JP2917080B2 - Method and apparatus for continuous production of poorly water-soluble salts - Google Patents
Method and apparatus for continuous production of poorly water-soluble saltsInfo
- Publication number
- JP2917080B2 JP2917080B2 JP4250511A JP25051192A JP2917080B2 JP 2917080 B2 JP2917080 B2 JP 2917080B2 JP 4250511 A JP4250511 A JP 4250511A JP 25051192 A JP25051192 A JP 25051192A JP 2917080 B2 JP2917080 B2 JP 2917080B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- material supply
- supply port
- reactor
- tubular reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、体質顔料、化粧品、写
真乳剤、電子材料および添加剤等に適した、粒径の揃っ
た水難溶性塩の連続製造方法ならびにその原料となる2
種以上の流体を連続的に混合して反応させるための装置
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a hardly water-soluble salt having a uniform particle size, which is suitable for extender pigments, cosmetics, photographic emulsions, electronic materials, additives and the like.
The present invention relates to an apparatus for continuously mixing and reacting at least two kinds of fluids.
【0002】[0002]
【従来の技術】水難溶性塩を生成する反応では、反応速
度が非常に大きいために、その原料となる異種の流体を
すばやく均一な混合流体とすることが、均一な品質の生
成物を得るための必要条件である。例えば、2種以上の
流体を混合して反応させて、体質顔料の硫酸バリウムの
如き生成物を製造する場合、その操作を連続的に行い、
かつ均一で優れた品質の生成物を得るためは、次の諸点
に留意することが必要である。2. Description of the Related Art In a reaction for producing a poorly water-soluble salt, the reaction rate is extremely high. Therefore, it is necessary to quickly and uniformly mix different kinds of fluids as raw materials to obtain a product of uniform quality. Is a necessary condition. For example, when two or more kinds of fluids are mixed and reacted to produce a product such as barium sulfate as an extender, the operation is performed continuously,
In order to obtain a uniform and excellent quality product, it is necessary to pay attention to the following points.
【0003】(1)互いに混合して反応する異種の流体
を混合した後に、すばやく均一な混合流体とすること。
混合が部分的に不均一となると、各部分での反応速度等
に差異が生じ、均一な品質の生成物が得られないからで
ある。 (2)装置内での滞留時間分布を狭くすること。装置内
での滞留時間分布が広くなると、粒子成長度の異なる、
つまり形状や大きさの異なる粒子が形成され、装置から
排出される生成物の品質にバラツキが生ずることにな
り、生成物の価値を著しく損なう結果となるからであ
る。 (3)装置内での滞留時間を短くすること。連続製造プ
ロセスを工業的に実施する場合に、しばしば問題となる
装置のスタート時と停止時での不安定な過渡状態の長短
は、装置内の滞留時間の長短に起因することが多く、滞
留時間が長いとこの過渡状態も長くなって、生成物の歩
留まりを悪くするばかりでなく、同一の装置を用いて多
品種の生成物を製造する場合に不経済となる。 (4)装置内に駆動部、あるいは攪拌部を設けないこ
と。駆動部あるいは攪拌部がある場合、生成物の結晶粒
子が破損して品質を損なう可能性がある。また、生成物
が付着して異常反応の原因を引き起こす可能性もあるか
らである。さらには、装置洗浄も困難となる。(1) After mixing different kinds of fluids which mix and react with each other, the mixed fluid is quickly and uniformly mixed.
This is because, if the mixing becomes partially non-uniform, the reaction speed and the like in each part differ, and a product of uniform quality cannot be obtained. (2) To narrow the residence time distribution in the device. When the residence time distribution in the device becomes wider, the particle growth rate differs,
That is, particles having different shapes and sizes are formed, and the quality of the product discharged from the apparatus varies, resulting in a significant loss of the value of the product. (3) To shorten the residence time in the device. When conducting a continuous manufacturing process industrially, the length of the unstable transient state at the start and stop of the apparatus, which is often a problem, is often due to the length of the residence time in the apparatus, and the residence time Is longer, this transient state becomes longer, not only deteriorating the yield of products, but also uneconomical when producing a wide variety of products using the same equipment. (4) No drive unit or stirring unit is provided in the apparatus. If there is a driving unit or a stirring unit, there is a possibility that the crystal grains of the product are damaged and the quality is impaired. In addition, there is a possibility that the product may adhere to cause an abnormal reaction. Further, cleaning of the device becomes difficult.
【0004】従来、以上のような留意点を有する反応速
度の非常に大きい水難溶性塩の反応において、その原料
となる流体を連続的に混合して反応する場合、(イ)パ
イプラインホモミクサー(特殊機化工業(株)製)のよ
うに管路内に攪拌機を設置し、混合して反応させる装
置、(ロ)上下方向に多段の攪拌翼を有し攪拌翼の上下
に仕切を設け、攪拌翼による逆混合を防止した縦型筒状
攪拌装置、(ハ)ドラフトチューブを設け、逆混合を防
止したドラフトチューブ型攪拌装置、または、(ニ)筒
内に多孔板棚段を設けたオリフィス塔型装置が使用され
ていた。Conventionally, in the reaction of a water-insoluble salt having a very high reaction rate with the above-mentioned points to be considered, when a fluid as a raw material is continuously mixed and reacted, (a) a pipeline homomixer ( A device for mixing and reacting by installing a stirrer in a pipe line as in the case of Tokushu Kika Kogyo Co., Ltd., and (b) having multi-stage stirring blades in the vertical direction and providing partitions above and below the stirring blades. A vertical cylindrical stirrer that prevents back mixing by a stirring blade, (c) a draft tube stirrer that is provided with a draft tube and that prevents back mixing, or (d) an orifice that is provided with a perforated plate shelf in a tube. A tower type device was used.
【0005】しかし、(ニ)については装置内での滞留
時間分布を狭く保つこと(留意点(2))を重視するあ
まり、混合度が低く留意点(1)に問題があった。一
方、(イ)(ロ)(ハ)の装置を用いると、原料流体の
混合は素早く行えるが、混合を推進するために駆動部、
攪拌部が装置内に設けられており、留意点(4)に問題
があった。さらに、(ロ)(ハ)については、反応装置
が管型ではなく槽型に近いため留意点(2)に問題があ
った。However, regarding (d), the importance of keeping the residence time distribution in the apparatus narrow (attention (2)) is so important that the degree of mixing is low and there is a problem at attention (1). On the other hand, when the devices (a), (b), and (c) are used, mixing of the raw material fluids can be performed quickly, but a driving unit,
Since the stirring section is provided in the apparatus, there was a problem in the point (4) to be noted. Further, regarding (b) and (c), there was a problem in the point (2) to be noted because the reactor was not a tube type but a tank type.
【0006】上記の問題点を解決する手段として、特公
昭52−31582号公報に連続混合反応装置が開示さ
れている。この装置は、異種流体をすばやく混合し滞留
時間分布も小さく混合反応装置としては優れているが、
装置が複雑であり装置内に攪拌部を有しているため、攪
拌部による生成物の破壊や付着ならびに付着による異常
反応(留意点(4))に問題があった。また、装置洗浄
も容易には行えず、製造品種の切り換えが困難で不経済
である。As a means for solving the above problems, Japanese Patent Publication No. Sho 52-31582 discloses a continuous mixing reactor. Although this device mixes different fluids quickly and has a small residence time distribution, it is excellent as a mixing reactor,
Since the apparatus is complicated and has a stirring section in the apparatus, there is a problem in the destruction and adhesion of the product by the stirring section and an abnormal reaction due to the adhesion (note (4)). Further, cleaning of the apparatus cannot be easily performed, and it is difficult to switch the production type, which is uneconomical.
【0007】また、特公昭54−22200号公報、特
公昭62−34688号公報では、水難溶性塩の連続製
造方法が開示されている。特公昭54−22200号公
報では、反応原料が液体−気体であり、かつ反応を2段
に分割し制御している。この反応では、水難溶性塩を生
じる反応速度に比べて、原料の気体が液体に溶解する速
さが小さいことを利用し、連続製造方法に展開している
が、実際には管型反応装置と槽型反応装置とが2つつな
がっており、装置のコストが高いものとなっている。[0007] JP-B-54-22200 and JP-B-62-34688 disclose continuous production methods of poorly water-soluble salts. In Japanese Patent Publication No. 54-22200, the reaction raw material is a liquid-gas, and the reaction is controlled in two stages. This reaction is based on the fact that the rate at which the raw material gas dissolves in the liquid is lower than the rate at which the poorly water-soluble salt is generated, and is being developed into a continuous production method. There are two tank type reactors, and the cost of the apparatus is high.
【0008】また、特公昭62−34688号公報で
は、半回分反応方法であるため、反応生成物の存在下に
原料流体が供給されるために、滞留時間分布が広く、す
なわち留意点(2)に問題があり、装置から排出される
生成物の品質にバラツキが生じて、生成物の価値を著し
く損なう結果となる。従って、均一な品質を要求される
水難溶性塩の生成物を連続的に製造するプロセスの場合
には、これらの従来の各装置はいずれも不適当であり、
結局これらのプロセスは連続化できずに、回分プロセス
に依らざるを得なかった。In Japanese Patent Publication No. 34688/1987, since the starting fluid is supplied in the presence of a reaction product because of a semi-batch reaction method, the residence time distribution is wide, that is, a point (2) to be noted. And the quality of the product discharged from the apparatus varies, resulting in a significant loss of product value. Therefore, in the case of a process for continuously producing a product of a poorly water-soluble salt that requires uniform quality, any of these conventional apparatuses is unsuitable,
Eventually, these processes could not be continuous and had to rely on batch processes.
【0009】[0009]
【発明が解決しようとする課題】本発明はこのような課
題を解決するために行われたものである。すなわち、本
発明の目的は、反応速度の非常に早い水難溶性塩である
硫酸バリウムの連続製造において、装置内での流体の滞
留時間分布を極度に狭く保つことができ、かつ、反応装
置内に攪拌部・駆動部を有しないにもかかわらず、各種
流体を迅速かつ均一に混合・攪拌して反応させ、さら
に、反応生成物をすみやかに反応装置外へ排出すること
のできる連続反応装置を提供し、粒径の整った品質の良
い硫酸バリウムの連続製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve such problems. That is, an object of the present invention is a poorly water-soluble salt having a very fast reaction rate.
In the continuous production of barium sulfate , the residence time distribution of the fluid in the device can be kept extremely narrow, and various fluids can be quickly and uniformly distributed even though there is no stirrer / drive in the reactor. To provide a continuous reactor capable of promptly discharging the reaction product to the outside of the reactor, and to provide a continuous production method of barium sulfate having a uniform particle size and good quality. It is in.
【0010】[0010]
【課題を解決するための手段】斯かる実情において本発
明者らは、上記課題を解決すべく鋭意研究を行った結
果、2種以上の原料を反応させて水難溶性塩である硫酸
バリウムを連続的に製造する方法において、少なくとも
2種の原料を独立して管型の反応装置に連続的に供給し
て、反応させ、さらに反応生成物(硫酸バリウムならび
に副生物を含んだ流体)を滞留させる事なく反応装置か
ら連続的に排出することを特徴とする硫酸バリウムの連
続製造方法及びそれに用いる連続反応装置を見いだし、
本発明の完成に到った。Means for Solving the Problems Under such circumstances, the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, two or more kinds of raw materials were reacted to form sulfuric acid which is a poorly water-soluble salt.
In a method for continuously producing barium , at least two kinds of raw materials are continuously supplied to a tubular reactor continuously and reacted, and a reaction product ( barium sulfate and by-products) is further produced. A continuous process for producing barium sulfate , characterized by continuously discharging the barium sulfate without stagnation, and a continuous reactor used therefor.
The present invention has been completed.
【0011】即ち、本発明の要旨は、 (1) 管型反応器内で原料同士の混合・攪拌が生じる
ように、2種以上の原料を独立して連続的に該反応器内
に供給して原料を反応させ、生成する反応生成物を滞留
させることなく反応器から連続的に排出する硫酸バリウ
ムの連続製造方法であって、2種以上の原料のうち、少
なくとも1種の原料(a)は管型反応器の端部に設けた
一の原料供給口(A)から供給し、他の原料(b)は該
端部またはその下流側に設けた少なくとも一以上の他の
原料供給口(B)から供給するものであり、かつ該管型
反応器の下記式で定義される断面積比As/Ajを2以
上8以下、および流体接触比Am/Ljを0.5以上4
以下とし、相対過飽和度(σ)が10〜200となる反
応を行なうことを特徴とする、硫酸バリウムの連続製造
方法、 並びに (2) 2種以上の原料を反応させて硫酸バリウムを連
続的に製造する連続反応装置において、管型反応器と、
該反応器に独立して設けられた2以上の原料供給口と、
反応生成物を連続的に排出する生成物排出口を備え、該
反応器内で原料同士の混合・攪拌が生じるように原料を
供給する原料供給手段を有してなり、前記原料供給口が
該管型反応器の端部に設けられた原料供給口(A)およ
び該端部またはその下流側に設けられた原料供給口
(B)から構成され、かつ該管型反応器の下記式で定義
される断面積比As/Ajを2以上8以下、および流体
接触比Am/Ljを0.5以上4以下とし、相対過飽和
度(σ)が10〜200となる反応に使用されることを
特徴とする、硫酸バリウムの連続製造装置、に関する。That is, the gist of the present invention is as follows: (1) Two or more kinds of raw materials are independently and continuously supplied into a tubular reactor so that the raw materials are mixed and stirred in the reactor. Barium sulfate that is continuously discharged from the reactor without reacting the reaction products
A continuous process arm, of the two or more ingredients, at least one of the raw materials (a) is supplied from a raw material supply port provided at an end portion of the tubular reactor (A), the other The raw material (b) is supplied from at least one or more other raw material supply ports (B) provided at the end or at a downstream side thereof, and has a cross-sectional area ratio defined by the following formula of the tubular reactor. As / Aj is 2 or more
Upper 8 or less, and fluid contact ratio Am / Lj of 0.5 or more 4
A continuous production method of barium sulfate , characterized by performing a reaction having a relative supersaturation (σ) of 10 to 200 , And (2) in a continuous reactor for continuously producing barium sulfate by reacting two or more kinds of raw materials, a tubular reactor;
Two or more raw material supply ports independently provided in the reactor,
A product discharge port for continuously discharging the reaction product is provided, and raw material supply means for supplying a raw material such that the raw materials are mixed and stirred in the reactor is provided. It is composed of a raw material supply port (A) provided at the end of the tubular reactor and a raw material supply port (B) provided at the end or at a downstream side thereof, and is defined by the following formula of the tubular reactor. The cross-sectional area ratio As / Aj is set to 2 or more and 8 or less, and the fluid contact ratio Am / Lj is set to 0.5 or more and 4 or less, and is used for a reaction in which relative supersaturation (σ) is 10 to 200. A continuous production apparatus for barium sulfate .
【0012】まず、本発明の連続反応装置について説明
する。本発明の連続反応装置は、上記のように管型反応
器と、該反応器に独立して設けられた2以上の原料供給
口と、反応生成物を連続的に排出する生成物排出口を備
えるが、該管型反応器は、一方に2以上の原料供給口、
他方に生成物排出口を有し、2種以上の原料を各々独立
して供給することができる構造を有する。好ましくは、
一の原料供給口(A)が管型反応器の端部に設けられ、
他の一以上の原料供給口(B)が該端部またはその下流
側に設けられたものであり、より好ましくは、原料供給
口(B)が、管型反応器の端部に設けられた一の原料供
給口(A)から下流側に所定の距離をおいて下流側の方
向に配設されているものである。なお、本発明でいう端
部とは、生成物排出口とは反対側の閉じた部分あるいは
その近傍をいう(図1における8の範囲)。First, the continuous reactor of the present invention will be described. The continuous reactor of the present invention comprises a tubular reactor as described above, two or more raw material supply ports provided independently of the reactor, and a product discharge port for continuously discharging a reaction product. Provided, the tubular reactor has two or more raw material supply ports on one side,
On the other hand, it has a product outlet and has a structure capable of supplying two or more kinds of raw materials independently. Preferably,
One raw material supply port (A) is provided at the end of the tubular reactor;
The one or more raw material supply ports (B) are provided at the end or at a downstream side thereof, and more preferably, the raw material supply port (B) is provided at the end of the tubular reactor. It is arranged at a predetermined distance from one raw material supply port (A) to the downstream side in the downstream direction. The term “end” as used in the present invention refers to a closed portion on the opposite side to the product discharge port or its vicinity (range 8 in FIG. 1).
【0013】このような管型反応器の具体例としては、
例えば図1〜図3に示すようなものが挙げられる。図1
は、管型反応器が該管型反応器の端部に原料供給口
(A)と、該端部から下流側にもう一つの原料供給口
(B)を有する連続反応装置で、すべての原料の供給方
向が反応器の生成物排出口方向へ向いているタイプであ
る。図2は管型反応器の一端が閉じており、原料が管型
反応器の管壁接線方向から反応器内に供給されるように
原料供給口が設けられ、旋回流を形成しながら生成物排
出口の方へ流れていくタイプ、図3は管型反応器の一端
が閉じており、その閉じた面に向かって原料を噴出させ
ることができるように原料供給口が設けられ、急激に流
れの方向を変化させた後、生成物排出口へと流動させる
タイプであるが、原料の噴き出す方向、位置は特にこれ
らに限定されるものではない。ここに挙げた3タイプの
中でも逆混合の起こりにくさ、押し出し流れの均一さか
らみて図1のタイプが最も好ましい。Specific examples of such a tubular reactor include:
For example, those shown in FIGS. FIG.
Is a continuous reactor in which a tubular reactor has a raw material supply port (A) at an end of the tubular reactor and another raw material supply port (B) downstream from the end. Is directed toward the product outlet of the reactor. FIG. 2 shows a tubular reactor in which one end is closed and a raw material supply port is provided so that the raw material is supplied into the reactor from a tangential direction of the tube wall of the tubular reactor. In the type that flows toward the discharge port, FIG. 3 shows one end of a tubular reactor that is closed, and a raw material supply port is provided so that the raw material can be ejected toward the closed surface. After changing the direction, the liquid is flowed to the product discharge port, but the direction and the position at which the raw material is ejected are not particularly limited to these. Of the three types mentioned above, the type shown in FIG. 1 is most preferable in view of the difficulty of back mixing and the uniformity of the extrusion flow.
【0014】以下、本発明の連続反応装置の好ましい一
例について、図1に基づいて詳細に説明する。図1は本
発明における連続反応装置の反応器部の一例を示す。図
中、1は原料供給口(B)、2は原料供給口(A)、3
は原料供給のためのバッファー槽、4は原料供給口
(A)2から供給された流体が管型反応器6内でピスト
ンフローとなるための助走区間、5は原料供給口(B)
1に連通する原料供給管、9は原料供給口(A)2に連
通する原料供給管、6は混合・攪拌により反応を行うた
めの管型反応器、7は反応生成物を含有する流体を管型
反応器6の外へ排出するための生成物排出口である。ポ
ンプ等の原料供給手段により、異種の原料流体はそれぞ
れ送液され、原料供給口1、2から管型反応器6内へ供
給されるが、原料供給管5、9の大きさ、形状、本数は
限定されない。また、原料供給口(B)1は、供給の平
均線流速を高めるために、噴出ノズルとしてもよい。Hereinafter, a preferred example of the continuous reaction apparatus of the present invention will be described in detail with reference to FIG. FIG. 1 shows an example of a reactor section of the continuous reaction apparatus according to the present invention. In the figure, 1 is a raw material supply port (B), 2 is a raw material supply port (A), 3
Is a buffer tank for supplying the raw material, 4 is a run-up section where the fluid supplied from the raw material supply port (A) 2 becomes a piston flow in the tubular reactor 6, and 5 is a raw material supply port (B).
1 is a raw material supply pipe communicating with 1, 1 is a raw material supply pipe communicating with the raw material supply port (A) 2, 6 is a tubular reactor for performing a reaction by mixing and stirring, and 7 is a fluid containing a reaction product. It is a product outlet for discharging to the outside of the tubular reactor 6. Different kinds of raw material fluids are respectively fed by a raw material supply means such as a pump and supplied into the tubular reactor 6 from the raw material supply ports 1 and 2, and the size, shape and number of the raw material supply pipes 5 and 9 are provided. Is not limited. Further, the raw material supply port (B) 1 may be a jet nozzle in order to increase the average linear flow velocity of supply.
【0015】原料供給口(A)2から供給された原料a
は管型反応器6内の助走区間4を通り、生成物排出口7
の方向へ流れる。その際、助走区間4の長さは、原料a
が管型反応器6内部において、半径方向に対して速度分
布がほぼ一様、すなわちピストンフローになるような長
さにする必要がある。もし、半径方向に対して速度分布
が一様でない場合、原料bと原料aとの混合・攪拌が半
径方向に対して不均一になり、結果的に生成物の品質に
バラツキが生じてしまうからである。原料供給口1、2
および管型反応器6の大きさ、本数及びその配置によ
り、助走区間4の長さを決定できるが、(助走区間4の
長さ)≧(管型反応器6の内径)であることが望まし
い。(助走区間4の長さ)<(管型反応器6の内径)で
はピストンフローが不十分であるために混合が半径方向
に対して不均一になり問題が生じる。さらに、ピストン
フローを十分に成長させるためには、(助走区間4の長
さ)≧(管型反応器6の内径)×3であることが望まし
い。しかし、速度分布を均一にするための分散板等を挿
入し、いち早くピストンフローを実現することができれ
ば、(助走区間4の長さ)≧(管型反応器6の内径)を
満足する必要はない。The raw material a supplied from the raw material supply port (A) 2
Passes through the run-up section 4 in the tubular reactor 6 and the product outlet 7
Flows in the direction of. At that time, the length of the approach section 4 is determined by the raw material a
However, it is necessary to make the length inside the tubular reactor 6 such that the velocity distribution is substantially uniform in the radial direction, that is, the piston flow. If the velocity distribution is not uniform in the radial direction, the mixing / stirring of the raw material b and the raw material a becomes non-uniform in the radial direction, resulting in a variation in the quality of the product. It is. Raw material supply ports 1, 2
The length of the approach section 4 can be determined by the size, number, and arrangement of the tubular reactors 6, and it is desirable that (length of the approach section 4) ≧ (inner diameter of the tubular reactor 6). . When (length of the run-up section 4) <(inner diameter of the tubular reactor 6), mixing is not uniform in the radial direction due to insufficient piston flow, which causes a problem. Further, in order to sufficiently grow the piston flow, it is desirable that (length of the run-up section 4) ≧ (inner diameter of the tubular reactor 6) × 3. However, if a dispersion plate or the like for uniforming the velocity distribution is inserted and the piston flow can be realized as soon as possible, it is necessary to satisfy (length of the run-up section 4) ≧ (inner diameter of the tubular reactor 6). Absent.
【0016】また、原料bにおいてはバッファー槽3を
経て、原料供給口(B)1から管型反応器6内へ供給さ
れる。ここで、バッファー槽3は、原料供給手段により
生じる脈動を吸収し、原料供給管5の入口において、均
一な圧力で原料供給できるような大きさを有していれば
良く、大きさならびにその形状についてはなんら限定さ
れない。The raw material b is supplied from the raw material supply port (B) 1 into the tubular reactor 6 through the buffer tank 3. Here, the buffer tank 3 only needs to have a size capable of absorbing the pulsation generated by the raw material supply means and supplying the raw material at a uniform pressure at the inlet of the raw material supply pipe 5. Is not limited at all.
【0017】管型反応器6の内径および長さは、反応の
種類、反応時間、処理能力等の要求される条件により選
定されるが、設置する原料供給管5の本数およびその大
きさによって、その範囲が限定されてくる。原料供給管
5は、円管、三角管、四角管等の形状は限定されない
が、その入手のしやすさから、円管が望ましい。また、
本反応装置における混合機構は、2流体間の速度差から
せん断応力が発達し、流体間で運動量交換が行われるた
めであるが、この運動量交換を生むための要因として
は、流体間の速度差と流体間の接触面積が関与してい
る。この速度差を生じさせるためには、原料供給する後
述する液流量の関係は当然のことながら、それぞれの流
体が流動する流路断面積の関係も重要である。また、2
流体間で接触する面積が大きければ大きいほど、混合・
攪拌は速やかに行われ、反応生成物も均一なものとな
る。すなわち、次のように定義される流路の断面積比A
s/Ajならびに流体接触比Am/Ljは本発明の連続
反応装置を製作する上で大きな因子である。The inner diameter and length of the tubular reactor 6 are selected according to the required conditions such as the type of reaction, reaction time, processing capacity, etc., but depending on the number and size of the raw material supply pipes 5 to be installed. The range is limited. The shape of the raw material supply pipe 5 such as a circular pipe, a triangular pipe, and a square pipe is not limited, but a circular pipe is preferable because it is easily available. Also,
The mixing mechanism in the present reactor is because the shear stress develops from the speed difference between the two fluids and the momentum is exchanged between the fluids. The contact area between the fluids is involved. In order to generate this speed difference, the relationship between the flow rates of the liquids to be described later and the relationship between the cross-sectional areas of the flow paths through which the respective fluids flow are also important. Also, 2
The greater the area of contact between fluids, the greater
The stirring is performed promptly, and the reaction product becomes uniform. That is, the cross-sectional area ratio A of the flow channel defined as follows:
The s / Aj and the fluid contact ratio Am / Lj are major factors in producing the continuous reactor of the present invention.
【0018】[0018]
【数1】 (Equation 1)
【0019】例えば、円管の原料供給管5を有する管型
反応器6の場合、次のように計算される。For example, in the case of a tubular reactor 6 having a circular raw material supply pipe 5, the following calculation is made.
【0020】[0020]
【数2】 (Equation 2)
【0021】ここで、Dmは管型反応器6の内径、Dj
は原料供給口1の内径を示す。本発明者らの検討によれ
ば、混合を速やかに行うためには断面積比As/Ajが
70以下であることが望ましい。もし、断面積比As/
Ajが70より大きい場合、原料供給口1の内径は管型
反応器6に比べて非常に細くなり、圧力損失が大きくな
り付帯設備ならびに運転コストの面で不利である。さら
に、好ましくは、断面積比As/Ajが2以上20以下
であることが望ましい。断面積比が2未満の場合、2流
体間の速度差が得にくいからである。また、流体接触比
Am/Ljは30以下であることが望ましい。流体接触
比が30を越える場合、原料供給口1の内径を小さく
し、またその数を多くしなければならないために、その
加工面で難しい。さらに、好ましくは、流体接触比が1
0以下であることが望ましい。しかし、これらの断面積
比As/Ajと流体接触比Am/Ljの最適値は、反応
の種類や反応条件により若干異なってくる。たとえば、
硫酸バリウムの反応においては、断面積比As/Ajが
2以上8以下、流体接触比Am/Ljが0.5以上4以
下が最も好ましい。Here, Dm is the inner diameter of the tubular reactor 6, Dj
Denotes the inner diameter of the raw material supply port 1. According to the study of the present inventors, the cross-sectional area ratio As / Aj is desirably 70 or less in order to perform mixing quickly. If the cross-sectional area ratio As /
When Aj is larger than 70, the inner diameter of the raw material supply port 1 is extremely thin as compared with the tubular reactor 6, and the pressure loss is increased, which is disadvantageous in terms of incidental facilities and operation costs. More preferably, the sectional area ratio As / Aj is desirably 2 or more and 20 or less. If the cross-sectional area ratio is less than 2, it is difficult to obtain a speed difference between the two fluids. Further, the fluid contact ratio Am / Lj is desirably 30 or less. If the fluid contact ratio exceeds 30, the inner diameter of the raw material supply port 1 must be reduced and the number thereof must be increased. Further, preferably, the fluid contact ratio is 1
It is desirably 0 or less. However, the optimum values of the cross-sectional area ratio As / Aj and the fluid contact ratio Am / Lj slightly vary depending on the type of reaction and reaction conditions. For example,
In the reaction of barium sulfate, the cross-sectional area ratio As / Aj is most preferably 2 or more and 8 or less, and the fluid contact ratio Am / Lj is most preferably 0.5 or more and 4 or less.
【0022】本発明の連続反応装置は、以上のような管
型反応器へ、原料同士の混合・攪拌が生じるように原料
を供給する原料供給手段を有する。具体的には、送液用
ポンプ、加圧ガスによる圧送、等が用いられ、所定の条
件を満足するよう適宜調整される。即ち、本発明におい
ては、ポンプ等の原料供給手段により、原料流体は原料
供給口1、2からそれぞれ管型反応器6内へ供給される
が、原料供給口2から供給された原料aは管型反応器6
内の助走区間4を通り、生成物排出口7の方向へ流れ
る。また、原料bにおいてはバッファー槽3を経て、原
料供給管5の先端に設けられた原料供給口1から供給さ
れる。そして、管型反応器6内で原料aと原料bを混合
・攪拌させて反応させ、生成物排出口7から反応生成
物、副生物ならびに媒体が排出される。The continuous reactor of the present invention has a raw material supply means for supplying raw materials to the above-mentioned tubular reactor so that the raw materials are mixed and stirred. Specifically, a liquid sending pump, pressure feeding with a pressurized gas, or the like is used, and is appropriately adjusted so as to satisfy a predetermined condition. That is, in the present invention, the raw material fluid is supplied from the raw material supply ports 1 and 2 into the tubular reactor 6 by the raw material supply means such as a pump, but the raw material a supplied from the raw material supply port 2 is supplied to the pipe reactor. Type reactor 6
It flows in the direction of the product outlet 7 through the approach section 4 in the inside. The raw material b is supplied through a buffer tank 3 from a raw material supply port 1 provided at the tip of a raw material supply pipe 5. Then, the raw material a and the raw material b are mixed and stirred in the tubular reactor 6 to cause a reaction, and the reaction product, by-products and medium are discharged from the product discharge port 7.
【0023】このとき、本発明における混合・攪拌の原
理は、低速で流動する原料aへこの流速よりも速い流速
で原料bが噴出されて供給されるため、その運動量の違
いから2つの原料流体が混合・攪拌されるというもので
ある。このように、本発明では単なる2以上の原料の混
合のみでなく、流動の作用を利用した攪拌作用が生じ
る。もう少し詳細に説明すると、低速で流動する原料a
中に高速で流動する原料bが噴出される。このとき、2
流体間の接触する部分で、その速度差のためにせん断応
力が発達し、運動量の交換が行われると共に、低速の原
料aが噴流の原料bに取り込まれる。この流れの同伴
が、流体の混合・攪拌に直接的な効果があり、巨視的な
混合・攪拌がなされる。また、流れの同伴にともなって
噴流は拡大されるが、この噴流は乱流渦を惹起し、乱流
渦が噴流の流線を横切って広がり、微視的な混合・攪拌
が進む。乱流渦は流れのすべての方向に広がるが、流れ
の軸方向に主流があり、流れ方向と逆の方向への乱流渦
の伝達は微弱である。すなわち、流れ方向と逆の方向へ
の流体の移動である逆混合はほとんどないと考えて良
い。したがって、本発明における混合・攪拌の原理は、
2流体間のせん断応力を引き起こす流体の速度差が推進
力となり、噴流に伴う低速流体のとりこみによる巨視的
混合・攪拌と乱流渦による微視的混合・攪拌の2種の混
合・攪拌機構が同時に起こると考えられる。At this time, the principle of mixing and stirring in the present invention is that the raw material b is ejected and supplied at a flow rate higher than this flow rate to the raw material a flowing at a low speed. Are mixed and stirred. Thus, in the present invention, not only the mixing of two or more raw materials but also the stirring action utilizing the action of the flow is generated. To explain in more detail, the raw material a flowing at a low speed
The raw material b flowing at high speed is ejected. At this time, 2
In the contact portion between the fluids, a shear stress develops due to the speed difference, the momentum is exchanged, and the low-speed raw material a is taken into the jet raw material b. The entrainment of the flow has a direct effect on the mixing and stirring of the fluid, and the macroscopic mixing and stirring is performed. In addition, the jet is expanded with the entrainment of the jet, and the jet induces a turbulent vortex, and the turbulent vortex spreads across the streamline of the jet, whereby microscopic mixing and stirring progress. Although the turbulent vortices spread in all directions of the flow, the main flow is in the axial direction of the flow, and the transmission of the turbulent vortices in the direction opposite to the flow direction is weak. That is, it can be considered that there is almost no back mixing which is the movement of the fluid in the direction opposite to the flow direction. Therefore, the principle of mixing and stirring in the present invention is:
The difference in velocity of the fluid that causes shear stress between the two fluids is the driving force, and there are two types of mixing and stirring mechanisms: macroscopic mixing and agitation by taking in the low-speed fluid accompanying the jet and microscopic mixing and agitation by the turbulent vortex. It is thought to happen at the same time.
【0024】この混合・攪拌機構を検証するために、反
応速度の非常に大きいHCl/NaOHの中和反応(反
応の速度定数は108 m3 mol-1S-1;Mixing in th
e Process Industries; N.HARNBY, M.F.EDWARDS, A.W.N
IENOW; Butterworth & Co(Publishers) Ltd, 1985)を用
いて、その反応の進行度をトレーサー(フェノールフタ
レイン)の脱色から目視観察する事により、その混合・
攪拌状態ならびに混合時間を測定した。具体的には、原
料aとして、0.01mol/リットルのHCl水溶
液、原料bとして、フェノールフタレインで赤色に着色
した0.01mol/リットルのNaOH水溶液を用
い、この溶液を種々の平均線流速となるように供給し、
その時の赤色の脱色状態を目視観察する事により、その
混合距離を測定した。その結果を図4に示す。In order to verify this mixing / stirring mechanism, a neutralization reaction of HCl / NaOH having a very high reaction rate (the rate constant of the reaction is 10 8 m 3 mol -1 S -1 ; Mixing in th
e Process Industries; N. HARNBY, MFEDWARDS, AWN
Using IENOW; Butterworth & Co (Publishers) Ltd, 1985), the progress of the reaction was visually observed from the decolorization of the tracer (phenolphthalein), and the
The stirring state and the mixing time were measured. Specifically, a 0.01 mol / L HCl aqueous solution is used as a raw material a, and a 0.01 mol / L NaOH aqueous solution colored red with phenolphthalein is used as a raw material b. Supply to become
The mixing distance was measured by visually observing the red bleaching state at that time. FIG. 4 shows the results.
【0025】図4中、横軸は原料bが原料供給口1から
噴出されるときの原料供給口1における平均線流速Ub
から原料aの原料供給口1近傍における平均線流速Ua
を引いた2流体間の速度差Ub−Ua(スリップ速
度)、縦軸には原料供給口1からトレーサーの赤色が消
滅するまでの距離(混合距離)を示している。また、R
−1,R−3,R−4は反応器の種類を示す(表1参
照)。この結果からもわかるように、本発明の連続反応
装置において2流体の混合・攪拌を速やかに行うために
は、スリップ速度が10cm/sec以上であることが
必要である。つまり、スリップ速度が10cm/sec
未満の場合、流体間の速度差から生じるせん断応力の発
達が不十分であるために、噴流が長く伸び、混合・攪拌
が速やかに行われていないことがわかる。さらに、スリ
ップ速度が非常に大きい場合、混合・攪拌という目的に
おいては望ましいが、供給時の液流量が多くなり、圧力
損失、配管摩耗等の装置的問題から望ましくない。した
がって、好ましくはスリップ速度が10cm/sec以
上500cm/sec以下であることが望ましい。これ
らを前記の原料供給手段により調整する場合、通常、ポ
ンプの回転速度を変化させたり、加圧ガスの圧力を変化
させる、等すればよい。In FIG. 4, the horizontal axis represents the average linear flow rate Ub at the raw material supply port 1 when the raw material b is ejected from the raw material supply port 1.
From the raw material a, the average linear flow rate Ua in the vicinity of the raw material supply port 1
, The speed difference Ub-Ua (slip speed) between the two fluids, and the vertical axis indicates the distance (mixing distance) from the raw material supply port 1 until the red color of the tracer disappears. Also, R
-1, R-3 and R-4 indicate the type of the reactor (see Table 1). As can be seen from these results, in order to rapidly mix and stir two fluids in the continuous reaction apparatus of the present invention, the slip speed needs to be 10 cm / sec or more. That is, the slip speed is 10 cm / sec.
When the value is less than 1, it can be seen that the jet flow is extended for a long time due to insufficient development of the shear stress caused by the velocity difference between the fluids, and the mixing and stirring are not performed promptly. Further, when the slip speed is very high, it is desirable for the purpose of mixing and stirring, but it is not desirable due to a large liquid flow rate at the time of supply and equipment problems such as pressure loss and pipe abrasion. Therefore, it is preferable that the slip speed is not less than 10 cm / sec and not more than 500 cm / sec. When these are adjusted by the above-mentioned raw material supply means, it is usually sufficient to change the rotation speed of the pump or change the pressure of the pressurized gas.
【0026】本発明の連続製造方法は、以上のような連
続反応装置を用いて、好適に行うことができる。以下、
本発明の製造方法について詳細に説明する。原料の供給
は、例えば、原料xとyとzを反応させて水難溶性塩を
製造する場合、以下のような態様が挙げられる。 1)xとyとzを独立して供給する場合。ただし、x,
y,zは各々少なくとも1ヶ所以上の供給口から供給す
る。 2)xとyの混合物とzを独立して供給する場合。ただ
し、xとyの混合物、zは各々少なくとも1ヶ所以上の
供給口から供給する。 3)2)と同様に、yとzの混合物とxを各々独立して
供給する。 4)2)と同様に、zとxの混合物とyを各々独立して
供給する。これらのうち、1)については、前述の装置
に更に原料供給口をもう1つ以上設ける必要があるが、
その場合、追加する原料供給口の位置は、反応系の性状
により管型反応器の端部またはその下流側に設ければよ
い。The continuous production method of the present invention, using a continuous reaction apparatus as described above, can be suitably performed. Less than,
The production method of the present invention will be described in detail. When the raw materials are supplied, for example, by reacting the raw materials x, y, and z to produce a poorly water-soluble salt, the following embodiments may be mentioned. 1) When x, y, and z are independently supplied. Where x,
Each of y and z is supplied from at least one supply port. 2) When a mixture of x and y and z are independently supplied. However, a mixture of x and y and z are supplied from at least one supply port. 3) As in 2), the mixture of y and z and x are supplied independently. 4) As in 2), a mixture of z and x and y are supplied independently. Of these, for 1), it is necessary to further provide one or more raw material supply ports in the above-described apparatus.
In this case, the position of the additional raw material supply port may be provided at the end of the tubular reactor or downstream thereof depending on the properties of the reaction system.
【0027】本発明でいう水難溶性塩とは、Chem. Eng.
Technol. vol. 11 P.264 〜276(1988) に記載されてい
る、反応時等における相対過飽和度σが、1〜1000
であるような塩をいう。ただし、相対過飽和度とは次式
で表されるものである。The poorly water-soluble salt referred to in the present invention refers to Chem. Eng.
Technol. Vol. 11 P.264-276 (1988), the relative supersaturation σ at the time of reaction etc. is 1-1000.
Refers to a salt that is Here, the relative degree of supersaturation is represented by the following equation.
【0028】[0028]
【数3】 (Equation 3)
【0029】本発明の水難溶性塩の連続反応は、相対過
飽和度が1〜1000であるような瞬間反応により水難
溶性塩を得るものであり、好ましくは、本連続反応装置
の混合特性から、相対過飽和度が5〜500が望まし
い。さらに好ましくは、10〜200が最も望ましい。
相対過飽和度が1未満の場合、水難溶性塩の反応では、
非常に希薄な反応濃度となるため、生産効率が極端に低
いものとなり、製造コスト面で不利である。また、相対
過飽和度が1000を越える場合、水難溶性塩の反応の
なかでも反応速度が速いものであり、このような反応を
行うためには2流体間の速度差を非常に大きいものと
し、すばやく混合する必要がある。しかし、速度差を非
常に大きくするに伴い、圧力損失が大きくなり、送液用
の設備および動力が大きくなりコスト的に不利になるた
めである。The continuous reaction of a poorly water-soluble salt of the present invention is to obtain a poorly water-soluble salt by an instantaneous reaction having a relative supersaturation of 1 to 1,000. The degree of supersaturation is desirably 5 to 500. More preferably, 10 to 200 is most desirable.
When the relative supersaturation is less than 1, in the reaction of the poorly water-soluble salt,
Since the reaction concentration becomes extremely dilute, the production efficiency becomes extremely low, which is disadvantageous in the production cost. When the relative supersaturation exceeds 1000, the reaction rate is the fastest among the reactions of poorly water-soluble salts. In order to perform such a reaction, the speed difference between the two fluids must be very large, Need to mix. However, as the speed difference becomes very large, the pressure loss increases, and the equipment and power for liquid feeding increase, which is disadvantageous in cost.
【0030】このように、相対過飽和度が1〜1000
となるような反応のための原料としては、例えば、 アルカリ;Ca(OH)2 ,Ba(OH)2 酸 ;HF,H2 SO4 ,H2 CO3 塩 ;BaCO3 ,BaCl2 ,K2 CO3 ,Ag
NO3 ,KCl,NaClO4 ,MgCl2 ,Na2 C
2 O4 ,Ba(NO3 ) 2,NH4 F,NiSO4 ,(N
H4 )2 SO4 ,Na2 SO4アルコキサイト゛ ;Ti(OC2 H5 )4 等を水、低級アルコール(例えばメタノール、エタノー
ル、イソプロパノール等)等に溶解して溶液(原料流
体)にしたものが用いられる。Thus, the relative degree of supersaturation is 1 to 1000
Examples of the raw material for the reaction such as: alkali; Ca (OH) 2 , Ba (OH) 2 acid; HF, H 2 SO 4 , H 2 CO 3 salt; BaCO 3 , BaCl 2 , K 2 CO 3 , Ag
NO 3 , KCl, NaClO 4 , MgCl 2 , Na 2 C
2 O 4 , Ba (NO 3 ) 2, NH 4 F, NiSO 4 , (N
H 4) 2 SO 4, Na 2 SO 4 alkoxide sites Bu; Ti (OC 2 H 5) 4, such as water, lower alcohols (e.g. methanol, ethanol, those in solution by dissolving in isopropanol) and the like (the raw material fluid) Used.
【0031】本発明では、これらを適宜組み合わせるこ
とにより、相対過飽和度が1〜1000となるようにす
るが、σが10〜200であるような原料の組み合わせ
を具体的に示すと、以下の(イ)〜(ヘ)のようにな
る。In the present invention, the relative supersaturation is adjusted to 1 to 1000 by appropriately combining them. When the combination of raw materials having σ of 10 to 200 is specifically shown, the following ( B) to (f).
【0032】[0032]
【化1】 Embedded image
【0033】このように、本発明の製造方法によると、
管型反応器に駆動部あるいは攪拌部を有さない装置を用
いているにもかかわらず、異種の流体を接触させた後に
すばやく均一な混合流体とすることが可能である。しか
も、管型反応器内での逆混合がほとんどないために滞留
時間分布が非常に狭く保たれている。さらに、反応器内
全体を見た場合、混合・攪拌された流体はピストンフロ
ーとなっており、反応生成物を含む流体はすみやかに反
応器外へ排出されるために、滞留時間が短く、従って定
常状態に至る迄の時間も短いという特徴を有している。
これらの特徴により、本発明によると反応速度の非常に
大きい水難溶性塩を生成する反応でも、均一な品質(粒
径、結晶形状等)の生成物を連続的に製造することがで
きる。As described above, according to the production method of the present invention,
Despite the use of a tubular reactor that does not have a drive unit or a stirring unit, it is possible to quickly and uniformly mix a fluid after contacting different kinds of fluids. In addition, the residence time distribution is kept very narrow because there is almost no back mixing in the tubular reactor. Furthermore, when the entire inside of the reactor is viewed, the mixed and stirred fluid has a piston flow, and the fluid containing the reaction product is quickly discharged out of the reactor. It has the characteristic that the time to reach a steady state is short.
Due to these features, according to the present invention, a product of uniform quality (particle size, crystal shape, etc.) can be continuously produced even in a reaction producing a very poorly water-soluble salt having a very high reaction rate.
【0034】以上、本発明の好ましい態様について説明
したが、本発明では前記のような図2,図3に示すよう
な反応器を用いてもよく、これらの場合、次のような混
合・攪拌の作用が生じる。図2の管型反応器の管壁接線
方向から原料を供給し、旋回流を形成しながら生成物排
出口の方へ流れていくタイプでは、旋回流によって反応
器内に渦を形成することで混合・攪拌が促進され均一な
反応場を形成したのち、生成する反応生成物を滞留させ
ることなく反応器から連続的に排出することができる。
また、図3は管型反応器の閉じた壁面に向かって原料を
噴出させるタイプであるが、原料と壁面の衝突により、
流体の流れの方向が急激に変化するために、複雑な速度
分布状態が形成されることで混合・攪拌が行われ、同様
に反応生成物を滞留させることなく連続的に排出するこ
とができる。本発明は、以上の実施態様に限定されるも
のではなく、特許請求の範囲内で種々の変形が可能であ
ることは言うまでもない。The preferred embodiments of the present invention have been described above. However, in the present invention, the above-mentioned reactors shown in FIGS. 2 and 3 may be used. The action of In the type in which the raw material is supplied from the tangential direction of the tube wall of the tubular reactor of FIG. 2 and flows toward the product outlet while forming a swirling flow, a vortex is formed in the reactor by the swirling flow. After the mixing and stirring are promoted and a uniform reaction field is formed, the generated reaction product can be continuously discharged from the reactor without stagnation.
FIG. 3 shows a type in which the raw material is ejected toward a closed wall surface of the tubular reactor.
Since the flow direction of the fluid changes abruptly, mixing and stirring are performed by forming a complicated velocity distribution state, and similarly, the reaction product can be continuously discharged without stagnation. The present invention is not limited to the above embodiments, and it goes without saying that various modifications are possible within the scope of the claims.
【0035】[0035]
【実施例】本発明の内容を一層理解し易くするために、
以下に実施例、比較例を挙げて更に詳細に説明する。実
施例で用いた連続反応装置の構成の概略を図5に、反応
器の寸法等を表1に示す。EXAMPLES In order to make the contents of the present invention easier to understand,
Hereinafter, examples and comparative examples will be described in more detail. FIG. 5 schematically shows the configuration of the continuous reaction apparatus used in the examples, and Table 1 shows the dimensions and the like of the reactor.
【0036】[0036]
【表1】 [Table 1]
【0037】実施例1〜4 特級試薬 塩化バリウム2水塩1465.7gをイオン
交換水200リットルに溶解した0.03mol/リッ
トルの塩化バリウム溶液(原料b)と、特級試薬 硫酸
585gをイオン交換水200リットルに溶解した0.
03mol/リットルの硫酸溶液(原料a)を原料槽に
用意し、60℃まで昇温した。60℃になったところ
で、予め充液(イオン交換水)し、60℃に予熱してお
いた反応器にポンプを用いて供給し、流量計で液流量を
設定した。ポンプ作動開始から10秒おきにサンプリン
グを行い、平均粒径を測定した。反応が安定したところ
で、反応生成物硫酸バリウムを含んだ塩酸水溶液を受液
槽にすべて受けた。次いで、常温まで冷却し、5Cの濾
紙(東洋濾紙(株)製)で濾過してイオン交換水で十分
に水洗後、乾燥させた。こうして得られた硫酸バリウム
粉末の粒度分布を測定(堀場(株)製,粒度分布測定装
置LA−700)した。その結果を原料供給条件と併せ
て表2に示す。なお、粒度分布を示す指標として、個数
基準による平均粒径D50とσg(σg=D84/D50,D
50;個数基準の50%粒径,D84;個数基準のアンダー
サイズ84%に対応する粒径)を用いた。なお、実施例
の1〜4いずれにおいても、10μm以上の粒子は0.
1%以下であった。Examples 1-4 Special grade reagent 1465.7 g of barium chloride dihydrate dissolved in 200 liters of ion-exchanged water, 0.03 mol / l barium chloride solution (raw material b), and 585 g of special grade reagent sulfuric acid in deionized water Dissolved in 200 liters.
A 03 mol / liter sulfuric acid solution (raw material a) was prepared in a raw material tank, and the temperature was raised to 60 ° C. When the temperature reached 60 ° C., the solution was charged (ion-exchanged water) in advance, supplied to the reactor preheated to 60 ° C. using a pump, and the flow rate was set with a flow meter. Sampling was performed every 10 seconds from the start of pump operation, and the average particle size was measured. When the reaction was stabilized, the aqueous solution of hydrochloric acid containing the reaction product barium sulfate was all received in the receiving tank. Next, the mixture was cooled to room temperature, filtered through 5C filter paper (manufactured by Toyo Roshi Kaisha, Ltd.), washed thoroughly with ion-exchanged water, and dried. The particle size distribution of the barium sulfate powder thus obtained was measured (a particle size distribution measuring device LA-700, manufactured by Horiba, Ltd.). Table 2 shows the results together with the raw material supply conditions. Incidentally, as an indicator of particle size distribution, average particle size D 50 and σg (σg = D 84 / D 50 by a number basis, D
50 ; 50% particle size on a number basis, D 84 ; particle size corresponding to 84% undersize on a number basis). In addition, in all of Examples 1 to 4, particles having a particle diameter of 10 μm or more are 0.1 μm.
It was less than 1%.
【0038】[0038]
【表2】 [Table 2]
【0039】実施例5〜6 特級試薬 塩化バリウム2水塩488.56gと水酸化
バリウム8水塩315.5gをイオン交換水200リッ
トルに溶解した0.015mol/リットルのバリウム
溶液(原料a)と、特級試薬 硫酸294gをイオン交
換水200リットルに溶解した0.015mol/リッ
トルの硫酸溶液(原料b)を原料槽に用意し、60℃に
なったところで、予め充液(イオン交換水)し60℃に
予熱しておいた反応器にポンプを用いて供給し、流量計
で液流量を設定した。ポンプ作動開始から10秒おきに
サンプリングを行い、平均粒径を測定した。反応が安定
したところで、反応生成物硫酸バリウムを含んだ塩酸水
溶液を受液槽にすべて受けた。次いで、常温まで冷却
し、5Cの濾紙で濾過してイオン交換水で十分に水洗
後、乾燥させた。こうして得られた硫酸バリウム粉末の
粒度分布を測定(堀場(株)製,粒度分布測定装置LA
−700)した。その結果を原料供給条件と併せて表3
に示す。なお、粒度分布を示す指標として、平均粒径D
50とσg(前記と同じ内容)を用いた。なお、実施例の
5〜6いずれにおいても、10μm以上の粒子は0.1
%以下であった。Examples 5 to 6 Special-grade reagents A barium solution (raw material a) of 0.015 mol / l obtained by dissolving 488.56 g of barium chloride dihydrate and 315.5 g of barium hydroxide octahydrate in 200 liters of ion-exchanged water was used. Prepare a 0.015 mol / l sulfuric acid solution (raw material b) prepared by dissolving 294 g of sulfuric acid in 200 liters of ion-exchanged water in a raw material tank. The solution was supplied to the reactor, which had been preheated to ° C, using a pump, and the liquid flow rate was set with a flow meter. Sampling was performed every 10 seconds from the start of pump operation, and the average particle size was measured. When the reaction was stabilized, the aqueous solution of hydrochloric acid containing the reaction product barium sulfate was all received in the receiving tank. Next, the mixture was cooled to room temperature, filtered through 5C filter paper, washed sufficiently with ion-exchanged water, and dried. The particle size distribution of the barium sulfate powder thus obtained was measured (a particle size distribution analyzer LA manufactured by Horiba, Ltd.)
-700). Table 3 shows the results together with the raw material supply conditions.
Shown in As an index indicating the particle size distribution, an average particle size D
50 and σg (same contents as above) were used. In each of the examples 5 to 6, particles having a particle diameter of 10 μm or more were 0.1%.
% Or less.
【0040】[0040]
【表3】 [Table 3]
【0041】実施例7〜8 特級試薬 塩化バリウム2水塩488.56gと水酸化
バリウム8水塩315.5gをイオン交換水200リッ
トルに溶解した0.015mol/リットルのバリウム
溶液(原料a)と、特級試薬 硫酸294gをイオン交
換水200リットルに溶解した0.015mol/リッ
トルの硫酸溶液(原料b)を原料槽に用意し、60℃に
なったところで、予め充液(イオン交換水)し60℃に
予熱しておいた反応器にポンプを用いて供給し、流量計
で液流量を設定した。ポンプ作動開始から10秒おきに
サンプリングを行い、平均粒径を測定した。反応が安定
したところで、反応生成物硫酸バリウムを含んだ塩酸水
溶液を受液槽にすべて受けた。次いで、常温まで冷却
し、5Cの濾紙で濾過してイオン交換水で十分に水洗
後、乾燥させた。こうして得られた硫酸バリウム粉末の
粒度分布を測定(堀場(株)製,粒度分布測定装置LA
−700)した。その結果を原料供給条件と併せて表4
に示す。なお、粒度分布を示す指標として、平均粒径D
50とσg(前記と同じ内容)を用いた。なお、実施例の
7〜8いずれにおいても、10μm以上の粒子は0.1
%以下であった。Examples 7 to 8 Special-grade reagents A barium solution (raw material a) of 0.015 mol / l obtained by dissolving 488.56 g of barium chloride dihydrate and 315.5 g of barium hydroxide octahydrate in 200 liters of ion-exchanged water was used. Prepare a 0.015 mol / l sulfuric acid solution (raw material b) prepared by dissolving 294 g of sulfuric acid in 200 liters of ion-exchanged water in a raw material tank. The solution was supplied to the reactor, which had been preheated to ° C, using a pump, and the liquid flow rate was set with a flow meter. Sampling was performed every 10 seconds from the start of pump operation, and the average particle size was measured. When the reaction was stabilized, the aqueous solution of hydrochloric acid containing the reaction product barium sulfate was all received in the receiving tank. Next, the mixture was cooled to room temperature, filtered through 5C filter paper, washed sufficiently with ion-exchanged water, and dried. The particle size distribution of the barium sulfate powder thus obtained was measured (a particle size distribution analyzer LA manufactured by Horiba, Ltd.)
-700). Table 4 shows the results together with the raw material supply conditions.
Shown in As an index indicating the particle size distribution, an average particle size D
50 and σg (same contents as above) were used. In each of the examples 7 to 8, particles having a particle diameter of 10 μm or more were 0.1 μm.
% Or less.
【0042】[0042]
【表4】 [Table 4]
【0043】実施例9 ゼオライトにより脱水したエタノール1リットルに対し
て、特級試薬のTi(OCH2 CH3 )4 を5.7gの
割合で調製した溶液(原料a)と、2wt%含水エタノ
ール(原料b)を原料槽に用意し、30℃になったとこ
ろで、予め充液(イオン交換水)し30℃に予熱してお
いた反応器にポンプを用いて供給し、流量計で液流量を
設定した。ポンプ作動開始から10秒おきにサンプリン
グを行い、平均粒径を測定した。反応が安定したところ
で、反応生成物であるTiO2 を含んだエタノール溶液
を受液槽にすべて受けた。次いで、ポアサイズ0.2μ
mのメンブランフィルター(東洋濾紙(株)製)で濾過
してイオン交換水で十分に水洗後、乾燥させた。こうし
て得られたTiO2 粉末の粒度分布を測定(堀場(株)
製,粒度分布測定装置LA−700)した。その結果を
原料供給条件と併せて表5に示す。なお、粒度分布を示
す指標として、平均粒径D50とσg(前記と同じ内容)
を用いた。Example 9 A solution (raw material a) in which 5.7 g of a special grade reagent, Ti (OCH 2 CH 3 ) 4 was prepared per 1 liter of ethanol dehydrated with zeolite (raw material a), and a 2 wt% aqueous ethanol (raw material) b) was prepared in a raw material tank, and when the temperature reached 30 ° C., the solution was charged to a reactor (ion-exchanged water) in advance and supplied to the reactor preheated to 30 ° C. using a pump, and the flow rate was set by a flow meter. did. Sampling was performed every 10 seconds from the start of pump operation, and the average particle size was measured. When the reaction was stabilized, all of the ethanol solution containing TiO 2 as the reaction product was received in the receiving tank. Then, pore size 0.2μ
m, filtered through a membrane filter (manufactured by Toyo Roshi Kaisha, Ltd.), washed thoroughly with ion-exchanged water, and dried. The particle size distribution of the TiO 2 powder thus obtained was measured (Horiba Co., Ltd.)
And a particle size distribution analyzer LA-700). Table 5 shows the results together with the raw material supply conditions. In addition, as an index indicating the particle size distribution, the average particle size D 50 and σg (the same content as described above)
Was used.
【0044】[0044]
【表5】 [Table 5]
【0045】比較例1 特級試薬 塩化バリウム2水塩2.44gと水酸化バリ
ウム8水塩1.58gをイオン交換水1リットルに溶解
した0.015mol/リットルのバリウム溶液を、2
リットルのセパラブルフラスコに仕込み、またそれにセ
ットした1リットル滴下ロートには、特級試薬の硫酸
1.47gをイオン交換水1リットルに溶解した0.0
15mol/リットルの硫酸溶液を仕込んだ。バリウム
溶液、硫酸溶液ともに60℃まで昇温した後、テフロン
製攪拌翼にて200rpmでセパラブルフラスコ内を攪
拌しながら硫酸溶液を1分で投入し、得られた結晶は5
Cの濾紙で濾過してイオン交換水で十分に水洗後、乾燥
させた。この結晶は、平均粒径1.6μm、実施例1と
同様に定義されるσg=3.0で粒径分布の広い物であ
った。Comparative Example 1 A special-grade reagent was prepared by dissolving 2.44 g of barium chloride dihydrate and 1.58 g of barium hydroxide octahydrate in 1 liter of ion-exchanged water.
Into a 1-liter separable flask, and in a 1-liter dropping funnel set therein, 1.47 g of sulfuric acid of a special grade was dissolved in 1 liter of ion-exchanged water.
A 15 mol / liter sulfuric acid solution was charged. After the barium solution and the sulfuric acid solution were both heated to 60 ° C., the sulfuric acid solution was added thereto for 1 minute while stirring the separable flask at 200 rpm with a Teflon stirring blade, and the obtained crystals were 5 wt.
The mixture was filtered through filter paper C, washed thoroughly with ion-exchanged water, and dried. This crystal had an average particle size of 1.6 μm, σg = 3.0 defined in the same manner as in Example 1, and had a wide particle size distribution.
【0046】比較例2 特級試薬 塩化バリウム2水塩488.56gと水酸化
バリウム8水塩315.5gをイオン交換水200リッ
トルに溶解した0.015mol/リットルのバリウム
溶液と、特級試薬 硫酸294gをイオン交換水200
リットルに溶解した0.015mol/リットルの硫酸
溶液を原料槽に用意し、60℃になったところで、予め
充液(イオン交換水)し60℃に予熱しておいたステン
レス製の20リットル連続槽型反応器に、ポンプを用い
て各々2リットル/分の流速で供給した。ポンプ作動開
始から10秒おきにサンプリングを行い、平均粒径を測
定した。反応が安定したところで、反応生成物硫酸バリ
ウムを含んだ塩酸水溶液を受液槽にすべて受けた。次い
で、常温まで冷却し、5Cの濾紙で濾過してイオン交換
水で十分に水洗後、乾燥させた。この場合、得られる結
晶の粒径が定常値に達するまで5分を要した。また得ら
れた結晶は平均粒径2.1μm、実施例1と同様に定義
されるσg=2.5であったが、実施例1、2及び比較
例1では見られなかった10μm以上の巨大粒子を1.
8%含んでいた。Comparative Example 2 Special-grade reagent A barium solution of 0.015 mol / L obtained by dissolving 488.56 g of barium chloride dihydrate and 315.5 g of barium hydroxide octahydrate in 200 L of ion-exchanged water, and 294 g of a special-grade reagent sulfuric acid were used. Ion exchange water 200
A sulfuric acid solution of 0.015 mol / liter dissolved in 1 liter was prepared in a raw material tank, and when the temperature reached 60 ° C., a 20-liter continuous stainless steel tank which had been charged (ion-exchanged water) in advance and preheated to 60 ° C. The reactors were fed at a flow rate of 2 liters / min each using a pump. Sampling was performed every 10 seconds from the start of pump operation, and the average particle size was measured. When the reaction was stabilized, the aqueous solution of hydrochloric acid containing the reaction product barium sulfate was all received in the receiving tank. Next, the mixture was cooled to room temperature, filtered through 5C filter paper, washed sufficiently with ion-exchanged water, and dried. In this case, it took 5 minutes for the grain size of the obtained crystal to reach a steady value. The obtained crystals had an average particle size of 2.1 μm and σg = 2.5 defined in the same manner as in Example 1. However, the crystals had a size of 10 μm or more which was not observed in Examples 1, 2 and Comparative Example 1. The particles are:
It contained 8%.
【0047】[0047]
【発明の効果】本発明によれば、顔料、化粧品および添
加剤等に適した、大きさの揃った水難溶性塩である硫酸
バリウムを連続的に製造することができる。また、本発
明の連続反応装置は、反応器内部に攪拌部や駆動部を有
しないにもかかわらず、反応原料となる流体をすばやく
混合・攪拌して反応させ、反応生成物を反応器内に滞留
させることなく連続的に排出できるため、装置の簡素化
ならびに小型化を図ることができる。According to the present invention, sulfuric acid, which is a poorly water-soluble salt of uniform size, is suitable for pigments, cosmetics, additives and the like.
Barium can be produced continuously. In addition, the continuous reaction apparatus of the present invention has a stirrer and a drive unit inside the reactor, but rapidly mixes and stirs a fluid as a reaction raw material to cause a reaction, and puts a reaction product into the reactor. Since continuous discharge can be performed without stagnation, the apparatus can be simplified and downsized.
【図1】図1は、本発明の連続反応装置の反応器部の一
例を斜視図により示したものである。FIG. 1 is a perspective view showing an example of a reactor section of a continuous reaction apparatus according to the present invention.
【図2】図2は、本発明の連続反応装置の反応器部の一
例を斜視図により示したものである。FIG. 2 is a perspective view showing an example of a reactor section of the continuous reaction apparatus of the present invention.
【図3】図3は、本発明の連続反応装置の反応器部の一
例を斜視図により示したものである。FIG. 3 is a perspective view showing an example of a reactor section of the continuous reaction apparatus of the present invention.
【図4】図4は、速度差Ub−Ua(スリップ速度)と
原料供給口1からトレーサーの赤色が消滅するまでの距
離(混合距離)の関係を示したものである。FIG. 4 shows the relationship between the speed difference Ub-Ua (slip speed) and the distance (mixing distance) from the raw material supply port 1 until the red color of the tracer disappears.
【図5】図5は、実施例で用いた本発明の連続反応装置
の構成の概略を示したものである。FIG. 5 schematically shows the configuration of the continuous reaction apparatus of the present invention used in Examples.
1 原料供給口(B) 2 原料供給口(A) 3 バッファー槽 4 助走区間 5 原料供給管 6 管型反応器 7 生成物排出口 8 端部 9 原料供給管 11 原料槽(原料a) 12 原料槽(原料b) 13 送液用ポンプ 14 流量計 15 受液槽 REFERENCE SIGNS LIST 1 raw material supply port (B) 2 raw material supply port (A) 3 buffer tank 4 start-up section 5 raw material supply pipe 6 tubular reactor 7 product discharge port 8 end 9 raw material supply pipe 11 raw material tank (raw material a) 12 raw material Tank (raw material b) 13 Pump for sending liquid 14 Flow meter 15 Receiving tank
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01J 14/00 C01F 11/46 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) B01J 14/00 C01F 11/46
Claims (4)
生じるように、2種以上の原料を独立して連続的に該反
応器内に供給して原料を反応させ、生成する反応生成物
を滞留させることなく反応器から連続的に排出する硫酸
バリウムの連続製造方法であって、2種以上の原料のう
ち、少なくとも1種の原料(a)は管型反応器の端部に
設けた一の原料供給口(A)から供給し、他の原料
(b)は該端部またはその下流側に設けた少なくとも一
以上の他の原料供給口(B)から供給するものであり、
かつ該管型反応器の下記式で定義される断面積比As/
Ajを2以上8以下、および流体接触比Am/Ljを
0.5以上4以下とし、相対過飽和度(σ)が10〜2
00となる反応を行なうことを特徴とする、硫酸バリウ
ムの連続製造方法。 1. A reaction in which two or more raw materials are independently and continuously supplied into a reactor so that the raw materials are reacted and mixed so that the raw materials are mixed and stirred in a tubular reactor. Sulfuric acid continuously discharged from reactor without stagnation of product
A barium continuous production method, wherein at least one raw material (a) among two or more raw materials is supplied from one raw material supply port (A) provided at an end of a tubular reactor, and The raw material (b) is supplied from at least one or more other raw material supply ports (B) provided at the end or at a downstream side thereof,
And the cross-sectional area ratio As / of the tubular reactor defined by the following equation:
Aj is 2 to 8 and the fluid contact ratio Am / Lj is
0.5 to 4 and relative supersaturation (σ) of 10 to 2
And performing 00 to become reactive, barium sulfate
The method of continuous production arm.
供給口(A)から下流側に所定の距離をおいて下流側の
方向に配設された少なくとも一以上の他の原料供給口
(B)から、他の原料(b)を供給するものであって、
該原料供給口(B)における他の原料(b)の平均線流
速が、管型反応器内を流れる原料(a)の原料供給口
(B)近傍における平均線流速より10cm/sec以
上大きいものである請求項1記載の製造方法。2. A raw material supply port (A) provided at an end of a tubular reactor, at least one or more other raw materials arranged downstream in a predetermined distance from a raw material supply port (A). Supplying another raw material (b) from the supply port (B),
The average linear flow velocity of the other raw material (b) in the raw material supply port (B) is at least 10 cm / sec higher than the average linear flow velocity of the raw material (a) flowing in the tubular reactor in the vicinity of the raw material supply port (B). The method according to claim 1, wherein
ムを連続的に製造する連続反応装置において、管型反応
器と、該反応器に独立して設けられた2以上の原料供給
口と、反応生成物を連続的に排出する生成物排出口を備
え、該反応器内で原料同士の混合・攪拌が生じるように
原料を供給する原料供給手段を有してなり、前記原料供
給口が該管型反応器の端部に設けられた原料供給口
(A)および該端部またはその下流側に設けられた原料
供給口(B)から構成され、かつ該管型反応器の下記式
で定義される断面積比As/Ajを2以上8以下、およ
び流体接触比Am/Ljを0.5以上4以下とし、相対
過飽和度(σ)が10〜200となる反応に使用される
ことを特徴とする、硫酸バリウムの連続製造装置。 3. A method of reacting two or more kinds of raw materials to form barium sulfate.
In a continuous reactor for continuously producing a system, a tubular reactor, two or more raw material supply ports independently provided in the reactor, and a product discharge port for continuously discharging a reaction product are provided. And a raw material supply means for supplying a raw material so that the raw materials are mixed and stirred in the reactor, wherein the raw material supply port is provided at an end of the tubular reactor. (A) and a raw material supply port (B) provided at the end or at the downstream side thereof, and the cross-sectional area ratio As / Aj of the tubular reactor defined by the following equation is 2 to 8 , A continuous apparatus for producing barium sulfate, wherein the apparatus is used for a reaction in which the fluid contact ratio Am / Lj is 0.5 or more and 4 or less and the relative supersaturation (σ) is 10 to 200 .
に設けられた一の原料供給口(A)から下流側に所定の
距離をおいて下流側の方向に配設されており、原料供給
手段が、原料供給口(B)における他の原料(b)の平
均線流速が原料供給口(A)から供給された原料(a)
の原料供給口(B)近傍における平均線流速より10c
m/sec以上大きくなるように原料を供給するもので
ある請求項3記載の連続製造装置。4. A raw material supply port (B) is provided in a downstream direction at a predetermined distance downstream from one raw material supply port (A) provided at an end of the tubular reactor. The raw material supply means determines that the average linear flow rate of another raw material (b) at the raw material supply port (B) is equal to the raw material (a) supplied from the raw material supply port (A).
10c from the average linear flow velocity near the raw material supply port (B)
4. The continuous production apparatus according to claim 3 , wherein the raw material is supplied so as to be larger than m / sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4250511A JP2917080B2 (en) | 1992-08-25 | 1992-08-25 | Method and apparatus for continuous production of poorly water-soluble salts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4250511A JP2917080B2 (en) | 1992-08-25 | 1992-08-25 | Method and apparatus for continuous production of poorly water-soluble salts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0671160A JPH0671160A (en) | 1994-03-15 |
JP2917080B2 true JP2917080B2 (en) | 1999-07-12 |
Family
ID=17208982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4250511A Expired - Fee Related JP2917080B2 (en) | 1992-08-25 | 1992-08-25 | Method and apparatus for continuous production of poorly water-soluble salts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2917080B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003011760A1 (en) * | 2001-07-31 | 2003-02-13 | Sachtleben Chemie Gmbh | Method for the precipitation of poorly-soluble materials such as barium sulphate for example and precipitation capsule |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57207537A (en) * | 1981-06-15 | 1982-12-20 | Union Carbide Corp | Mixer for chemical component |
-
1992
- 1992-08-25 JP JP4250511A patent/JP2917080B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003011760A1 (en) * | 2001-07-31 | 2003-02-13 | Sachtleben Chemie Gmbh | Method for the precipitation of poorly-soluble materials such as barium sulphate for example and precipitation capsule |
Also Published As
Publication number | Publication date |
---|---|
JPH0671160A (en) | 1994-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6742774B2 (en) | Process for high shear gas-liquid reactions | |
US9295955B2 (en) | Mixing apparatus and process | |
US8771524B2 (en) | Vortex mixer and method of obtaining a supersaturated solution or slurry | |
Barabash et al. | Theory and practice of mixing: A review | |
EP2252391B1 (en) | Vortex mixer and method of obtaining a supersaturated solution or slurry | |
JP2008168168A (en) | Continuous mixing reactor | |
US6645713B2 (en) | Method of manufacturing silver halide emulsions and apparatus thereof | |
JP2003103152A (en) | Method and device for mixing liquid or solution | |
US4544493A (en) | Neutralization of organic sulfuric or sulfonic detergent acid to produce high solids concentration detergent salt | |
Rousseaux et al. | Mixing and micromixing times in the forced vortex region of unbaffled mixing devices | |
JP2917080B2 (en) | Method and apparatus for continuous production of poorly water-soluble salts | |
JP2973062B2 (en) | Continuous production method of barium sulfate | |
US6513965B2 (en) | Apparatus for manufacturing photographic emulsions | |
JP2007533433A (en) | Method for forming particulate material | |
JP4081543B2 (en) | Method and apparatus for forming silver halide emulsion grains and method for forming fine grains | |
Chen et al. | Mixing and Crystallization Kinetics in Gas‐liquid Reactive Crystallization | |
CN114534531A (en) | Method for preparing W/O and O/W emulsion without using emulsifier | |
JP2008207087A (en) | Mixing and reacting device and method | |
JP2725193B2 (en) | Dispersion preparation equipment | |
JPH0788358A (en) | Continuous production of hardly water-soluble salt | |
CN218530900U (en) | Hydrolysis reactor | |
JPH07185308A (en) | Continuous production of salt hardly soluble in water | |
WO2021056272A1 (en) | Continuous gas-liquid reaction device and continuous gas-liquid reaction system including same | |
JP4123344B2 (en) | Method and apparatus for forming silver halide emulsion grains | |
CN213556401U (en) | Water-based resin circulation emulsification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |