JP2915955B2 - Method for producing oxygen-deficient magnetite - Google Patents

Method for producing oxygen-deficient magnetite

Info

Publication number
JP2915955B2
JP2915955B2 JP2052410A JP5241090A JP2915955B2 JP 2915955 B2 JP2915955 B2 JP 2915955B2 JP 2052410 A JP2052410 A JP 2052410A JP 5241090 A JP5241090 A JP 5241090A JP 2915955 B2 JP2915955 B2 JP 2915955B2
Authority
JP
Japan
Prior art keywords
magnetite
oxygen
container
deficient
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2052410A
Other languages
Japanese (ja)
Other versions
JPH03257026A (en
Inventor
矩生 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2052410A priority Critical patent/JP2915955B2/en
Publication of JPH03257026A publication Critical patent/JPH03257026A/en
Application granted granted Critical
Publication of JP2915955B2 publication Critical patent/JP2915955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、酸素ガスや窒素酸化物等を分解する酸素
欠陥マグネタイトの製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing oxygen-deficient magnetite that decomposes oxygen gas, nitrogen oxides and the like.

従来技術とその問題点 従来からマグネタイト自体は、よく知られているが、
酸素の欠陥したものはこれまで知られておらず、これら
の化学的な反応性などについては一切知られていなかっ
た。
Conventional technology and its problems Although magnetite itself is well known,
No oxygen deficiency has been known so far, and their chemical reactivity and the like have not been known at all.

ところが、マグネタイトの分子構造内は、2価の鉄
(Fe2+)1個と3価の鉄(Fe3+)が2個存在して計8価
のプラス電荷になり、これが陰イオンを保有する酸素
(O2-)4個と結び付いてFe3O4の安定マグネタイトにな
っているが、このマグネタイトは、300℃近辺では水素
(H2)と反応して酸素(O2-)が水(H2O)になって逃
げ、酸素が欠乏した活性のマグネタイトが得られること
が最近の研究でわかった。
However, in the molecular structure of magnetite, there is one divalent iron (Fe 2+ ) and two trivalent irons (Fe 3+ ), resulting in a total of eight positive charges, which carry anions. Fe 3 O 4 is stable magnetite linked to 4 oxygen (O 2− ) generated, but this magnetite reacts with hydrogen (H 2 ) at around 300 ° C to convert oxygen (O 2− ) into water. Recent research has shown that (H 2 O) escapes and provides active magnetite depleted of oxygen.

そこで、この酸素が欠乏した酸素欠陥マグネタイト
は、酸素イオン(O2-)と化学反応をする物質であり、
酸素ガス等の酸素が引き抜かれて炭素(C)を析出さ
せ、簡単に酸素ガス分解をする有用な素材であることが
最近わかった。今後は、炭酸ガス分解の決め手になる新
物質であり、地球温暖化を遅らせる手掛かりを研究室段
階でありながらもつかんでいる。
Thus, oxygen-deficient oxygen-deficient magnetite is a substance that chemically reacts with oxygen ions (O 2- ).
It has recently been found that this is a useful material for easily decomposing oxygen gas by extracting oxygen such as oxygen gas to precipitate carbon (C). In the future, it is a new substance that will be a decisive factor in carbon dioxide decomposition.

ところが、これまでの研究では、酸素欠陥マグネタイ
トを造るには、どうしても水素(H2)が必要であり、こ
のためにナフサ分解や、水の電解で得た水素をマグネタ
イトに反応させるために水素の無駄があり、また、反応
させる装置を必要とする欠点があった。
However, according to previous research, hydrogen (H 2 ) is indispensable to produce oxygen-deficient magnetite. For this reason, it is necessary to convert hydrogen obtained by naphtha decomposition or electrolysis of water into magnetite. There is a drawback that it is wasteful and requires a reaction device.

問題点を解決する手段 この発明は、従来技術である水素を反応させることを
しない次の方法で活性の酸素欠陥マグネタイトを得る方
法である。
Means for Solving the Problems The present invention is a method of obtaining active oxygen-deficient magnetite by the following method which does not react hydrogen, which is a conventional technique.

即ち、マグネタイトの素材を250℃〜350℃の雰囲気の
もとで、減圧し、酸素分子を逃避ならしめてマグネタイ
トを活性化する酸素欠陥マグネタイトの製造方法とし
た。
That is, a method for producing an oxygen-deficient magnetite is provided in which a magnetite material is depressurized in an atmosphere of 250 ° C. to 350 ° C. to escape oxygen molecules and activate magnetite.

発明の作用及び効果 先ず、作用から説明するに、第1図で示した通り周囲
の温度を概ね250℃〜350℃にヒータ9で保った容器3内
に、マグネタイトの素材を粉粒体あるいは板状体にした
ものを投入して、この容器3内を真空ポンプ等で減圧す
る。この減圧状態は、少なくとも酸素分子が逃げ出す圧
力にする必要がある。
Operation and Effect of the Invention First, the operation will be described. First, as shown in FIG. 1, a magnetite material is placed in a container 3 kept at a temperature of about 250 ° C. to 350 ° C. by a heater 9 in the form of powder or granules. The container is charged and the pressure in the container 3 is reduced by a vacuum pump or the like. This depressurized state needs to be at least a pressure at which oxygen molecules escape.

このとき、減圧によってマグネタイト中の鉄イオン
は、陽極側のマグネタイト中の鉄イオン(Fe3+)が還元
され、次式によって(Fe2+)となる。
At this time, the iron ions in the magnetite are reduced by the pressure reduction to the iron ions (Fe 3+ ) in the magnetite on the anode side, and are converted to (Fe 2+ ) by the following equation.

Fe3++e→Fe2+ … この時、陽極側のマグネタイトは電気的中性を保つ為
にマイナスの荷電を放出しようとし、O2-イオンが消滅
するような反応が促進される。即ち、 2O2-→O2+4e … の反応が押こる。この時、さらに余分の電子が陽極側の
マグネタイト中に取り残されることになるが、この電子
は式の反応によってFe2+イオンの形成に使われる。結
果的に陽極側のマグネタイト中にはマイナス電荷が過剰
となる為、O2-イオンが消滅するようなポテンシャルが
生じ、式の反応が起こる。即ち、電子が放電によって
打ち込まれるのをきっかけに、連鎖反応的にO2-イオン
がマグネタイトから引き抜かれることとなる。最初の放
電過程を別にすると活性化マグネタイトの形成反応は、 Fe3O4→Fe3O4−x+x/2O2 となり、1/2個の酸素が逃げて行くために、3価の鉄が
2価の鉄に還元される反応に帰着される。
Fe 3+ + e → Fe 2 + ... At this time, the magnetite on the anode side tries to release a negative charge in order to maintain electrical neutrality, and a reaction such that O 2− ions disappear is promoted. That is, the reaction of 2O 2- → O 2 + 4e is pushed. At this time, extra electrons are left behind in the magnetite on the anode side, and the electrons are used for forming Fe 2+ ions by the reaction of the formula. As a result, a negative charge becomes excessive in the magnetite on the anode side, so that a potential such that O 2− ions disappear is generated, and the reaction of the equation occurs. That is, the O 2- ions are extracted from the magnetite in a chain reaction triggered by the discharge of electrons. Except for the first discharge process, the activated magnetite formation reaction is Fe 3 O 4 → Fe 3 O 4 -x + x / 2O 2 , and since half of the oxygen escapes, trivalent iron becomes 2 This results in a reaction that is reduced to monovalent iron.

換言すれば、減圧と謂う刺激を受けてマグネタイト中
の酸素電子がエキサイトして放出された状態を保つこと
が反応を開始させるのである。しかし、温度が400℃を
越えるようになると鉄イオンがさらに電子を受けとって
金属鉄になってしまう。したがって、雰囲気温度は、25
0℃から高くても350℃までに保持することが必要であ
る。
In other words, the reaction is started by maintaining the state in which oxygen electrons in magnetite are excited and released under the stimulus called decompression. However, when the temperature exceeds 400 ° C., iron ions receive more electrons and become metallic iron. Therefore, the ambient temperature is 25
It is necessary to maintain the temperature from 0 ° C to 350 ° C at the highest.

このようにして造った酸素欠陥マグネタイト(Fe3O4-
x)においては、炭酸ガス(CO2)や窒素酸素物(NOx)
のような酸素で代表される陰イオンを持つ化合物と反応
しやすく、例えば、活性化させた酸素欠陥マグネタイト
を収容中の容器内に炭酸ガス吹き込むと酸素イオン(O
2-)が取られてマグネタイトの表面に炭素(C)が析出
する。
The oxygen-deficient magnetite (Fe 3 O 4-
In x), carbon dioxide (CO 2 ) and nitrogen oxygen (NOx)
Easily reacts with a compound having an anion represented by oxygen such as oxygen ions. For example, when carbon dioxide gas is blown into a vessel containing activated oxygen-deficient magnetite, oxygen ions (O
2- ) is removed, and carbon (C) precipitates on the surface of the magnetite.

したがって、炭酸ガスの分解に利用できる。また、窒
素酸化物(NOx)の場合では、反応速度が非常に速くて
窒素自体はガスとして分解された後に逃げ、マグネタイ
トの表面に付着しないから300℃の雰囲気で減圧状態に
した容器内にマグネタイトを収容してこの容器内に間欠
的に窒素酸化物を通してやれば、自動的、半永久的に有
害な窒素酸化物(NOx)が酸素と窒素に分解されること
になる。
Therefore, it can be used for decomposition of carbon dioxide gas. In the case of nitrogen oxides (NOx), the reaction rate is very fast and nitrogen itself escapes after being decomposed as a gas and does not adhere to the surface of magnetite. If nitrogen oxide is intermittently passed through the container and nitrogen oxide (NOx) is automatically and semipermanently decomposed, harmful nitrogen oxide (NOx) is decomposed into oxygen and nitrogen.

実施例 この発明の一実施例について詳述すると、マグネタイ
トの粉体あるいは板体などのマグネタイト1を収容した
外周に通気できる気孔(イ)を有するセル2を収容でき
る筒状の容器3の一端側を開閉弁4を有する通気路5を
持つ蓋体6で機密に構成し、他端側を開閉弁7を有する
通気路8に連通ならしめ、この容器3の前記セル2を収
容している部分の外周部をヒータ9で300℃近辺に保つ
ように構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail. One end of a cylindrical container 3 capable of accommodating a cell 2 having pores (a) that can be ventilated to the outer periphery accommodating magnetite 1 such as magnetite powder or plate. Is secretly constituted by a lid 6 having an air passage 5 having an on-off valve 4, and the other end is connected to an air passage 8 having an on-off valve 7, and a portion of the container 3 containing the cell 2. The heater 9 is configured so that the outer peripheral portion is maintained at around 300 ° C. by the heater 9.

また、該容器3内を減圧装置10に連通させて前記セル
2内が減圧されるようにしている。減圧の程度はマグネ
タイト1の表面から酸素分子が跳び出る程度でよい。
Further, the inside of the container 3 is communicated with a decompression device 10 so that the inside of the cell 2 is depressurized. The degree of pressure reduction may be such that oxygen molecules jump from the surface of the magnetite 1.

尚、図例中の記号11はセル保持用のスプリングであ
る。12,13はいずれも開閉弁4,7の切換レバーであり、こ
のレバーの作動は前記減圧装置10とタイミングをとって
行なわれる。
The symbol 11 in the figure is a spring for holding the cell. Reference numerals 12 and 13 denote switching levers for the on-off valves 4 and 7, respectively. The operation of these levers is performed in synchronization with the pressure reducing device 10.

14はエンジン排気筒等の排気ガス発生源、15は排気用
の吸引機を示す。
Reference numeral 14 denotes an exhaust gas generation source such as an engine exhaust tube, and reference numeral 15 denotes an exhaust suction device.

16は外気吸入筒で、前記通気路5に連通されており、
この吸入筒16の途中に開閉弁17が設けられている。
Reference numeral 16 denotes an outside air suction tube, which communicates with the air passage 5.
An on-off valve 17 is provided in the middle of the suction cylinder 16.

上例の作用について説明すると、先ず最初に、セル2
内にマグネタイト(Fe3O4)の粉体あるいは塊を充填し
て容器3内に装填して蓋6で密閉する。その後に、ヒー
タ9に通電して内部を概ね300℃になるように保つ。次
に開閉弁4,7の両方を閉じた後に減圧装置10で容器3内
を減圧してセル2内のマグネタイト1を活性化する。即
ち、マグネタイト1の表面から酸素分子を跳び出させ
る。したがって、 Fe3O4→Fe3O4-x+x/2O2 の化学変化をおこし、酸素欠陥マグネタイト(Fe3O
4-x)にする。
To explain the operation of the above example, first, cell 2
A powder or lump of magnetite (Fe 3 O 4 ) is filled therein, loaded into the container 3, and sealed with the lid 6. Thereafter, the heater 9 is energized to maintain the inside at approximately 300 ° C. Next, after closing both the on-off valves 4 and 7, the pressure in the vessel 3 is reduced by the pressure reducing device 10 to activate the magnetite 1 in the cell 2. That is, oxygen molecules are made to jump out of the surface of the magnetite 1. Therefore, a chemical change of Fe 3 O 4 → Fe 3 O 4- x + x / 2O 2 is caused and oxygen-deficient magnetite (Fe 3 O 4
4- x).

次に、開閉弁4を開き、容器3内に排ガスの一例であ
る炭酸ガス(CO2)や窒素酸化物(NOx)を供給する。
Next, the on-off valve 4 is opened, and carbon dioxide (CO 2 ) and nitrogen oxide (NOx), which are examples of exhaust gas, are supplied into the container 3.

このとき、炭酸ガスと窒素酸化物との混合ガスである
場合には反応速度の速い窒素酸化物の酸素(O2)が酸素
欠陥マグネタイトに反応して窒素のみがガス状態で容器
3内に溜る。
At this time, in the case of a mixed gas of carbon dioxide gas and nitrogen oxide, oxygen (O 2 ) of nitrogen oxide having a high reaction rate reacts with oxygen-deficient magnetite, and only nitrogen accumulates in the container 3 in a gaseous state. .

次に、開閉弁17を操作して容器3内と大気中とを連通
させたのち、開閉弁7を開口して吸引機15で容器3内に
溜った窒素ガスを器外に放出する。尚、開閉弁17を開口
して空気を取入れて容器3内を浄化する方法の他、蒸気
を吹き込み蒸気清浄してもよい。この場合には吸引機15
は不要になる。
Next, after the open / close valve 17 is operated and the inside of the container 3 is communicated with the atmosphere, the open / close valve 7 is opened, and the nitrogen gas accumulated in the container 3 is discharged to the outside by the suction device 15. In addition to the method of opening the on-off valve 17 to take in air to purify the inside of the container 3, steam may be blown to clean the container. In this case suction machine 15
Becomes unnecessary.

このようにして1行程の窒素酸化物の分解を終えるこ
とになる。
Thus, the decomposition of nitrogen oxides in one step is completed.

更に、炭酸ガスの分解をさせる場合には、適宜な手法
で予め窒素酸化物を除去して略々純粋な炭酸ガスにした
後、前記と同じ前行程でマグネタイト1を酸素欠陥マグ
ネタイトに変化させておき、開閉弁4を開口して炭酸ガ
スを容器3内に送り込むと、酸素が反応して炭素(C)
が析出しマグネタイトの表面に付着する。したがって、
炭酸ガスが容易に分解されることになる。
Further, in the case of decomposing carbon dioxide gas, after removing nitrogen oxides in advance by an appropriate method to obtain substantially pure carbon dioxide gas, magnetite 1 is changed to oxygen-deficient magnetite in the same previous step as described above. When the on-off valve 4 is opened and carbon dioxide gas is fed into the container 3, oxygen reacts and carbon (C)
Precipitates and adheres to the surface of magnetite. Therefore,
Carbon dioxide will be easily decomposed.

尚、炭酸ガス(CO2)と窒素酸化物(NOx)との混合気
体の分離方法は、非常に困難であるが、先に説明した通
り、窒素酸化物の方が反応速度が速いことを利用して、
同じ装置で先ず窒素酸化物の分解をして除去し、再度同
装置で炭酸ガスを分解してもよい。
Although it is very difficult to separate a mixed gas of carbon dioxide (CO 2 ) and nitrogen oxide (NOx), as described above, the reaction speed of nitrogen oxide is higher than that of nitrogen oxide. do it,
The nitrogen oxide may be first decomposed and removed by the same apparatus, and the carbon dioxide gas may be decomposed again by the same apparatus.

いずれにしても、この発明は、マグネタイト1を300
℃近くの雰囲気で減圧させて不活性なマグネタイト(Fe
3O4)を酸素が欠乏した活性のマグネタイト(Fe3O4-x)
にし、この酸素欠陥マグネタイト(Fe3O4-x)を利用で
きるようにしたものである。
In any case, the invention provides a magnetite 1
Inert magnetite (Fe
3 O 4 ) is an oxygen-deficient active magnetite (Fe 3 O 4- x)
Thus, the oxygen-deficient magnetite (Fe 3 O 4- x) can be used.

【図面の簡単な説明】[Brief description of the drawings]

図は、第1図は発明を具現する一実施例の要部を段面し
た装置の側面図である。 図中の記号 1はマグネタイト、2はマグネタイトを充填するセル、
3は容器、4,7および17は切換弁、5と8は通路、6は
容器3の蓋、9はヒータ、10は減圧装置、11はスプリン
グ、12と13は開閉弁の作動レバー、14は排気ガスの排出
部、15は吸引機を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of an apparatus embodying the present invention embodying the present invention, in which main parts are stepped. Symbol 1 in the figure is magnetite, 2 is a cell filled with magnetite,
3 is a container, 4, 7 and 17 are switching valves, 5 and 8 are passages, 6 is a lid of the container 3, 9 is a heater, 10 is a decompression device, 11 is a spring, 12 and 13 are operating levers of on-off valves, 14 Denotes an exhaust gas discharge unit, and 15 denotes a suction device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マグネタイトの素材を250℃〜350℃の雰囲
気のもとで、減圧し、酸素分子を逃避ならしめてマグネ
タイトを活性化する酸素欠陥マグネタイトの製造方法。
1. A method for producing an oxygen-deficient magnetite, wherein a magnetite material is depressurized in an atmosphere of 250 ° C. to 350 ° C. to evacuate oxygen molecules and activate magnetite.
JP2052410A 1990-03-02 1990-03-02 Method for producing oxygen-deficient magnetite Expired - Fee Related JP2915955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052410A JP2915955B2 (en) 1990-03-02 1990-03-02 Method for producing oxygen-deficient magnetite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052410A JP2915955B2 (en) 1990-03-02 1990-03-02 Method for producing oxygen-deficient magnetite

Publications (2)

Publication Number Publication Date
JPH03257026A JPH03257026A (en) 1991-11-15
JP2915955B2 true JP2915955B2 (en) 1999-07-05

Family

ID=12914018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052410A Expired - Fee Related JP2915955B2 (en) 1990-03-02 1990-03-02 Method for producing oxygen-deficient magnetite

Country Status (1)

Country Link
JP (1) JP2915955B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339842A (en) * 1992-12-18 1994-08-23 Specialty Coating Systems, Inc. Methods and apparatus for cleaning objects
CN114875352B (en) * 2022-04-15 2023-06-27 北京科技大学 High-efficiency CO decomposition 2 Preparation method and application of metal oxide

Also Published As

Publication number Publication date
JPH03257026A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
JP2004210591A (en) Apparatus and method of producing gaseous hydrogen
JP2012025636A (en) Adsorption reducing agent and reducing method of carbon dioxide
US2880257A (en) Alkaline storage battery
JP2915955B2 (en) Method for producing oxygen-deficient magnetite
TW593774B (en) F2 gas generating apparatus, F2 gas generating method and F2 gas
JP2915954B2 (en) Method for producing oxygen-deficient magnetite
US2461018A (en) Production of titanium nitride
JP2008018420A (en) Hydrogen storage material and its manufacturing method
JP7152638B2 (en) A material manufacturing method for manufacturing a hydrogen generating material containing magnesium hydride, which is intended to improve the generation reaction of magnesium hydride, and a hydrogen manufacturing method using the hydrogen generating material containing magnesium hydride manufactured by the material manufacturing method
JPH06223825A (en) Activation method for metal and manufacture of battery
TWI322030B (en) Exhaust gas treating agent, process for treating exhaust gas and treating apparatus of exhaust gas
JP2019210185A (en) Hydrogen recycling system and hydrogen recycling method
CN112969659B (en) Apparatus for producing tetrahydroborate and method for producing tetrahydroborate
CA2461624A1 (en) Process for producing nickel carbonyl, nickel powder and use thereof
JP2004223469A (en) Method for regenerating activated carbon containing organic harmful substance and regenerating apparatus
JPS60222127A (en) Purifying apparatus of gas
JP7470914B1 (en) Hydrogen storage fuel and its manufacturing method
US3208882A (en) Method of generating electricity from lithium and nitrogen
JPH11279601A (en) Hydrogen storage alloy activating device
JPH04265113A (en) Treatment of fluorine-containing gas
JP4610103B2 (en) Graphite nanofiber powder production method and apparatus
JP4086918B2 (en) Detoxification method for ferroelectric thin film treatment exhaust gas
JPS61178027A (en) Treatment of exhaust gas containing halogenated hydrocarbon
JPH05177137A (en) Preparation of ruthenium catalyst and device therefor
JP3923012B2 (en) Method and apparatus for high-temperature heat treatment of substances

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees