈開面について行なう。次
いで、このバーを320μmの長さで多数のチップ状に
分離して、そのチップを基板側を上にしてリードフレー
ム上にダイボンディングし、基板をワイヤボンディング
する。最後にエポキシ樹脂でチップ周辺をモールドし、
図9に示したのと同様な構造を持つ半導体レーザ素子を
得ることができる。First, the manufacturing method will be described. First,
MOCVD (metal organic chemical vapor deposition) on GaAs substrate
Then, a GaAs / AlGaAs double heterostructure is formed, and after a photo process and an electrode forming process, the wafer is cleaved into a bar shape having a width of about 260 μm and a length of about 10 mm. Next, a pair of opposite cleavage surfaces of the bar is coated with a dielectric multilayer film. The deposition of the dielectric multilayer film is performed using a vacuum deposition method, and Al 2 O 3 is deposited at a deposition temperature of 400 ° C.
And deposition rate 5 Å / sec, TiO 2 is deposited temperature 200 ° C.,
Assuming a deposition rate of 0.4 / sec, Al 2 O 3 , TiO 2 ,
After alternately laminating Al 2 O 3 and TiO 2 in the order of λ / 4 in thickness, 40 layers of Al 2 O 3 are deposited with a thickness of λ / 2, and this is performed on the two cleavage planes under the same conditions. . Next, the bar is separated into a number of chips having a length of 320 μm, and the chips are die-bonded on a lead frame with the substrate side up, and the substrate is wire-bonded. Finally, mold around the chip with epoxy resin,
A semiconductor laser device having a structure similar to that shown in FIG. 9 can be obtained.
【0018】以上のようにして得られた本発明の半導体
レーザ素子のチップ1の周辺を側面からみた模式断面図
として図1に示す。図1が図10と異なる所は、Al2
O3 とTiO2 からなる第一の誘電体多層膜7aとエポ
キシ樹脂6との間に、膜厚がλ/2のAl2 O3を40
層積層した第二の誘電体多層膜7bを形成したことであ
る。図2の線図にこのときの誘電体多層膜7a,7bか
らなる全誘電体多層膜厚と反射率の関係を示す。FIG. 1 is a schematic sectional view of the periphery of the chip 1 of the semiconductor laser device of the present invention obtained as described above, as viewed from the side. Figure 1 Figure 10 differs from the can, Al 2
Between the first dielectric multilayer film 7a made of O 3 and TiO 2 and the epoxy resin 6, 40 of Al 2 O 3 having a thickness of λ / 2
This means that the second dielectric multilayer film 7b is formed. FIG. 2 is a diagram showing the relationship between the reflectivity and the total thickness of the dielectric multilayer films 7a and 7b.
【0019】図3は本発明の半導体レーザ素子のレーザ
光出力5mWのとき、レーザ光出射面とエポキシ樹脂6
の距離、即ち誘電体多層膜7a,7bの全厚と、エポキ
シ樹脂6での光密度との関係を表わす線図である。図3
のように、レーザ光出射面とエポキシ樹脂6の距離を拡
げることにより、光密度を大幅に低下させることがで
き、その距離を例えば10μmとすれば、従来0.5μ
mであったのに比べて、光密度はほぼ1/5に減少す
る。FIG. 3 shows that when the laser light output of the semiconductor laser device of the present invention is 5 mW,
FIG. 3 is a diagram showing the relationship between the distance between the optical fibers, that is, the total thickness of the dielectric multilayer films 7a and 7b, and the light density in the epoxy resin 6. FIG.
By increasing the distance between the laser light emitting surface and the epoxy resin 6 as described above, the light density can be reduced significantly.
m, the light density is reduced to about 1/5.
【0020】図1に示す構造を有する本発明の半導体レ
ーザ素子50個を50℃の環境下で、レーザ光出力50
mWで通電試験を行なった結果、数千時間を経過した後
も、従来素子のようなレーザ光による樹脂の損傷を生ず
ることなく、素子の効率低下はみられなかった。The 50 semiconductor laser elements of the present invention having the structure shown in FIG.
As a result of conducting a current test at mW, even after a lapse of several thousand hours, the resin was not damaged by the laser beam unlike the conventional device, and the efficiency of the device did not decrease.
【0021】上記の実施例では膜厚λ/2のAl2 O3
を用いて誘電体多層膜を厚くしているが、これは反射率
の制御性をよくするためであり、10μm以上の膜厚が
あれば他の材料を用いても同様の効果を得ることができ
る。例えば、前述と同様にしてレーザバーの二つの劈開
面に、Al2 O3 とTiO2 をλ/4の膜厚で交互に2
層づつ堆積させ、さらにλ/2の膜厚のAl2 O3 を1
層積み、このバーを320μm長さのチップ1として切
断し、リードフレーム2a上にダイボンディングした
後、チップ1の光出射面にシリコン樹脂を厚さ10μm
程度に塗布する。次にチップ1の周辺をエポキシ樹脂で
モールドする。そのときのチップ1周辺の断面は、図1
の第二の誘電体多層膜7bをシリコン樹脂で置き換えた
と見做すことができる。反射率特性も図2と同様であ
り、前述と同様の通電試験も同じ結果が得られ、数千時
間経過後もレーザ光の樹脂損傷による素子の効率低下は
生じない。In the above embodiment, Al 2 O 3 having a film thickness of λ / 2 is used.
The thickness of the dielectric multi-layer film is increased by using, but this is to improve the controllability of the reflectance. If the thickness is 10 μm or more, the same effect can be obtained by using another material. it can. For example, Al 2 O 3 and TiO 2 are alternately formed on the two cleavage planes of the laser bar at a film thickness of λ / 4 in the same manner as described above.
Al 2 O 3 having a thickness of λ / 2 is further deposited on the substrate.
This bar is cut into chips 1 each having a length of 320 μm, and die-bonded on the lead frame 2a.
Apply to the extent. Next, the periphery of the chip 1 is molded with epoxy resin. The cross section around the chip 1 at that time is shown in FIG.
It can be considered that the second dielectric multilayer film 7b is replaced with a silicone resin. The reflectivity characteristics are also the same as those in FIG. 2, and the same energization test as described above yields the same result. Even after a lapse of several thousand hours, the efficiency of the element does not decrease due to the resin damage of the laser beam.
【0022】次に、発振波長780nmのGaAs/A
lGaAs系半導体レーザ素子のチップに、窓層を形成
してエポキシ樹脂でモールドする場合について説明す
る。Next, GaAs / A having an oscillation wavelength of 780 nm
A case where a window layer is formed on a chip of an lGaAs-based semiconductor laser device and molded with epoxy resin will be described.
【0023】図4(a)〜(i)はこの素子の製造方法
を表わす工程図であり、(a),(b),(e)は断面
図で表わし、(c),(d),(f),(g),
(h),(i)は斜視図で表わしてある。まずn型Ga
As基板[結晶方位(100)]8上に常圧MOCVD
法を用いて、成長温度800℃でGaAs/AlGaA
sダブルヘテロ構造の積層膜9を形成し、フォトプロセ
スにより図示してない電流狭窄構造を作りつける[図4
(a)]。FIGS. 4 (a) to 4 (i) are process diagrams showing a method of manufacturing this device, and FIGS. 4 (a), 4 (b) and 4 (e) are sectional views, and FIGS. (F), (g),
(H) and (i) are shown in perspective views. First, n-type Ga
Atmospheric pressure MOCVD on As substrate [crystal orientation (100)] 8
GaAs / AlGaAs at a growth temperature of 800 ° C.
The stacked film 9 having the s double hetero structure is formed, and a current confinement structure (not shown) is formed by a photo process [FIG.
(A)].
【0024】次に基板8側にAuGe/Auのn電極1
0,積層膜9側にAuZn/Auのp電極11をスパッ
タ法により形成した後、これら両電極10,11の全面
にスパッタ法により厚さ0.5μmのSiO2 膜12を
被着させる[図4(b)]。Next, an AuGe / Au n-electrode 1 is provided on the substrate 8 side.
0, after forming an AuZn / Au p-electrode 11 on the side of the laminated film 9 by a sputtering method, a 0.5 μm-thick SiO 2 film 12 is deposited on the entire surface of both electrodes 10 and 11 by a sputtering method [FIG. 4 (b)].
【0025】このウエハを幅260μm,長さ10mm程
度のバー状に劈開する[図4(c)]。The wafer is cleaved into a bar having a width of about 260 μm and a length of about 10 mm [FIG. 4 (c)].
【0026】次に、これらのバーの劈開面を上下に、S
iO2 膜12側が隣り合うように再整列する。(b)工
程でSiO2 膜12を被着したのは、この再整列のとき
に、電極10,11を直接接触させないようにして、次
工程で行なう窓層のエピタキシャル成長のとき、電極同
士の接触による変質を防ぐためである[図4(d)]。Next, the cleavage planes of these bars are moved up and down,
Rearrange so that the iO 2 film 12 side is adjacent. The reason why the SiO 2 film 12 is deposited in the step (b) is that the electrodes 10 and 11 are not brought into direct contact with each other during the realignment, and the electrodes are not contacted during the epitaxial growth of the window layer in the next step. This is to prevent alteration due to [Fig. 4 (d)].
【0027】その後、再び常圧MOCVD法を用いて、
上下劈開面に成長温度800℃でアンドープAl0.3 G
a0.7 As膜の窓層13を、それぞれ長さ20μmにエ
ピタキシャル成長させるが、このときV族元素とIII 族
元素とのモル比を150にして高抵抗にする。別の組成
でもV族元素とIII 族元素との比を適当に選ぶことによ
り、高抵抗にすることができる。なお、劈開面の結晶方
位は(100)面であるが、(100)面と同様の成長
を実現することができる。[図4(e)]。After that, using the atmospheric pressure MOCVD method again,
Undoped Al 0.3 G at growth temperature 800 ° C on upper and lower cleavage planes
The window layers 13 of the a 0.7 As film are each epitaxially grown to a length of 20 μm. At this time, the molar ratio between the group V element and the group III element is set to 150 to increase the resistance. Even with another composition, a high resistance can be obtained by appropriately selecting the ratio between the group V element and the group III element. Note that the crystal orientation of the cleavage plane is the (100) plane, but growth similar to that of the (100) plane can be realized. [FIG. 4 (e)].
【0028】次に、隣り合うSiO2 膜12の個所で分
離し、個々のバー状に戻した後、SiO2 膜12を除去
する[図4(f)]。Next, the SiO 2 film 12 is separated at adjacent portions of the SiO 2 film 12 and returned to individual bar shapes, and then the SiO 2 film 12 is removed [FIG. 4 (f)].
【0029】このバーを320μmの長さで多数のチッ
プ状に分離する[図4(g)]。The bar is separated into a number of chips having a length of 320 μm [FIG. 4 (g)].
【0030】そのチップ1を基板側を上にして、リード
フレーム2a上にダイボンディングし、基板側とリード
フレーム2bをワイヤボンディングする[図4
(h)]。The chip 1 is die-bonded on the lead frame 2a with the substrate side up, and the substrate side and the lead frame 2b are wire-bonded [FIG.
(H)].
【0031】最後に、エポキシ樹脂6でチップ周辺をモ
ールドする[図4(i)]。Finally, the periphery of the chip is molded with the epoxy resin 6 (FIG. 4I).
【0032】かくして得られた本発明の半導体レーザ素
子のチップ1の周辺を側面からみた模式断面図を図5に
示す。図5はチップ1の劈開面に形成した窓層13と、
その表面をコーティングした誘電体多層膜7cとをエポ
キシ樹脂6で被覆した場合の構造を示すものであり、図
10のチップ1と誘電体多層膜7との間に、厚さの大き
な窓層13を介在させたものと見做すこともできる。FIG. 5 is a schematic cross-sectional view of the periphery of the chip 1 of the semiconductor laser device of the present invention thus obtained, as viewed from the side. FIG. 5 shows a window layer 13 formed on the cleavage plane of the chip 1,
This shows a structure in which a dielectric multilayer film 7c whose surface is coated is covered with an epoxy resin 6, and a thick window layer 13 is provided between the chip 1 and the dielectric multilayer film 7 in FIG. Can be regarded as intervening.
【0033】次に、窓層を半導体多層膜で形成する場合
について述べる。本発明は前述の厚さ20μmのアンド
ープAl0.3 Ga0.7 As膜の窓層13を半導体多層膜
で形成することができ、図6にその構成を示す。図6は
チップ1の周辺を側面からみた模式断面図であり、Al
0.3 Ga0.7 As膜の窓層13と、AlAs膜の窓層1
3aを各々発振波長λの1/4の膜厚で交互に4対積層
し、さらにAlAs膜の窓層13aを25λの膜厚積む
ことにより、反射率が前面後面共に60%,厚さ約20
μmの反射膜を形成したものである。Next, a case where the window layer is formed of a semiconductor multilayer film will be described. In the present invention, the window layer 13 of the undoped Al 0.3 Ga 0.7 As film having a thickness of 20 μm can be formed of a semiconductor multilayer film, and FIG. 6 shows the configuration. FIG. 6 is a schematic cross-sectional view of the periphery of the chip 1 as viewed from the side.
Window layer 13 of 0.3 Ga 0.7 As film and window layer 1 of AlAs film
By laminating four pairs of the layers 3a alternately with a thickness of 1/4 of the oscillation wavelength λ, and further stacking the window layer 13a of the AlAs film with a thickness of 25λ, the reflectivity is 60% on both the front and rear surfaces and the thickness is about 20%.
A reflective film having a thickness of μm was formed.
【0034】このような構造のチップを持つ半導体レー
ザ素子の製造方法は、前に述べたのと基本的に同じであ
るから、その説明は省略するが、窓層13と窓層13a
の各層の成長温度は800℃,V/III 比はそれぞれ1
50,180であり、高抵抗になっている。このよう
に、約20μmの窓層を設けることにより、厚さ0.5
μmの通常の誘電体多層膜を形成した半導体レーザ素子
に比べて、光密度はほぼ1/2に減少する。また、これ
ら2層の組成の組み合わせや、積層数を適切に定め、任
意の反射率を得ることも可能である。The method of manufacturing a semiconductor laser device having a chip having such a structure is basically the same as that described above, and a description thereof is omitted, but the window layer 13 and the window layer 13a are omitted.
The growth temperature of each layer is 800 ° C., and the V / III ratio is 1
50 and 180, which are high resistance. Thus, by providing the window layer of about 20 μm, the thickness of 0.5 mm
The optical density is reduced to almost half as compared with a semiconductor laser device having a normal dielectric multilayer film of μm. It is also possible to appropriately determine the combination of the composition of these two layers and the number of layers to obtain an arbitrary reflectance.
【0035】図5,図6に示す構造を有する本発明の半
導体レーザ素子50個を50℃の環境下で、レーザ光出
力50mWで通電試験を行なった結果、数千時間を経過
した後も、従来素子のようなレーザ光による樹脂の損傷
を生ずることなく、素子の効率低下はみられなかった。
また、窓層を付加したことに伴なうチップの劣化も生じ
ない。As a result of conducting an energization test of 50 semiconductor laser devices of the present invention having the structure shown in FIGS. 5 and 6 at a laser light output of 50 mW in an environment of 50 ° C., even after a lapse of several thousand hours, There was no decrease in the efficiency of the device without causing damage to the resin by the laser beam as in the conventional device.
Further, the deterioration of the chip due to the addition of the window layer does not occur.
【0036】以上のように、レーザ光出射面と封止樹脂
の間に形成する誘電体多層膜の距離を大きくし、樹脂が
損傷するのを防ぐことができるが、次にレーザチップ表
面に保護樹脂をバッファコートしてモールド樹脂で被覆
する半導体レーザ素子について述べる。As described above, the distance of the dielectric multilayer film formed between the laser light emitting surface and the sealing resin can be increased to prevent the resin from being damaged. A semiconductor laser device in which a resin is buffer-coated and covered with a mold resin will be described.
【0037】本発明では保護樹脂として、ラジカル重合
体、特にポリエンとポリチオールそれぞれのモノマー、
オリゴマー混合物および光重合開始剤などからなる光硬
化型樹脂組成物をチップ1の表面に塗布し、耐光性を向
上させる。例えば、 ジエチレングリコールジメタクリ
レート20重量部、トリメチロールプロパントリアクリ
レート30重量部、トリメチロールプロパントリスメル
カプトプロピオネート50重量部、ベンゾフェノン1重
量部を混合し、得られた樹脂をチップのレーザ光出射面
を覆うようにチップ上に塗布した後、紫外線を1000
mJ/cm2 照射し硬化させ、透明エポキシ樹脂を用いて
全体を封止する。この半導体レーザ素子のチップ1の周
辺の一部を表わしたのが図7の模式断面図であり、14
は保護樹脂を示している。また、この素子の特性を既に
示した図11の線図に併記すると図8の如くなる。図8
からわかるように、保護樹脂14なしでは、短時間で劣
化が始まるのに対して、保護樹脂14を備えた本発明の
半導体レーザ素子は、劣化を起こすことなく長時間安定
性を持続している。In the present invention, as the protective resin, a radical polymer, in particular, a monomer of each of polyene and polythiol,
A photocurable resin composition comprising an oligomer mixture and a photopolymerization initiator is applied to the surface of the chip 1 to improve light resistance. For example, 20 parts by weight of diethylene glycol dimethacrylate, 30 parts by weight of trimethylolpropane triacrylate, 50 parts by weight of trimethylolpropane trismercaptopropionate, and 1 part by weight of benzophenone are mixed. After applying on the chip to cover it, apply ultraviolet light to 1000
mJ / cm 2 is irradiated and cured, and the whole is sealed with a transparent epoxy resin. FIG. 7 is a schematic cross-sectional view showing a part of the periphery of the chip 1 of the semiconductor laser device.
Indicates a protective resin. FIG. 8 shows the characteristics of this element together with the already-shown diagram of FIG. FIG.
As can be seen from the graph, the degradation starts in a short time without the protective resin 14, whereas the semiconductor laser device of the present invention including the protective resin 14 maintains the stability for a long time without degradation. .
【0038】同様にして、ポリプロピレングリコールモ
ノメタクリレート20重量部、エチレングリコール(メ
タ)アリルエーテル30重量部、トリグリコールジメル
カプタン50重量部、ベンゾインエチルエーテル1重量
部を混合し、得られた樹脂をチップ1上に塗布した後、
紫外線を1000mJ/cm2 照射し硬化させ、透明エポ
キシ樹脂を用いて全体をモールドしても、上述と同じ結
果が得られる。Similarly, 20 parts by weight of polypropylene glycol monomethacrylate, 30 parts by weight of ethylene glycol (meth) allyl ether, 50 parts by weight of triglycol dimercaptan and 1 part by weight of benzoin ethyl ether were mixed, and the resulting resin was mixed with chips. After applying on 1,
The same results as described above can be obtained by irradiating with 1000 mJ / cm 2 of ultraviolet rays and curing the resin, and molding the whole with a transparent epoxy resin.
【0039】さらに本発明では、上記のような紫外線硬
化ポリエン・ポリチオール系樹脂に市販の材料を用いて
もよく、例えば、電気化学工業社製の商品番号OP−1
505,同じく商品番号OP−1030M,旭電化工業
社製の商品番号BY300,昭和高分子社製の商品番号
T−502などが該当し、これらをディップ法によりチ
ップ1上に塗布することができる。Further, in the present invention, a commercially available material may be used for the above-mentioned UV-curable polyene / polythiol resin, for example, product number OP-1 manufactured by Denki Kagaku Kogyo Co., Ltd.
505, the product number OP-1030M, the product number BY300 manufactured by Asahi Denka Kogyo Co., and the product number T-502 manufactured by Showa Polymer Co., Ltd., etc. These can be coated on the chip 1 by a dip method.
【0040】なお、本発明に用いるポリエンとして、上
記のほかにジ(メタ)アリルフタレート,トリ(メタ)
アリルイソシアヌレート,トリメチロールプロパンジ
(メタ)アリルエーテル,ペンタエリスリトールトリ
(メタ)アリルエーテル,(ポリ)プロピレングリコー
ルジ(メタ)アリルエーテル,ネオベンチルグリコール
変成トリメチロールプロバンジアクリレート,ビスフェ
ノールAジメタクリレート,エチレンオキサイド変成リ
ン酸ジアクリレート,1,4−ブタンジオールジアクリ
レート,1,4−ブタンジオールジ(メタ)アクリレー
ト,ペンタエリスリトールテトラ(メタ)アクリレー
ト,ジアリリデンペンタエリスリット等や各種の多官能
アクリレート類がある。As the polyene used in the present invention, di (meth) allyl phthalate, tri (meth)
Allyl isocyanurate, trimethylolpropane di (meth) allyl ether, pentaerythritol tri (meth) allyl ether, (poly) propylene glycol di (meth) allyl ether, neopentyl glycol modified trimethylolpropane diacrylate, bisphenol A dimethacrylate , Ethylene oxide modified phosphate diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, dialylidene pentaerythritol and various polyfunctional There are acrylates.
【0041】一方、本発明に用いるポリチオールは、上
記のほかにジグリコールジメチルカプタン,トリグリコ
ールジメチルカプタン,テトラグリコールジメチルカプ
タン,チオグリコールジメチルカプタン,チオトリグリ
コールジメチルカプタン,トリス−(メルカプトプロピ
ル)−イソシアヌレート,(ポリ)エチレングリコール
ジメチルカプトプロピオネート,トリス−(2−ヒドロ
キシエチル)−イソシアヌレート−トリス−β−/メル
カプトプロピオネート等や各種のポリチオールオリゴマ
ーがある。On the other hand, the polythiol used in the present invention may be diglycol dimethyl captan, triglycol dimethyl captan, tetraglycol dimethyl captan, thioglycol dimethyl captan, thiotriglycol dimethyl captan, tris- ( There are various polythiol oligomers such as (mercaptopropyl) -isocyanurate, (poly) ethylene glycol dimethylcaptopropionate, tris- (2-hydroxyethyl) -isocyanurate-tris-β- / mercaptopropionate, and the like.
【0042】光重合開始剤には例えば、前述のほかにベ
ンジル,2,4−ジエチルチオキサンソン,1−ヒドロ
キシシクロヘキシルフェニルケトン,1−(4−イソプ
ロピルフェニル)−2−ヒドロキシ−2−メチルプロパ
ン−1−オン等がある。Examples of the photopolymerization initiator include, in addition to those described above, benzyl, 2,4-diethylthioxanthone, 1-hydroxycyclohexylphenyl ketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane -1-one and the like.
【0043】半導体レーザ素子の保護樹脂として用いた
紫外線硬化ポリエン・ポリチオール系樹脂を他の樹脂と
比較した結果を表1に示す。表1中の○印は良好、×印
は不良であることを表わす。Table 1 shows the results of comparison of the UV-curable polyene / polythiol resin used as the protective resin for the semiconductor laser device with other resins. In Table 1, ○ indicates good and x indicates bad.
【0044】[0044]
【表1】 [Table 1]
【0045】[0045]
【発明の効果】半導体レーザ素子チップのレーザ光出射
面とチップをモールドするエポキシ樹脂との距離が小さ
く、パワー密度の高いレーゾ光によってモールド樹脂が
損傷を受け、素子の効率低下の原因となっていたが、本
発明では実施例で述べた如く、チップの劈開面に形成す
る誘電体多層膜として、Al2 O3 とTiO2 をλ/4
の膜厚で交互に2層積層した後、さらにAl2 O3 のλ
/2膜厚を多層積層、またはシリコン樹脂を塗布してレ
ーザ光出射面とモールド樹脂との距離を10μm以上に
拡大し、またはチップの劈開面に形成する窓層としてア
ンドープAl0.3 Ga0.7 As膜などの半導体多層膜を
用い、その上に誘電体多層膜をコーティングするなど、
もしくは異なる組成の膜を交互に重ねた半導体多層膜と
して、いずれも厚さをほぼ20μmと大きくしたため、
レーザ光のパワー密度が大幅に低下し、モールド樹脂に
損傷を与えることなく、素子の信頼性を向上させること
ができ、さらに窓層をエピタキシャル成長するに当たっ
て、電極上にSiO2 膜を被着してこれを保護している
ために、電極はなんら変化を起こすことなく、素子の信
頼性と歩留りが向上する。一方、チップのレーザ光出射
面とモールド樹脂との間に保護樹脂を形成する構造の半
導体レーザ素子に対しては、この保護樹脂として光吸収
のない紫外線硬化ポリエン・ポリチオール系樹脂を用い
ることにより、レーザ光によるモールド樹脂の劣化を防
止し、素子の歩留りと特性を安定させる。The distance between the laser light emitting surface of the semiconductor laser device chip and the epoxy resin for molding the chip is small, and the resin is damaged by the laser light having a high power density, which causes a reduction in the efficiency of the device. However, in the present invention, as described in the embodiment, Al 2 O 3 and TiO 2 are formed of λ / 4 as a dielectric multilayer film formed on the cleavage plane of the chip.
After 2 are alternately laminated thickness of which, in addition of Al 2 O 3 lambda
A multilayer film having a thickness of / 2 or a silicon resin is applied to increase the distance between the laser beam emitting surface and the mold resin to 10 μm or more, or an undoped Al 0.3 Ga 0.7 As film as a window layer formed on the cleavage surface of the chip. Such as using a semiconductor multilayer film, coating a dielectric multilayer film on it,
Alternatively, as a semiconductor multilayer film in which films of different compositions are alternately stacked, the thickness of each is increased to approximately 20 μm.
The power density of the laser beam is greatly reduced, and the reliability of the device can be improved without damaging the molding resin. Further, when the window layer is epitaxially grown, a SiO 2 film is deposited on the electrode. Since this is protected, the electrodes do not change at all, and the reliability and yield of the element are improved. On the other hand, for a semiconductor laser device having a structure in which a protective resin is formed between the laser light emitting surface of the chip and the mold resin, by using an ultraviolet-curable polyene / polythiol resin having no light absorption as the protective resin, This prevents deterioration of the mold resin due to the laser beam, and stabilizes the yield and characteristics of the element.
【図1】誘電体多層膜を形成した本発明の半導体レーザ
素子のチップ周辺の模式断面図FIG. 1 is a schematic cross-sectional view around a chip of a semiconductor laser device of the present invention on which a dielectric multilayer film is formed.
【図2】本発明に用いる誘電体多層膜の全膜厚と反射率
の関係を示す線図FIG. 2 is a diagram showing the relationship between the total thickness of the dielectric multilayer film used in the present invention and the reflectance.
【図3】本発明に用いる誘電体多層膜の全膜厚と光密度
との関係を表わす線図FIG. 3 is a diagram showing the relationship between the total thickness of the dielectric multilayer film used in the present invention and the light density.
【図4】(a)〜(i)は窓層を形成した本発明の半導
体レーザ素子の製造工程図FIGS. 4A to 4I are manufacturing process diagrams of a semiconductor laser device of the present invention in which a window layer is formed.
【図5】窓層と誘電体多層膜を形成した本発明の半導体
レーザ素子のチップ周辺の模式断面図FIG. 5 is a schematic cross-sectional view around a chip of a semiconductor laser device of the present invention in which a window layer and a dielectric multilayer film are formed.
【図6】異なる組成の半導体膜を交互に積層した窓層を
持つ本発明の半導体レーザ素子のチップ周辺の模式断面
図FIG. 6 is a schematic cross-sectional view around a chip of a semiconductor laser device of the present invention having a window layer in which semiconductor films having different compositions are alternately stacked.
【図7】保護樹脂を有する本発明の半導体レーザ素子の
チップ周辺の模式断面図FIG. 7 is a schematic sectional view around a chip of a semiconductor laser device of the present invention having a protective resin.
【図8】保護樹脂を有する本発明の半導体レーザ素子を
従来素子との比較で示した時間と動作電流の関係線図FIG. 8 is a diagram showing the relationship between time and operating current of a semiconductor laser device of the present invention having a protective resin in comparison with a conventional device.
【図9】半導体レーザ素子の一部剥離模式図FIG. 9 is a schematic diagram of a partially peeled semiconductor laser device.
【図10】従来の半導体レーザ素子のチップ周辺の模式
断面図FIG. 10 is a schematic cross-sectional view around a chip of a conventional semiconductor laser device.
【図11】保護樹脂を有する従来の半導体レーザ素子の
時間と動作電流の関係線図FIG. 11 is a diagram showing the relationship between time and operating current of a conventional semiconductor laser device having a protective resin.
1 チップ 2a リードフレーム 2b リードフレーム 3 サブマウント 4 フォトダイオード 5 リード線 6 エポキシ樹脂 7 誘電体多層膜 7a 第一の誘電体多層膜 7b 第二の誘電体多層膜 7c 誘電体多層膜 8 基板 9 積層膜 10 n電極 11 p電極 12 SiO2 膜 13 窓層 13a 窓層 14 保護樹脂DESCRIPTION OF SYMBOLS 1 Chip 2a Lead frame 2b Lead frame 3 Submount 4 Photodiode 5 Lead wire 6 Epoxy resin 7 Dielectric multilayer 7a First dielectric multilayer 7b Second dielectric multilayer 7c Dielectric multilayer 8 Substrate 9 Lamination Film 10 n-electrode 11 p-electrode 12 SiO 2 film 13 window layer 13 a window layer 14 protective resin
Claims (8)
脂で被覆したチップを有する半導体レーザ素子であっ
て、前記レーザ光出射面と前記樹脂との垂直距離を10
μm以上とすることを特徴とする半導体レーザ素子。1. A semiconductor laser device having a chip in which a dielectric multilayer film is formed on a laser light emitting surface and covered with a resin, wherein a vertical distance between the laser light emitting surface and the resin is 10 mm.
A semiconductor laser device having a thickness of at least μm.
て、レーザ光出射面と樹脂との間にレーザ光出射面に形
成した第一の誘電体多層膜と、この第一の誘電体多層膜
上に形成したこれより厚い第二の誘電体多層膜とを有す
ることを特徴とする半導体レーザ素子。2. The semiconductor laser device according to claim 1, wherein a first dielectric multilayer film is formed on the laser light emitting surface between the laser light emitting surface and the resin, and the first dielectric multilayer film is formed on the first dielectric multilayer film. And a second dielectric multilayer film formed thicker than the above.
て、レーザ光出射面と樹脂との間にレーザ光出射面側か
ら誘電体多層膜とシリコン樹脂を形成したことを特徴と
する半導体レーザ素子。3. The semiconductor laser device according to claim 1, wherein a dielectric multilayer film and a silicon resin are formed between the laser light emitting surface and the resin from the laser light emitting surface side.
半導体層を形成し樹脂で被覆したチップを有する半導体
レーザ素子であって、前記レーザ光出射面と前記樹脂と
の垂直距離をほぼ20μmとすることを特徴とする半導
体レーザ素子。4. A semiconductor laser device having a chip formed by forming a semiconductor layer epitaxially grown on a laser light emitting surface and coating with a resin, wherein a vertical distance between the laser light emitting surface and the resin is set to approximately 20 μm. Characteristic semiconductor laser device.
て、レーザ光出射面と樹脂との間にレーザ光出射面に形
成した窓層と、この窓層上に形成した誘電体多層膜とを
有することを特徴とする半導体レーザ素子。5. The semiconductor laser device according to claim 4, further comprising a window layer formed on the laser light emitting surface between the laser light emitting surface and the resin, and a dielectric multilayer film formed on the window layer. A semiconductor laser device characterized by the above-mentioned.
において、窓層は1層がレーザ光波長の1/4の厚さを
持ち、組成の異なる多層膜として形成することを特徴と
する半導体レーザ素子。6. A semiconductor laser device according to claim 4, wherein one of the window layers has a thickness of 1/4 of the wavelength of the laser beam and is formed as a multilayer film having a different composition. Laser element.
を製造するに当たり、基板の一主面上に電流狭窄構造を
持つ積層膜をエピタキシャル成長させた後、その上下両
面に電極を形成してこれら電極面上にSiO2 膜を被着
し、全体を劈開して複数個のバーとなし、次にこれらバ
ーの一対の劈開面を上下方向にSiO 2 膜同士を隣り合
わせて複数個のバーを配列し、劈開面上に窓層をエピタ
キシャル成長させた後、SiO2 膜の接触面で分離し再
度複数個のバーとなし、これらのバーをそれぞれ所定の
寸法に切断してチップとする工程を含むことを特徴とす
る半導体レーザ素子の製造方法。7. A semiconductor laser device according to claim 4, wherein:
In manufacturing the device, a current confinement structure is formed on one main surface of the substrate.
After epitaxially growing a laminated film with
An electrode is formed on the surface, and SiOTwoDeposit film
The whole is cleaved into several bars, and then these bars
The pair of cleavage planes of TwoAdjacent membranes
A plurality of bars are arranged at the same time, and a window layer is
After the axial growth, SiOTwoSeparated at the contact surface of the membrane
Each bar has a specific bar
It is characterized by including a step of cutting into dimensions to make a chip.
Of manufacturing a semiconductor laser device.
との間に保護樹脂を有する半導体レーザ素子であって、
前記保護樹脂としてポリエン・ポリチオール樹脂を用い
たことを特徴とする半導体レーザ素子。8. A semiconductor laser device having a protective resin between a laser light emitting surface of a semiconductor chip and a sealing resin,
A semiconductor laser device using a polyene / polythiol resin as the protective resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12799391A JP2927044B2 (en) | 1990-11-08 | 1991-05-31 | Semiconductor laser device and method of manufacturing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30322190 | 1990-11-08 | ||
JP3326091 | 1991-02-28 | ||
JP3-33260 | 1991-02-28 | ||
JP2-303221 | 1991-02-28 | ||
JP12799391A JP2927044B2 (en) | 1990-11-08 | 1991-05-31 | Semiconductor laser device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04321292A JPH04321292A (en) | 1992-11-11 |
JP2927044B2 true JP2927044B2 (en) | 1999-07-28 |
Family
ID=27288014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12799391A Expired - Fee Related JP2927044B2 (en) | 1990-11-08 | 1991-05-31 | Semiconductor laser device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2927044B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7295592B2 (en) | 2002-03-08 | 2007-11-13 | Sharp Kabushiki Kaisha | Light source device and optical communication module employing the device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5718150B2 (en) * | 2011-05-20 | 2015-05-13 | 日本オクラロ株式会社 | Semiconductor light emitting device, optical module, and method for manufacturing semiconductor light emitting device |
-
1991
- 1991-05-31 JP JP12799391A patent/JP2927044B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7295592B2 (en) | 2002-03-08 | 2007-11-13 | Sharp Kabushiki Kaisha | Light source device and optical communication module employing the device |
Also Published As
Publication number | Publication date |
---|---|
JPH04321292A (en) | 1992-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100778909B1 (en) | Semiconductor Laser Device | |
US5837561A (en) | Fabrication of transparent substrate vertical cavity surface emitting lasers by semiconductor wafer bonding | |
EP2063504A2 (en) | Surface emitting laser, surface emitting laser array, and image forming apparatus including surface emitting laser | |
US7613220B2 (en) | Two-wavelength semiconductor laser device and method for fabricating the same | |
KR100989789B1 (en) | Semiconductor laser device | |
JP2874442B2 (en) | Surface input / output photoelectric fusion device | |
JP3689621B2 (en) | Semiconductor light emitting device | |
US6680958B1 (en) | Semiconductor laser and method of production of the same | |
US6815727B2 (en) | Semiconductor light emitting device | |
US20070001578A1 (en) | Multiwavelength laser diode | |
US5943356A (en) | Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses | |
JP2799372B2 (en) | Quantum wire laser and manufacturing method thereof | |
JP2927044B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH05347430A (en) | Semiconductor light-emitting device | |
JPH09199793A (en) | Vertical cavity surface emitting lasers | |
JP2004140007A (en) | Surface emitting laser, surface emitting laser array, optical transmitting module, optical transceiver module, optical communication system, laser beam printer, and optical pickup system | |
JPH05315695A (en) | Semiconductor laser | |
JPH0738151A (en) | Optical semiconductor device | |
JP5787069B2 (en) | Multi-wavelength semiconductor laser device | |
JP2009302582A (en) | Two wavelength semiconductor laser apparatus | |
JPH05327121A (en) | Surface emitting type semiconductor laser | |
JPH11340568A (en) | Semiconductor device and its manufacture | |
US6770915B2 (en) | Light emitting element with multiple multi-layer reflectors and a barrier layers | |
JPH09298337A (en) | Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser | |
US5883911A (en) | Surface-emitting laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100514 |
|
LAPS | Cancellation because of no payment of annual fees |