JP2922078B2 - Silicon rod manufacturing method - Google Patents

Silicon rod manufacturing method

Info

Publication number
JP2922078B2
JP2922078B2 JP5056890A JP5689093A JP2922078B2 JP 2922078 B2 JP2922078 B2 JP 2922078B2 JP 5056890 A JP5056890 A JP 5056890A JP 5689093 A JP5689093 A JP 5689093A JP 2922078 B2 JP2922078 B2 JP 2922078B2
Authority
JP
Japan
Prior art keywords
silicon
molten
granular
heating
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5056890A
Other languages
Japanese (ja)
Other versions
JPH06271381A (en
Inventor
開行 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5056890A priority Critical patent/JP2922078B2/en
Priority to US08/208,864 priority patent/US5499598A/en
Priority to DE4409170A priority patent/DE4409170A1/en
Publication of JPH06271381A publication Critical patent/JPH06271381A/en
Application granted granted Critical
Publication of JP2922078B2 publication Critical patent/JP2922078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/20Heating of the molten zone by induction, e.g. hot wire technique

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粒状シリコンからシリ
コンロッドを製造する方法に関する。詳しくは、粒状シ
リコンを筒体中で一部融解させ、溶融シリコンの表面張
力により筒体壁に溶融シリコンを接触させること無く円
柱状シリコンを形成させ、筒体壁からの不純物の混入の
ない多結晶あるいは単結晶シリコンロッドを製造する方
法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon rod from granular silicon. More specifically, the granular silicon is partially melted in the cylindrical body, the cylindrical silicon is formed without contacting the molten silicon with the cylindrical wall due to the surface tension of the molten silicon, and the silicon is prevented from being mixed with impurities from the cylindrical wall. It is intended to provide a method for producing a crystalline or single-crystal silicon rod.

【0002】[0002]

【従来の技術】粒状シリコンから単結晶シリコンロッド
を作成する方法は、主にCZ法が使用されている。この
方法は石英るつぼに粒状シリコンを充填し、その全量を
るつぼ内で融解させた後、単結晶を作成する方法であ
る。しかしながら、上記CZ法では、石英るつぼからの
酸素、アルミニウム等の不純物の溶出が多く、製造した
シリコンロッド中に不純物が混入するという問題があっ
た。
2. Description of the Related Art A CZ method is mainly used for producing a single crystal silicon rod from granular silicon. In this method, a granular crystal silicon is filled in a quartz crucible, and the whole is melted in the crucible, and then a single crystal is formed. However, in the above-mentioned CZ method, there is a problem that impurities such as oxygen and aluminum are often eluted from the quartz crucible, and the impurities are mixed into the manufactured silicon rod.

【0003】一方、高周波誘導加熱による粒状シリコン
からの多結晶シリコンロッドの連続鋳造法が知られてい
る(特開昭61−52962号公報、特開平1−264
920号公報、特開平2−30698号公報)。この方
法は、周方向で複数に分割された導電性壁で構成された
無底るつぼ内に粒状シリコンを供給しつつ、高周波誘導
加熱によりるつぼ内の粒状シリコン全体を溶融し、連続
鋳造していくものである。この方法においては、るつぼ
の導電性壁を流れる電流から発生する磁力と、その電磁
誘導によって溶融シリコン中を流れる電流から発生する
磁力とが互いに反発し、これらの磁気の反発力により溶
融シリコンを壁面から強制的に浮かせるために、溶融シ
リコンはるつぼに非接触である。
On the other hand, a continuous casting method of a polycrystalline silicon rod from granular silicon by high-frequency induction heating is known (JP-A-61-52962, JP-A-1-264).
920, JP-A-2-30698). This method melts the entire granular silicon in the crucible by high-frequency induction heating while continuously supplying granular silicon into a bottomless crucible composed of a plurality of conductive walls divided in the circumferential direction, and continuously casts it. Things. In this method, the magnetic force generated from the current flowing through the conductive wall of the crucible and the magnetic force generated from the current flowing through the molten silicon due to the electromagnetic induction repel each other, and the molten silicon is repelled by these magnetic repulsion forces. The molten silicon is non-contact with the crucible to force it to float from the crucible.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た高周波誘導加熱の方法においても、溶融シリコンとる
つぼ壁との接触を完全に防止することは困難であり、製
造されたシリコンロッド中にるつぼからの不純物が混入
するという問題があった。
However, it is difficult to completely prevent the molten silicon from coming into contact with the crucible wall even in the above-described high-frequency induction heating method. There is a problem that impurities are mixed.

【0005】したがって、粒状シリコンを溶融固化して
シリコンロッドを製造する方法において、溶融シリコン
とるつぼとの接触を防止し、るつぼからの汚染のない方
法の開発が望まれていた。
[0005] Therefore, in a method for producing a silicon rod by melting and solidifying granular silicon, it has been desired to develop a method for preventing contact between the molten silicon and the crucible and free from contamination from the crucible.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を行ってきた。その結果、溶融
シリコンの持つ表面張力が非常に大きいこと、および、
粒状シリコンが融点より少し低い温度で焼結して粒子同
士が固結することに着目し、溶融シリコンをるつぼ壁か
ら離れた位置に保持した状態で固化させることに成功
し、本発明を完成しここに提案するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems. As a result, the surface tension of molten silicon is very high, and
Paying attention to the fact that granular silicon sinters at a temperature slightly lower than the melting point and solidifies particles, succeeded in solidifying molten silicon while holding it at a position away from the crucible wall, and completed the present invention I came to the proposal here.

【0007】即ち、本発明は、長軸が鉛直線とほぼ一致
するように設置した非電導性筒体に粒状シリコンを充填
し、次いで非電導性筒体の長軸方向における一部分を局
部的に加熱して粒状シリコンの焼結部およびシリコンの
溶融部を形成させ、該局部的な加熱域を移動させること
により焼結部および溶融部を順次移動させつつ該溶融部
の冷却による固化部を形成させることを特徴とするシリ
コンロッドの製造方法である。
That is, according to the present invention, a non-conductive cylinder, which is installed so that its major axis substantially coincides with the vertical line, is filled with granular silicon, and then a part of the non-conductive cylinder in the longitudinal direction is locally localized. Heating to form a sintered part of granular silicon and a molten part of silicon, and moving the local heating area to form a solidified part by cooling the molten part while sequentially moving the sintered part and the molten part. A method of manufacturing a silicon rod.

【0008】本発明の方法は、嵩比重の小さい粒状シリ
コンが溶融して体積収縮する際に、その大きい表面張力
によって溶融シリコンが円柱状になることを利用したも
のである。即ち、嵩比重の小さい、例えば、1.0〜
1.5g/mlの粒状シリコンが溶融すると嵩比重が
2.55g/mlの溶融シリコンとなり、その見掛けの
体積が約1/2に減少する。粒状シリコンを筒体に充填
した状態で局部的に加熱すると、粒状シリコンの焼結部
とシリコンの溶融部が形成され、溶融シリコンの下部は
冷却固化したシリコンで固定化されており、上部は焼結
した粒状シリコンで固定化される。体積収縮した溶融シ
リコンは上下で固定化されているために表面張力により
筒体の長軸中心部に集まり円柱を形成する。その結果、
筒体の壁と溶融シリコンとは接触することはなく、溶融
シリコン中に筒体の不純物が混入する恐れがなくなり、
シリコンロッド製造中における不純物の混入を避けるこ
とができるのである。
The method of the present invention utilizes the fact that when granular silicon having a low bulk specific gravity is melted and contracted in volume, the large surface tension causes the molten silicon to become cylindrical. That is, the bulk specific gravity is small, for example, 1.0 to
When 1.5 g / ml of granular silicon is melted, the bulk specific gravity becomes 2.55 g / ml of molten silicon, and the apparent volume is reduced to about 1/2. When the granular silicon is locally heated in a state of being filled in the cylindrical body, a sintered part of the granular silicon and a molten part of the silicon are formed, and the lower part of the molten silicon is fixed by cooled and solidified silicon, and the upper part of the molten silicon is sintered. It is fixed with the tied granular silicon. Since the volume-contracted molten silicon is fixed vertically, it gathers at the center of the long axis of the cylindrical body due to surface tension to form a cylinder. as a result,
There is no contact between the wall of the cylinder and the molten silicon, and there is no risk of impurities of the cylinder being mixed into the molten silicon,
It is possible to avoid the contamination of impurities during the production of the silicon rod.

【0009】本発明における粒状シリコンは、多結晶お
よび単結晶のいずれでもよく、公知のものを何等制限な
く採用することができる。本発明においては、粒状シリ
コンの焼結部とシリコンの溶融部とを形成させるために
局部的な加熱を行う必要がある。したがって、粒状シリ
コンは、溶融部の熱が焼結部に容易に伝わらないように
熱電導性が小さいものであることが好ましく、このため
には隣接する粒状シリコン同士の接触面積が小さい球
状、楕円体状またはこれらに近い形状であることが好ま
しい。
The granular silicon in the present invention may be either polycrystalline or single crystal, and any known silicon can be used without any limitation. In the present invention, it is necessary to perform local heating in order to form a sintered portion of granular silicon and a molten portion of silicon. Therefore, it is preferable that the granular silicon has a small thermal conductivity so that the heat of the molten portion is not easily transmitted to the sintered portion. It is preferably a body shape or a shape close to these.

【0010】また、粒状シリコンの粒径は特に制限され
るものではないが、一般には0.7〜1.5mmのもの
が入手しやすい。本発明において特に好適に使用できる
粒状シリコンは、例えば、表面にシリコン微粉が付着し
た球状またはそれに近い形状の粒状シリコンである。こ
のような粒状シリコンは、粒子間の熱電導が小さく、ま
た、焼結しやすいという利点を有する。このような粒状
シリコンは流動床で製造することができる。
The particle size of the granular silicon is not particularly limited, but a particle having a particle size of 0.7 to 1.5 mm is generally easily available. Granular silicon that can be particularly preferably used in the present invention is, for example, spherical silicon having a surface to which silicon fine powder is adhered or spherical granular silicon. Such granular silicon has the advantage that thermal conductivity between particles is small and that it is easy to sinter. Such granular silicon can be produced in a fluidized bed.

【0011】本発明においては、長軸が鉛直線とほぼ一
致するように設置した非電導性筒体に上記した粒状シリ
コンが充填される。筒体は非電導性である必要がある。
筒体が電導性である場合、加熱手段として高周波誘導加
熱を採用したときに、高周波誘導電流が筒体中を流れ、
筒体全体が加熱されるために、その中に充填された粒状
シリコン全体が溶融し、本発明を実施することができな
くなる。筒体の材質は、上記したように非電導性であれ
ばよいが、通常は、アルミナ、シリカ、窒化珪素等のセ
ラミックが使用される。特に、内部が透視可能であるこ
と、不純物による汚染が少ないこと等の理由から、石英
ガラスが好適に使用される。非電導性筒体はどのような
大きさでもよく、生産するシリコンロッドの大きさに応
じて決定すればよい。
In the present invention, the above-mentioned granular silicon is filled in a non-conductive cylinder placed so that its major axis substantially coincides with the vertical line. The cylinder must be non-conductive.
When the cylinder is conductive, when high-frequency induction heating is employed as the heating means, a high-frequency induction current flows through the cylinder,
Since the entire cylindrical body is heated, the entire granular silicon filled therein is melted, and the present invention cannot be carried out. The material of the cylindrical body may be non-conductive as described above, but usually, ceramics such as alumina, silica, and silicon nitride are used. In particular, quartz glass is preferably used because the inside can be seen through and the contamination by impurities is small. The non-conductive cylinder may have any size and may be determined according to the size of the silicon rod to be produced.

【0012】筒体の長軸に垂直な断面形状は特に制限さ
れないが、筒体の長軸に垂直方向における均一な加熱の
ためには、円形または円形に近い多角形であることが好
ましい。
The cross-sectional shape perpendicular to the long axis of the cylinder is not particularly limited, but is preferably a circle or a polygon close to a circle for uniform heating in the direction perpendicular to the long axis of the cylinder.

【0013】次に、非電導性筒体の長軸方向における一
部分の局部的な加熱が行われる。加熱の手段は、非電導
性筒体の長軸方向における一部分の局部的な加熱が行え
るものであれば、どのような手段であってもよく、例え
ば、高周波誘導加熱、赤外線加熱、マイクロ波加熱等の
方法を採用することができる。シリコンは温度の上昇に
伴って電気抵抗が低下するという特性を有しており、一
方、高周波誘導加熱においては電気抵抗の小さい方がそ
の物体中を流れる誘導電流が大きくなる。このため、高
周波誘導加熱でシリコンを加熱したとき、温度が高くな
っている部分は更に高温になって溶融するが、温度が十
分高くなっていない部分はあまり加熱されない。したが
って、本発明においては、局部的な加熱を行いやすいと
いう理由で高周波誘導加熱を好適に採用することができ
る。
Next, local heating of a part of the non-conductive cylinder in the longitudinal direction is performed. The heating means may be any means as long as it can locally heat a part of the non-conductive cylinder in the major axis direction, such as high-frequency induction heating, infrared heating, and microwave heating. Etc. can be adopted. Silicon has a characteristic that its electrical resistance decreases with an increase in temperature, whereas in high-frequency induction heating, the smaller the electrical resistance, the greater the induced current flowing through the object. For this reason, when silicon is heated by high-frequency induction heating, the portion where the temperature is high becomes higher and melts, but the portion where the temperature is not sufficiently high is not heated much. Therefore, in the present invention, high-frequency induction heating can be preferably employed because local heating is easily performed.

【0014】加熱は、非電導性筒体の長軸方向において
は局部的に一部分のみ加熱するものであるが、長軸方向
に垂直な方向には均一に加熱することが好ましい。した
がって、通常は、非電導性筒体の周囲を取り囲む形状の
高周波誘導加熱コイルを使用して加熱する方法が好適に
採用される。
In the heating, only a part of the non-conductive cylindrical body is locally heated in the long axis direction, but it is preferable to heat uniformly in a direction perpendicular to the long axis direction. Therefore, usually, a method of heating using a high-frequency induction heating coil having a shape surrounding the periphery of the non-conductive cylinder is preferably adopted.

【0015】このような方法で加熱することにより、非
電導性筒体の長軸方向に粒状シリコンの焼結部とシリコ
ンの溶融部を形成させる。このとき、加熱が過度である
と、溶融部が大きくなりすぎて、溶融シリコンが流れ出
すことがある。したがって、溶融部が大きくなりすぎな
いように加熱の程度を予め実験で確かめておくことが好
ましい。一般にシリコンの溶融部の長軸方向の長さは、
シリコンの固化部の直径の1/2以下であることが好ま
しく、通常は0.5〜3cm、好ましくは1〜2cmの
範囲であることが好ましい。このような溶融部の大きさ
にするためには、例えば、高周波誘導加熱を採用したと
きの出力は、2MHzで5〜10KWの範囲であること
が好ましい。
By heating in this manner, a sintered portion of granular silicon and a fused portion of silicon are formed in the longitudinal direction of the non-conductive cylinder. At this time, if the heating is excessive, the molten portion becomes too large, and the molten silicon may flow out. Therefore, it is preferable to confirm the degree of heating in advance by an experiment so that the fusion zone does not become too large. In general, the length of the silicon melt in the major axis direction is
The diameter is preferably not more than 1 / of the diameter of the solidified portion of silicon, and is usually in the range of 0.5 to 3 cm, preferably 1 to 2 cm. In order to make the size of such a fusion zone, for example, it is preferable that the output when high-frequency induction heating is employed is in the range of 5 to 10 KW at 2 MHz.

【0016】そして、この局部的な加熱域を非電導性筒
体に対して相対的に移動させることにより、焼結部と溶
融部とを順次移動させる。このとき、加熱域を非電導性
筒体の下から上へ移動させる方法を採用したときは、図
1に示すように、加熱域の近辺にはシリコンの溶融部3
が形成され、その上方には粒状シリコンの焼結部2が形
成される。焼結部2の上方は粒状シリコンの充填部1で
ある。また、溶融部3の下方は、溶融部3が自然冷却さ
れて固化したシリコンロッド4である。この方法によれ
ば、きれいな円柱状のシリコンロッドを製造することが
できる。しかし、粒状シリコンの粒径が大き過ぎるとき
は、焼結部における粒状シリコン粒子同士の固着強度よ
りも粒状シリコン粒子自体の重量が大きくなるために、
粒状シリコンが焼結部から落下し、焼結部の下方の溶融
部に混入したり、溶融部を傷つけたりすることがある。
したがって、この方法を採用する場合には、粒状シリコ
ンの粒径は3mm以下であることが好ましい。
Then, by moving the local heating region relative to the non-conductive cylinder, the sintering part and the melting part are sequentially moved. At this time, when the method of moving the heating region from below to above the nonconductive cylinder is adopted, as shown in FIG.
Is formed, and a sintered portion 2 of granular silicon is formed thereon. Above the sintering section 2 is a filling section 1 of granular silicon. Below the melting part 3 is a silicon rod 4 in which the melting part 3 is naturally cooled and solidified. According to this method, a clean cylindrical silicon rod can be manufactured. However, when the particle size of the granular silicon is too large, the weight of the granular silicon particles themselves becomes larger than the bonding strength between the granular silicon particles in the sintered part,
Particulate silicon may fall from the sintered part, mix into the molten part below the sintered part, or damage the molten part.
Therefore, when employing this method, the particle size of the granular silicon is preferably 3 mm or less.

【0017】一方、加熱域を非電導性筒体の上から下へ
移動させる方法を採用したときは、図2に示すように、
シリコンの溶融部3の上方には自然冷却されて固化した
シリコンロッド4が形成され、該溶融部3の下方には粒
状シリコンの焼結部2が形成され、さらにその下方が粒
状シリコンの充填部1である。この方法の場合、溶融シ
リコンは下方に流れようとするために、必ずしも筒体の
長軸中心部に溶融シリコンが集まらず、多少湾曲した円
柱状のシリコンロッドが得られるが、粒状シリコンの粒
径の制限を受けないために、どのような粒径の粒状シリ
コンを原料として使用する方法にも適用可能である。
On the other hand, when the method of moving the heating area from the top to the bottom of the non-conductive cylinder is adopted, as shown in FIG.
A silicon rod 4 which is naturally cooled and solidified is formed above the silicon melting portion 3, a granular silicon sintered portion 2 is formed below the silicon melting portion 3, and further below the granular silicon filling portion is formed. It is one. In this method, since the molten silicon tends to flow downward, the molten silicon does not necessarily gather at the center of the long axis of the cylindrical body, and a somewhat curved cylindrical silicon rod is obtained. Therefore, the present invention can be applied to a method in which granular silicon having any particle size is used as a raw material.

【0018】加熱域の移動速度は、非電導性筒体の直径
に応じて適当な速度があるために、予め予備実験を行っ
て決定することが好ましい。例えば、直径30mmの非
電導性筒体を使用する場合には、2〜8mm/分の速度
を採用することが好ましい。
Since the moving speed of the heating zone has an appropriate speed according to the diameter of the non-conductive cylinder, it is preferable to determine the moving speed in advance by performing a preliminary experiment. For example, when using a non-conductive cylinder having a diameter of 30 mm, it is preferable to adopt a speed of 2 to 8 mm / min.

【0019】このようにして、加熱域を非電導性筒体に
対して相対的に移動させて、焼結部および溶融部を順次
移動させつつ該溶融部の冷却による固化部を形成させ、
シリンロッドを製造することができる。
In this way, the heating zone is moved relative to the non-conductive cylinder to form a solidified portion by cooling the molten portion while sequentially moving the sintered portion and the molten portion,
A syringe rod can be manufactured.

【0020】本発明において、加熱手段として高周波誘
導加熱を採用する場合、前記したシリコンおよび高周波
誘導加熱の特性上、加熱の初期において高周波誘導加熱
のみでは加熱効率が極めて悪い。このために、加熱の初
期には図3に示すように、カーボン板を加熱を開始する
部分に設置しておき、これを高周波誘導加熱コイルで加
熱することにより、カーボン板の輻射熱で粒状シリコン
を加熱するという方法を好適に採用しうる。このとき、
非電導性筒体の長軸に垂直方向における加熱を均一に行
うために、非電導性筒体をその長軸を中心として回転さ
せることが好ましい。
In the present invention, when high-frequency induction heating is employed as the heating means, heating efficiency is extremely poor only with high-frequency induction heating at the beginning of heating due to the characteristics of silicon and high-frequency induction heating described above. For this purpose, as shown in FIG. 3, in the initial stage of heating, a carbon plate is placed at a portion where heating is started, and this is heated by a high-frequency induction heating coil, so that the granular silicon is radiated by the radiant heat of the carbon plate. A method of heating can be suitably employed. At this time,
In order to uniformly perform heating in the direction perpendicular to the long axis of the non-conductive cylinder, it is preferable to rotate the non-conductive cylinder about its long axis.

【0021】本発明の方法によれば、単結晶および多結
晶のいずれのシリコンロッドも製造することができる。
単結晶シリコンロッドを製造する場合は、非電導性筒体
の底部に種単結晶を入れておき、加熱域を筒体の下から
上へ移動させる方法を採用すればよい。この方法で製造
された単結晶は、結晶が乱されることが多いために、半
導体用の単結晶を求めるならば、さらにFZ法等で単結
晶を製造することが好ましい。
According to the method of the present invention, both single crystal and polycrystalline silicon rods can be manufactured.
When a single-crystal silicon rod is manufactured, a method may be adopted in which a seed single crystal is placed at the bottom of a non-conductive cylinder, and the heating region is moved upward from below the cylinder. Since the single crystal produced by this method is often disturbed, if a single crystal for a semiconductor is to be obtained, it is preferable to further produce the single crystal by the FZ method or the like.

【0022】[0022]

【発明の効果】本発明の方法によれば、溶融シリコンと
るつぼ壁とを非接触に保持した状態で溶融シリコンを固
化させることができる。また、本発明の方法において
は、溶融シリコンとるつぼ壁との間隔が前記の連続鋳造
法よりも大きくなるため熱のロスが小さく、必然的に溶
融シリコンによるるつぼの加熱量が小さくなる。その結
果、るつぼからの不純物の混入を完全に防止することが
できる。
According to the method of the present invention, the molten silicon can be solidified while the molten silicon and the crucible wall are kept out of contact. Further, in the method of the present invention, since the distance between the molten silicon and the crucible wall is larger than in the continuous casting method described above, heat loss is small, and the amount of heating of the crucible by the molten silicon is necessarily small. As a result, contamination of impurities from the crucible can be completely prevented.

【0023】通常のCZ法による単結晶シリコンにおい
ては、石英るつぼの溶解による酸素の混入量が20pp
mにも達する。粒状シリコン中に存在する酸素及びアル
ミニウム等の不純物及び極微量の不純物は、測定方法の
制限から単結晶製造後でなければ分析できないが、上記
のように単結晶製造中に不純物が混入するために、元の
粒状シリコン中に含まれる不純物量を求めることは困難
であった。しかし、本発明の方法とFZ法を組み合わせ
て単結晶シリコンを製造すれば、製造中に不純物が混入
することがないため、単結晶シリコン中の不純物を分析
することにより粒状シリコン中の不純物量を推測するこ
とができ、粒状シリコン中の微量不純物の分析を容易に
行うことでできる。
In single crystal silicon obtained by the ordinary CZ method, the amount of oxygen mixed in by melting the quartz crucible is 20 pp.
m. Oxygen and impurities such as aluminum present in the granular silicon and trace impurities can be analyzed only after the production of the single crystal due to the limitation of the measurement method, but as described above, impurities are mixed during the production of the single crystal. It has been difficult to determine the amount of impurities contained in the original granular silicon. However, if single-crystal silicon is manufactured by combining the method of the present invention and the FZ method, impurities do not mix during the manufacturing. It can be guessed and it can be easily analyzed for trace impurities in the granular silicon.

【0024】[0024]

【実施例】以下に本発明を実施例に基づいて説明する
が、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 粒状シリコンとして流動床にて製造された平均粒径1.
2mmの多結晶シリコンを用いた。長軸の長さが150
mm、長軸に垂直な断面の面積が7cm2の石英ガラス
製の円筒5を、図3に示すように長軸を鉛直線と一致す
るように設置し、その中に粒状シリコン1を充填した。
Example 1 Average particle size produced in a fluidized bed as granular silicon
2 mm polycrystalline silicon was used. The major axis length is 150
mm, a quartz glass cylinder 5 having a cross-sectional area perpendicular to the major axis of 7 cm 2 was set so that the major axis coincided with the vertical line as shown in FIG. 3, and granular silicon 1 was filled therein. .

【0026】加熱の初期状態においては、高周波誘導加
熱コイル6でカーボン板7を7KWの出力(周波数は2
MHz)で加熱し、カーボン板7からの放射熱により粒
状シリコン1が誘導加熱を行うのに充分な温度になるま
で円筒5を5rpmで回転した。
In the initial state of heating, the high-frequency induction heating coil 6 outputs a carbon plate 7 of 7 KW (frequency is 2 KW).
MHz), and the cylinder 5 was rotated at 5 rpm until the granular silicon 1 reached a temperature sufficient for induction heating by radiant heat from the carbon plate 7.

【0027】高周波誘導加熱が粒状シリコンにかかった
ことを確認した後、カーボン板を取り去り、同時に高周
波出力を7KWから5KWに下げ、高周波誘導加熱コイ
ルの近辺の粒状シリコンが溶融し、また、溶融シリコン
の上方が焼結状態になるようにした。
After confirming that high-frequency induction heating was applied to the granular silicon, the carbon plate was removed, and at the same time, the high-frequency output was reduced from 7 KW to 5 KW, and granular silicon near the high-frequency induction heating coil was melted. Was made to be in a sintered state.

【0028】上記の定常状態を作った後、円筒5全体を
移動速度5mm/minで下方に下げ、加熱域を相対的
に上昇させた。加熱域の移動中は、焼結、溶融、固化の
状態が変化しないよう高周波出力を5KWに維持した。
After the above steady state was established, the entire cylinder 5 was lowered at a moving speed of 5 mm / min, and the heating area was raised relatively. During the movement of the heating zone, the high frequency output was maintained at 5 KW so that the state of sintering, melting and solidification did not change.

【0029】こうして直径20mm、長さ120mmの
多結晶シリコンロッドを製造した。得られたシリコンロ
ッドをFZ法で単結晶に引き上げ、その分析値をサンプ
ルAとして表1に示した。
Thus, a polycrystalline silicon rod having a diameter of 20 mm and a length of 120 mm was manufactured. The obtained silicon rod was pulled up to a single crystal by the FZ method, and the analysis value is shown in Table 1 as Sample A.

【0030】なお、比較のために、上記で使用したもの
と同じ粒状シリコンを石英管中で強く震盪して意識的に
石英成分を混入させた後、上記と同様の方法で単結晶シ
リコンロッドを製造し、サンプルBとしてその分析値を
表1に併記した。また、サンプルCは比較のためジーメ
ンス法で作成したシリコンロッドを棒状に加工し、その
ままFZ法で単結晶化したものの分析値である。
For comparison, the same granular silicon used above was shaken vigorously in a quartz tube to intentionally mix the quartz component, and then a single-crystal silicon rod was formed in the same manner as described above. The sample was manufactured, and its analysis value is shown in Table 1 as Sample B. Sample C is an analysis value obtained by processing a silicon rod prepared by the Siemens method into a rod shape for comparison and single crystallizing the same by the FZ method.

【0031】表1に示すように、サンプルAのアルミニ
ウム及び酸素の分析値はジーメンス法で製造したシリコ
ンに非常に近い値を示しており、不純物の混入のないも
のである。なお、CZ法で製造した一般の単結晶シリコ
ン中の酸素量は20ppm−atomであるから、本発
明の方法で製造したシリコンロッドは極めて高純度であ
ることがわかる。
As shown in Table 1, the analysis values of aluminum and oxygen of Sample A are very close to those of silicon manufactured by the Siemens method, and are free from impurities. In addition, since the amount of oxygen in the general single crystal silicon manufactured by the CZ method is 20 ppm-atom, it is understood that the silicon rod manufactured by the method of the present invention has extremely high purity.

【0032】[0032]

【表1】 [Table 1]

【0033】実施例2 円筒の移動方向を実施例1と逆にしたこと以外は同様に
行い、多結晶シリコンロッドを製造した。得られたシリ
コンロッドは、実施例1の方法で得られたものに比べて
多少湾曲した円柱状であった。このシリコンロッドから
実施例1と同様にして単結晶を製造した後分析した結
果、不純物量は実施例1と全く同じであった。
Example 2 A polycrystalline silicon rod was manufactured in the same manner as in Example 1 except that the moving direction of the cylinder was reversed. The obtained silicon rod had a somewhat curved cylindrical shape as compared with that obtained by the method of Example 1. As a result of producing a single crystal from this silicon rod in the same manner as in Example 1, and analyzing the result, the amount of impurities was exactly the same as in Example 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の代表的な方法の模式図であ
る。
FIG. 1 is a schematic diagram of a representative method of the present invention.

【図2】図2は、本発明の他の代表的な方法の模式図で
ある。
FIG. 2 is a schematic diagram of another exemplary method of the present invention.

【図3】図3は、本発明の代表的な方法の斜視図であ
る。
FIG. 3 is a perspective view of a representative method of the present invention.

【符号の説明】[Explanation of symbols]

1 粒状シリコンの充填部 2 粒状シリコンの焼結部 3 シリコンの溶融部 4 固化部 5 非電導性筒体 6 高周波誘導加熱コイル 7 カーボン板 DESCRIPTION OF SYMBOLS 1 Filled part of granular silicon 2 Sintered part of granular silicon 3 Melted part of silicon 4 Solidification part 5 Non-conductive cylinder 6 High frequency induction heating coil 7 Carbon plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】長軸が鉛直線とほぼ一致するように設置し
た非電導性筒体に粒状シリコンを充填し、次いで非電導
性筒体の長軸方向における一部分を局部的に加熱して粒
状シリコンの焼結部およびシリコンの溶融部を形成さ
せ、該局部的な加熱域を移動させることにより焼結部お
よび溶融部を順次移動させつつ該溶融部の冷却による固
化部を形成させることを特徴とするシリコンロッドの製
造方法。
1. A non-conductive cylinder, which is installed so that its major axis substantially coincides with a vertical line, is filled with granular silicon, and then a portion of the non-conductive cylinder in the longitudinal direction is locally heated to obtain a granular material. Forming a sintered portion of silicon and a molten portion of silicon, and moving the local heating region to sequentially move the sintered portion and the molten portion while forming a solidified portion by cooling the molten portion. Manufacturing method of a silicon rod.
JP5056890A 1993-03-17 1993-03-17 Silicon rod manufacturing method Expired - Lifetime JP2922078B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5056890A JP2922078B2 (en) 1993-03-17 1993-03-17 Silicon rod manufacturing method
US08/208,864 US5499598A (en) 1993-03-17 1994-03-11 Method for producing a silicon rod
DE4409170A DE4409170A1 (en) 1993-03-17 1994-03-17 Method for producing silicon in the form of rods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5056890A JP2922078B2 (en) 1993-03-17 1993-03-17 Silicon rod manufacturing method

Publications (2)

Publication Number Publication Date
JPH06271381A JPH06271381A (en) 1994-09-27
JP2922078B2 true JP2922078B2 (en) 1999-07-19

Family

ID=13040032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5056890A Expired - Lifetime JP2922078B2 (en) 1993-03-17 1993-03-17 Silicon rod manufacturing method

Country Status (3)

Country Link
US (1) US5499598A (en)
JP (1) JP2922078B2 (en)
DE (1) DE4409170A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544333B2 (en) 1997-12-15 2003-04-08 Advanced Silicon Materials Llc Chemical vapor deposition system for polycrystalline silicon rod production
US5904981A (en) * 1998-05-27 1999-05-18 Tokuyama Corporation Polycrystal silicon rod having an improved morphyology
DE19859288A1 (en) * 1998-12-22 2000-06-29 Bayer Ag Agglomeration of silicon powders
US8021483B2 (en) * 2002-02-20 2011-09-20 Hemlock Semiconductor Corporation Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
JP4658453B2 (en) * 2002-11-14 2011-03-23 ヘムロック・セミコンダクター・コーポレーション Flowable chip, method for producing and using the same, and apparatus used for carrying out the method
US9683286B2 (en) * 2006-04-28 2017-06-20 Gtat Corporation Increased polysilicon deposition in a CVD reactor
JP5157878B2 (en) * 2007-12-25 2013-03-06 三菱マテリアル株式会社 Single crystal silicon production equipment
JP5163386B2 (en) * 2008-09-17 2013-03-13 株式会社Sumco Silicon melt forming equipment
JP5228899B2 (en) * 2008-12-26 2013-07-03 株式会社Sumco Silicon melting method, silicon melting apparatus, and silicon single crystal manufacturing apparatus
US20130112134A1 (en) * 2009-02-23 2013-05-09 Giga Industries, Inc. Method and Systems for Characterization and Production of High Quality Silicon
EP2471981A4 (en) * 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp Sic single crystal wafer and process for production thereof
DE102010043702A1 (en) * 2010-11-10 2012-05-10 Wacker Chemie Ag Method for the determination of impurities in silicon
US20130044779A1 (en) * 2011-08-16 2013-02-21 Raytheon Company Method for tailoring the dopant profile in a laser crystal using zone processing
DE102012215677B3 (en) * 2012-09-04 2013-10-10 Siltronic Ag Method of producing a single crystal of silicon
WO2014093087A1 (en) * 2012-12-11 2014-06-19 Hemlock Semiconductor Corporation Methods of forming and analyzing doped silicon
US9580327B2 (en) * 2014-02-11 2017-02-28 Rec Silicon Inc Method and apparatus for consolidation of granular silicon and measuring non-metals content

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1179382B (en) * 1954-06-30 1964-10-08 Siemens Ag Process for producing an extremely pure, rod-shaped semiconductor crystal for the production of electrical semiconductor components such as directional conductors, transistors, etc.
GB898872A (en) * 1959-08-14 1962-06-14 Ici Ltd Improvements in the manufacture of crystalline silicon
DE1254590B (en) * 1965-01-29 1967-11-23 Siemens Ag Method for crucible-free zone melting of semiconductor material, in particular silicon
DE2059360A1 (en) * 1970-12-02 1972-06-08 Siemens Ag Process for the production of homogeneous bars from semiconductor material
US4094730A (en) * 1977-03-11 1978-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method for fabrication of high minority carrier lifetime, low to moderate resistivity, single crystal silicon
US4394183A (en) * 1981-11-18 1983-07-19 Bell Telephone Laboratories, Incorporated Solidification of molten materials
US4572812A (en) * 1984-08-13 1986-02-25 The United States Of America As Represented By The Secretary Of Energy Method and apparatus for casting conductive and semiconductive materials
JP2630417B2 (en) * 1988-04-15 1997-07-16 住友シチックス株式会社 Silicon casting equipment
EP0349904B1 (en) * 1988-07-05 1994-02-23 Sumitomo Sitix Co., Ltd. Apparatus for casting silicon
EP0450494B1 (en) * 1990-03-30 1996-06-19 Sumitomo Sitix Corporation Manufacturing method for single-crystal silicon
US5436164A (en) * 1990-11-15 1995-07-25 Hemlock Semi-Conductor Corporation Analytical method for particulate silicon
JP3053958B2 (en) * 1992-04-10 2000-06-19 光弘 丸山 Crystal production equipment by the floating zone melting method

Also Published As

Publication number Publication date
US5499598A (en) 1996-03-19
JPH06271381A (en) 1994-09-27
DE4409170A1 (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP2922078B2 (en) Silicon rod manufacturing method
KR930001895B1 (en) Method and equipment for manufacturing silicon single crystal
JP3309141B2 (en) Method and apparatus for casting crystalline silicon ingot by electron beam melting
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
US5217565A (en) Contactless heater floating zone refining and crystal growth
US5067551A (en) Method for manufacturing alloy rod having giant magnetostriction
JPH11255588A (en) Apparatus for feeding single crystal raw material and feeding of single crystal raw material
US7326297B2 (en) Device for the production of crystal rods having a defined cross-section and column-shaped polycrystallization structure by means of floating-zone continuous crystallization
JP3644227B2 (en) Method and apparatus for producing silicon single crystal
JPH11304791A (en) Method for analyzing impurity of polycrystal silicon
US5063986A (en) Method for manufacturing alloy rod having giant magnetostriction
JP2019043788A (en) Method and apparatus for growing single crystal
US3867496A (en) Method and apparatus for producing fine-grated polycrystalline bodies
US9422636B2 (en) Method and apparatus for producing single crystals composed of semiconductor material
JP2531415B2 (en) Crystal growth method
US3494745A (en) Method of growing single crystal in a horizontally disposed rod
WO1993020968A1 (en) Method and apparatus for controlling solidification of metals and other materials
JP2000234108A (en) Spherical metal titanium, and manufacture of titanium compound
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JP7486743B2 (en) Method for producing FeGa alloy single crystal
JPH0259494A (en) Production of silicon single crystal and apparatus
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JP2600944B2 (en) Crystal growth method
KR950011093B1 (en) Process and apparatus for producing refractory electric pole by inductive-heating
JPS6136192A (en) Crucible for producing single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14