JP2910566B2 - Manufacturing method of high strength, high toughness, large diameter welded steel pipe material - Google Patents

Manufacturing method of high strength, high toughness, large diameter welded steel pipe material

Info

Publication number
JP2910566B2
JP2910566B2 JP16773794A JP16773794A JP2910566B2 JP 2910566 B2 JP2910566 B2 JP 2910566B2 JP 16773794 A JP16773794 A JP 16773794A JP 16773794 A JP16773794 A JP 16773794A JP 2910566 B2 JP2910566 B2 JP 2910566B2
Authority
JP
Japan
Prior art keywords
less
toughness
strength
steel pipe
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16773794A
Other languages
Japanese (ja)
Other versions
JPH0835011A (en
Inventor
明 田元
友彰 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15855200&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2910566(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16773794A priority Critical patent/JP2910566B2/en
Publication of JPH0835011A publication Critical patent/JPH0835011A/en
Application granted granted Critical
Publication of JP2910566B2 publication Critical patent/JP2910566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、API 規格のX80以上の
高い母材強度を有し、かつ溶接熱影響部(HAZ)全域
において優れた靱性を確保し得る大径溶接鋼管素材の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large-diameter welded steel pipe material having a high base material strength of at least X80 of the API standard and capable of ensuring excellent toughness in the entire area of the HAZ. About.

【0002】[0002]

【従来の技術】石油や天然ガスの遠距離輸送に用いられ
るUOE鋼管では、高強度化とともに使用環境の寒冷地
化に伴い、−30℃仕様のX65〜X70クラスのものが実生
産レベルで求められている。今後、X80〜X100 クラス
の更なる高グレード品についても−30℃以下の仕様が要
求されるものと考えられるが、現状では−20℃程度まで
が限界となっている。
2. Description of the Related Art UOE steel pipes used for long-distance transportation of petroleum and natural gas are required to have an X65-X70 class of -30.degree. Have been. In the future, even higher grade products of the X80 to X100 class will be required to have a specification of -30 ° C or less, but at present, the limit is about -20 ° C.

【0003】例えば、NKK技報、No.138(1992)、P.24
〜31に示されるX100 UOE鋼管は−20℃仕様のX100
クラスのものであると推定される。この報告の素材鋼板
の製造条件では、熱間圧延の加熱温度は母材のCとNbの
含有量からNb(CN)の固溶温度とほぼ同じ1150℃、圧延終
了温度はDWTT(Drop Weight Tearing Test、大型シ
ャルピー試験)の85%SATT〔Shear Area(延性破面
率)が85%になる温度〕とシャルピー試験での吸収エネ
ルギーを考慮してAr3点直上の700 ℃、冷却速度の目標
は30℃/秒である。
[0003] For example, NKK Technical Report, No. 138 (1992), p.
The X100 UOE steel pipes shown in ~ 31 are X100 of -20 ℃ specification.
Presumed to be of class. Under the manufacturing conditions of the steel sheet reported in this report, the heating temperature for hot rolling is 1150 ° C, which is almost the same as the solid solution temperature of Nb (CN), based on the contents of C and Nb in the base material, and the rolling end temperature is DWTT (Drop Weight Tearing). test, 85% SATT [Shear Area (ductile fracture rate) temperature at which 85%] 700 ° C. immediately above in consideration of the energy absorbed in the Charpy test and Ar 3 point large Charpy test), the target cooling speed 30 ° C./sec.

【0004】しかし、上記のような従来技術では、高強
度化を達成するために必然的にC、Si、Mn、Nb、Moなど
の合金元素含有量を増量しなければならず、結果的に溶
接継手部の靱性劣化をもたらし、これが−20℃程度の仕
様しか満足できない主な原因である。
However, in the above prior art, the content of alloying elements such as C, Si, Mn, Nb, and Mo must be increased in order to achieve high strength. This results in deterioration of the toughness of the welded joint, which is the main reason that the specification of only about -20 ° C can be satisfied.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、X80
〜X100 クラスの寒冷地仕様を考慮し、−30℃以下の仕
様を満たすことができる高強度高靱性大径溶接鋼管素材
の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an X80.
It is an object of the present invention to provide a method of manufacturing a high-strength, high-toughness, large-diameter welded steel pipe material capable of satisfying a specification of −30 ° C. or less in consideration of a cold district specification of up to X100 class.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、次の
(1)〜(3) の高強度高靱性大径溶接鋼管素材の製造方法
にある。
The gist of the present invention is as follows.
(1)-(3) The method for producing a high-strength, high-toughness, large-diameter welded steel pipe material.

【0007】(1)重量%で、C:0.04〜0.09%、Si:0〜
0.5 %、Mn:1.5〜2.5 %、Nb: 0.005〜0.060 %、Ti:
0.005〜0.025 %、Mo:0.05〜0.50%、sol.Al:0.05%
以下およびN:0.0050〜0.0100%を含有し、更にCu:0.
05〜2.5 %、Cr:0.05〜1.0 %、Ni:0.05〜1.0 %およ
びV:0.01〜0.1 %のうちの1種以上を含み、残部はFe
および不可避的不純物からなり、不純物中のPは0.010
%以下、Sは 0.005%以下である素材鋼(以下、第1の
素材鋼という)を、 900〜1200℃に加熱して熱間圧延
し、 650〜800 ℃で圧延を完了した後引続き5〜50℃/
秒の冷却速度で 350℃以下まで冷却し、次いで650 ℃以
下でテンパー処理を施すことを特徴とする高強度高靱性
大径溶接鋼管素材の製造方法(以下、第1の方法とい
う)。
(1) By weight%, C: 0.04 to 0.09%, Si: 0 to
0.5%, Mn: 1.5-2.5%, Nb: 0.005-0.060%, Ti:
0.005 to 0.025%, Mo: 0.05 to 0.50%, sol.Al: 0.05%
The following and N: 0.0050-0.0100% are contained, and Cu: 0.
05-2.5%, Cr: 0.05-1.0%, Ni: 0.05-1.0% and V: 0.01-0.1%, the balance being Fe
And unavoidable impurities, and P in the impurities is 0.010
%, And S is 0.005% or less. The material steel (hereinafter, referred to as the first material steel) is heated to 900 to 1200 ° C and hot-rolled. 50 ℃ /
A method for producing a high-strength, high-toughness, large-diameter welded steel pipe material characterized by cooling to 350 ° C. or less at a cooling rate of seconds and then performing tempering at 650 ° C. or less (hereinafter referred to as a first method).

【0008】(2)重量%で、C:0.04〜0.09%、Si:0〜
0.5 %、Mn:1.5〜2.5 %、Nb: 0.005〜0.060 %、Ti:
0.005〜0.025 %、Mo:0.05〜0.50%、sol.Al:0.02%
以下およびO:0.0010〜0.0070%を含有し、更にCu:0.
05〜2.5 %、Cr:0.05〜1.0 %、Ni:0.05〜1.0 %およ
びV:0.01〜0.1 %のうちの1種以上を含み、残部はFe
および不可避的不純物からなり、不純物中のPは0.010
%以下、Sは 0.005%以下であり、酸化物を構成する全
金属元素に対する酸化物中のAlモル%とMnモル%との関
係が下記式およびを満足する素材鋼(以下、第2の
素材鋼という)を、 900〜1200℃に加熱して熱間圧延
し、 650〜800 ℃で圧延を完了した後引続き5〜50℃/
秒の冷却速度で350 ℃以下まで冷却し、次いで650 ℃以
下でテンパー処理を施すことを特徴とする高強度高靱性
大径溶接鋼管素材の製造方法(以下、第2の方法とい
う)。
(2) By weight%, C: 0.04 to 0.09%, Si: 0 to
0.5%, Mn: 1.5-2.5%, Nb: 0.005-0.060%, Ti:
0.005 to 0.025%, Mo: 0.05 to 0.50%, sol.Al: 0.02%
The following and O: 0.0010 to 0.0070% are contained, and Cu: 0.
05-2.5%, Cr: 0.05-1.0%, Ni: 0.05-1.0% and V: 0.01-0.1%, the balance being Fe
And unavoidable impurities, and P in the impurities is 0.010
% Or less, S is 0.005% or less, and the relationship between the Al mole% and the Mn mole% in the oxide with respect to all metal elements constituting the oxide satisfies the following formula and Steel) is heated to 900-1200 ° C and hot-rolled. After rolling at 650-800 ° C,
A method for producing a high-strength, high-toughness, large-diameter welded steel pipe material, characterized in that the material is cooled to 350 ° C. or less at a cooling rate of second and then tempered at 650 ° C. or less (hereinafter referred to as a second method).

【0009】 (Alモル%+Mnモル%)≧40(モル%)・・・・・・・ (Alモル%/Mnモル%) = 1.0〜5.0 ・・・・・・・・ (3)上記(1) または(2) のいずれかの素材鋼を 900〜120
0℃に加熱して熱間圧延し、 650〜800 ℃で圧延を完了
した後、引続き5〜50℃/秒の冷却速度で冷却を開始
し、 350〜600 ℃でその冷却を停止し、その後放冷する
ことを特徴とする高強度高靱性大径溶接鋼管素材の製造
方法(以下、第3の方法という)。
(Al mol% + Mn mol%) ≧ 40 (mol%) (Al mol% / Mn mol%) = 1.0 to 5.0 (3) 900 to 120
After hot-rolling by heating to 0 ° C and completing rolling at 650 to 800 ° C, cooling is started at a cooling rate of 5 to 50 ° C / sec, and the cooling is stopped at 350 to 600 ° C. A method for producing a high-strength, high-toughness, large-diameter welded steel pipe material characterized by being left to cool (hereinafter, referred to as a third method).

【0010】上記素材鋼ではいずれも、Siは無添加でも
よい。Siを積極的に添加する場合の下限は 0.05 %とす
るのが望ましい。
In any of the above-mentioned material steels, Si may not be added. When Si is positively added, the lower limit is desirably 0.05%.

【0011】本発明方法による大径溶接鋼管素材の具体
的な強度と靱性の目標値は、強度でX80グレード以上、
かつDWTTにおける85%SATTで−30℃以下、溶接
継手HAZの vE-30 が47J以上である。
The specific strength and toughness target values of the large-diameter welded steel pipe material according to the method of the present invention are as follows.
And 85% SATT in DWTT is -30 ° C or less, and vE- 30 of the welded joint HAZ is 47J or more.

【0012】X80グレード以上の高強度材になると、素
材成分として、NbとMoの複合添加が好ましく、前述のよ
うに実際に行われているが、Moは逆にHAZ靱性の劣化
を招く。本発明者は、NbとMoの複合添加材のHAZにお
ける高靱性化を図るため、大径溶接鋼管素材の製造方法
を検討し、次の、の新知見を得た。
When a high-strength material of X80 grade or higher is used, it is preferable to add a combination of Nb and Mo as a raw material component, and although this is actually performed as described above, Mo causes deterioration of HAZ toughness. The present inventor studied a method for manufacturing a large-diameter welded steel pipe material in order to increase the toughness in a HAZ of a composite additive of Nb and Mo, and obtained the following new knowledge.

【0013】島状マルテンサイトの生成を増長させる
といわれるSi含有量の低減、または低Al化によるフェラ
イト析出の促進を行った上で、N含有量をやや高めに制
御して微細分散させたTiNによってHAZにおけるγ粒
の粗大化を防止することができること。
After reducing the Si content, which is said to increase the formation of island martensite, or promoting the precipitation of ferrite by lowering the Al content, the N content is controlled to be slightly higher to obtain finely dispersed TiN. Γ grains in the HAZ can be prevented from becoming coarse.

【0014】Al添加後の溶存酸素量を確保するように
その添加条件を調整し、Alを含有する脱酸生成物を鋼中
に形成させた後、最終脱酸を行い、Al−Mn系酸化物を微
細分散させることによって、これを粒内アシキュラーフ
ェライトの核生成サイトとして用い、HAZ組織を微細
化させることが可能であること。
[0014] The addition conditions are adjusted so as to secure the amount of dissolved oxygen after the addition of Al, a deoxidation product containing Al is formed in the steel, and the final deoxidation is carried out to obtain an Al-Mn-based oxide. By finely dispersing the substance, it can be used as a nucleation site of intragranular acicular ferrite to refine the HAZ structure.

【0015】[0015]

【作用】[Action]

(I)素材鋼の化学組成など まず、本発明方法の対象となる第1の素材鋼の化学組成
を、前記のように限定した理由について説明する。%は
重量%を意味する。
(I) Chemical Composition of Material Steel First, the reason why the chemical composition of the first material steel to be subjected to the method of the present invention is limited as described above will be described. % Means% by weight.

【0016】C:0.04〜0.09% Cは強度を確保する上で必要な元素である。C含有量が
0.04%未満であると、必要な強度が得られないので下限
は0.04%とした。一方、0.09%を超えると素材および溶
接継手部の靱性が劣化するので、上限は0.09%とした。
C: 0.04 to 0.09% C is an element necessary for securing strength. C content
If it is less than 0.04%, the required strength cannot be obtained, so the lower limit was made 0.04%. On the other hand, if it exceeds 0.09%, the toughness of the material and the welded joint deteriorates, so the upper limit was made 0.09%.

【0017】Si:0〜0.5 % Siは無添加でもよいが、鋼の溶製時に脱酸剤として作用
するとともに強度の向上に有効である。これらの効果を
得るために積極的に添加する場合、その下限は0.05%と
するのが望ましい。しかし、0.5 %を超えると島状マル
テンサイトの生成が促進されHAZ靱性の劣化をもたら
すので、その上限は 0.5%とした。望ましいのは 0.1%
以下である。
Si: 0 to 0.5% Although Si may not be added, it acts as a deoxidizing agent when smelting steel and is effective in improving strength. When adding positively to obtain these effects, the lower limit is desirably set to 0.05%. However, if it exceeds 0.5%, the formation of island-like martensite is promoted and the HAZ toughness is degraded, so the upper limit was made 0.5%. 0.1% is desirable
It is as follows.

【0018】Mn: 1.5〜2.5 % Mnは脱酸剤として、又は素材の強度と靱性を向上させる
のに有効である。X80グレード以上の素材強度を確保す
るには1.5 %以上のMn含有量が必要である。一方、2.5
%を超えると継手部靱性の劣化が顕著となるので上限は
2.5 %とした。
Mn: 1.5 to 2.5% Mn is effective as a deoxidizing agent or for improving the strength and toughness of a material. To secure material strength of X80 grade or more, Mn content of 1.5% or more is required. On the other hand, 2.5
%, The toughness of the joint is significantly deteriorated.
2.5%.

【0019】Nb: 0.005〜0.060 % Nbは、微細な炭窒化物を形成し、強度を上昇させる効果
を有する。この効果を得るにはその含有量を 0.005%以
上とする必要がある。一方、0.060 %を超えると脆化の
弊害の方が大きくなるため、上限は 0.060%とした。
Nb: 0.005 to 0.060% Nb forms fine carbonitrides and has the effect of increasing the strength. To obtain this effect, its content must be 0.005% or more. On the other hand, if it exceeds 0.060%, the harmful effect of embrittlement becomes greater, so the upper limit was made 0.060%.

【0020】Mo:0.05〜0.50% Moは、焼入れ性の向上とオーステナイトの再結晶抑制の
効果を通して制御圧延効果を増大させることによって、
強度を上昇させるのに有効である。この効果は特にNbと
の複合添加により増大する。これらの効果を得るには、
0.05%以上が必要である。一方、0.50%を超えると靱性
の劣化をもたらすため、上限は0.50%とした。
Mo: 0.05 to 0.50% Mo increases the controlled rolling effect through the effect of improving hardenability and suppressing austenite recrystallization.
It is effective for increasing strength. This effect is particularly enhanced by the combined addition with Nb. To get these effects,
0.05% or more is required. On the other hand, if it exceeds 0.50%, the toughness deteriorates, so the upper limit was made 0.50%.

【0021】Ti: 0.005〜0.025 % Tiは、微細な窒化物を形成することによってγ粒の粗大
化を防止し、靱性を向上させるのに有効である。この効
果を得るには 0.005%以上とする必要がある。
Ti: 0.005 to 0.025% Ti is effective for forming fine nitrides to prevent coarsening of γ grains and improving toughness. To achieve this effect, it must be at least 0.005%.

【0022】一方、0.025 %を超えると炭化物の析出に
よって靱性が低下するため、その上限は 0.025%とし
た。
On the other hand, if the content exceeds 0.025%, the toughness decreases due to the precipitation of carbides, so the upper limit was made 0.025%.

【0023】sol.Al:0.05%以下 Alは脱酸元素として必要である。一方、sol.Al含有量と
して0.05%を超えると鋼の清浄性を損なうため、上限は
0.05%とした。低Al化はフェライト析出の促進を通して
HAZの高靱性化に寄与するため、望ましいのはsol.Al
含有量として0.02%以下である。
Sol. Al: 0.05% or less Al is necessary as a deoxidizing element. On the other hand, if the sol.Al content exceeds 0.05%, the cleanliness of steel is impaired, so the upper limit is
0.05%. Since lower Al contributes to higher toughness of HAZ through promotion of ferrite precipitation, it is desirable to use sol.
The content is 0.02% or less.

【0024】N:0.0050〜0.0100% NはTiNを形成してHAZのγ粒粗大化の抑制に寄与す
る。この効果を得るには0.0050%以上とする必要があ
る。本発明方法の第1の素材鋼では、後述するAl−Mnの
微細分散酸化物をHAZ靱性の向上に活用することがで
きないため、N含有量の下限を定め、TiNを析出させな
ければならないのである。一方、N含有量が0.0100%を
超えるとHAZ靱性を劣化させる。よって、N含有量の
範囲は、0.0050〜0.0100%とした。
N: 0.0050 to 0.0100% N forms TiN and contributes to suppression of coarsening of γ grains in HAZ. To obtain this effect, the content needs to be 0.0050% or more. In the first material steel of the method of the present invention, since the finely dispersed oxide of Al-Mn described later cannot be utilized for improving the HAZ toughness, the lower limit of the N content must be determined and TiN must be precipitated. is there. On the other hand, if the N content exceeds 0.0100%, the HAZ toughness deteriorates. Therefore, the range of the N content is set to 0.0050 to 0.0100%.

【0025】第1の素材鋼では更に、次のCu、Cr、Niお
よびMoのうちから選んだ1種以上を含有させる。
The first material steel further contains at least one selected from the following Cu, Cr, Ni and Mo.

【0026】Cu:0.05〜2.5 % Cuは強度上昇に有効な元素である。この効果を得るには
0.05%以上の含有量が必要である。一方、2.5 %を超え
ると溶接性を劣化させる。
Cu: 0.05-2.5% Cu is an element effective for increasing the strength. To get this effect
A content of 0.05% or more is required. On the other hand, if it exceeds 2.5%, the weldability deteriorates.

【0027】Cr:0.05〜1.0 % Crは強度上昇に有効な元素である。この効果を得るには
0.05%以上の含有量が必要である。一方、1.0 %を超え
ると溶接性を劣化させる。
Cr: 0.05-1.0% Cr is an element effective for increasing the strength. To get this effect
A content of 0.05% or more is required. On the other hand, if it exceeds 1.0%, the weldability is degraded.

【0028】Ni:0.05〜1.0 % Niは強度と靱性の向上に有効な元素である。この効果を
得るには0.05%以上の含有量が必要である。一方、1.0
%を超えると経済性を損なう。
Ni: 0.05 to 1.0% Ni is an element effective for improving strength and toughness. To obtain this effect, a content of 0.05% or more is required. On the other hand, 1.0
Exceeding% impairs economic efficiency.

【0029】V:0.01〜0.1 % VはNbと同様に炭窒化物を形成し強度を上昇させる。し
かし、Nbほどの効果はないため、最低0.01%の含有量と
する必要がある。一方、0.1 %を超えると靱性を損な
う。
V: 0.01 to 0.1% V forms carbonitrides like Nb and increases the strength. However, since it is not as effective as Nb, the content needs to be at least 0.01%. On the other hand, if it exceeds 0.1%, toughness is impaired.

【0030】P:0.010 %以下 Pは偏析を助長するなど鋼質に有害な不可避不純物であ
る。特に高強度材においてはP含有量が0.010 %を超え
ると鋼を著しく脆化させるので、その上限は0.010 %と
した。
P: 0.010% or less P is an unavoidable impurity harmful to steel, such as promoting segregation. Particularly, in the case of a high-strength material, if the P content exceeds 0.010%, the steel becomes extremely embrittled, so the upper limit is made 0.010%.

【0031】S:0.005 %以下 SはMnSを形成し、鋼質に有害な不可避不純物である。
特にS含有量が 0.005%を超えると、後述するAl−Mnの
微細分散酸化物上にMnSが複合析出し、HAZ靱性の確
保に悪影響を与える。このため、上限は 0.005%とし
た。
S: 0.005% or less S forms MnS and is an unavoidable impurity harmful to steel quality.
In particular, when the S content exceeds 0.005%, MnS precipitates compositely on the Al-Mn finely dispersed oxide described later, which adversely affects the securing of HAZ toughness. Therefore, the upper limit is set to 0.005%.

【0032】次に本発明方法における第2の素材鋼の化
学組成などの限定理由を説明する。
Next, the reasons for limiting the chemical composition of the second material steel in the method of the present invention will be described.

【0033】この第2の素材鋼は、Al−Mnの微細分散酸
化物を利用してHAZ靱性を向上させるものである。す
なわち、Si、Mn、Nb、Ti、Mo、Cu、Cr、Ni、V、Pおよ
びSの含有量は上記と同じとし、sol.Alが0.02%以下お
よびOが0.0010〜0.0070%であり、かつ酸化物を構成す
る全金属元素に対する酸化物中のAlモル%とMnモル%と
の関係が下記式およびを満足するものである。
This second material steel is to improve the HAZ toughness by using a finely dispersed oxide of Al-Mn. That is, the contents of Si, Mn, Nb, Ti, Mo, Cu, Cr, Ni, V, P and S are the same as above, sol.Al is 0.02% or less, O is 0.0010 to 0.0070%, and The relationship between the Al mole% and the Mn mole% in the oxide with respect to all the metal elements constituting the oxide satisfies the following formulas.

【0034】 (Alモル%+Mnモル%)≧40(モル%)・・・・・・・ (Alモル%/Mnモル%) = 1.0〜5.0 ・・・・・・・・ このように限定した理由を以下に述べる。式および
の場合を除き、%は重量%を意味する。
(Al mol% + Mn mol%) ≧ 40 (mol%) (Al mol% / Mn mol%) = 1.0 to 5.0 The reason is described below. Except in formulas and,% means% by weight.

【0035】sol.Al:0.02%以下 Alは分散酸化物の構成元素として必須であるため、微量
ながら必ず含有させなければならない。sol.Al含有量の
望ましい計算上の下限は0.0001%である。この値は、分
析限界を超え、通常 tr. (トレース、痕跡量) といわれ
る範囲にある。
Sol.Al: 0.02% or less Al is essential as a constituent element of the dispersed oxide, so it must be contained in a small amount. The preferred calculated lower limit for the sol.Al content is 0.0001%. This value exceeds the analysis limit and is usually in the range called tr. (Trace, trace amount).

【0036】即ち、sol.Alの下限は tr.であってもよ
い。
That is, the lower limit of sol.Al may be tr.

【0037】sol.Alの下限が上記のように極微量であっ
てもよいのは、酸化物分散個数がかなり少なくても、形
成されたAl−Mn微細分散酸化物は十分効果を発揮するた
め、HAZ靱性を向上させる上で問題がないからであ
る。
The reason that the lower limit of sol.Al may be very small as described above is that even if the number of dispersed oxides is considerably small, the formed Al-Mn finely dispersed oxide exerts a sufficient effect. This is because there is no problem in improving the HAZ toughness.

【0038】Al−Mnの微細分散酸化物を利用してHAZ
靱性を向上させる場合、sol.Al含有量が0.02%を超える
と、フェライト核生成に有効な酸化物の形成を阻害する
ためその目的が達成できなくなる。よって、この場合は
必ず0.02%以下にしておかなければならない。
HAZ using finely dispersed oxide of Al-Mn
When improving the toughness, if the sol.Al content exceeds 0.02%, the formation of an oxide effective for ferrite nucleation is inhibited, so that the object cannot be achieved. Therefore, in this case, it must be kept at 0.02% or less.

【0039】O:0.0010〜0.0070% Al−Mn系の微細分散酸化物によりHAZ靱性を向上させ
る場合、Oも分散酸化物の構成元素として必須の元素で
ある。所望の分散酸化物を得るには、O含有量は0.0010
%以上としなければならない。一方、0.0070%を超える
と鋼の清浄度を損なうので、上限は0.0070%とした。
O: 0.0010 to 0.0070% When HAZ toughness is improved by an Al-Mn-based finely dispersed oxide, O is also an essential element as a constituent element of the dispersed oxide. To obtain the desired dispersed oxide, the O content is 0.0010
% Or more. On the other hand, if it exceeds 0.0070%, the cleanliness of the steel is impaired, so the upper limit was made 0.0070%.

【0040】Al−Mn系酸化物を構成する全金属元素に対
する酸化物中のAlモル%とMnモル%との関係が前記の式
およびを満足しない場合は、酸化物のアシキュラー
フェライト生成核としての機能が低下する。
When the relationship between Al mole% and Mn mole% in the oxide with respect to all the metal elements constituting the Al-Mn-based oxide does not satisfy the above-mentioned formulas, the nucleus for forming an acicular ferrite of the oxide is obtained. Function is reduced.

【0041】このときのAl−Mn系の微細分散酸化物の望
ましい大きさは 0.2〜20μm 、その1mm2 あたりの望ま
しい平均密度は4〜1000個である。このような分散状態
の場合に、これがアシキュラーフェライト生成核として
最も有効に機能し、HAZを細粒化させる。なお、上記
の条件ではSi含有量はその上限である 0.5%としても差
し支えない。
At this time, the desirable size of the Al-Mn-based finely dispersed oxide is 0.2 to 20 μm, and the desirable average density per 1 mm 2 is 4 to 1000 pieces. In the case of such a dispersed state, this functions most effectively as a nucleus for producing acicular ferrite, and makes the HAZ finer. Under the above conditions, the Si content may be set to the upper limit of 0.5%.

【0042】(II) 製造方法 次に本発明方法の工程と条件の限定理由を説明する。(II) Manufacturing Method Next, the reasons for limiting the steps and conditions of the method of the present invention will be described.

【0043】本発明の第1および第2の方法は、前記の
第1および第2の素材鋼を、次の〜の工程と条件に
したがって処理するものである。
According to the first and second methods of the present invention, the first and second steel materials are treated according to the following steps and conditions.

【0044】 900〜1200℃に加熱して熱間圧延する。The material is heated to 900 to 1200 ° C. and hot rolled.

【0045】仕上温度 650〜800 ℃で圧延を完了す
る。
The rolling is completed at a finishing temperature of 650 to 800 ° C.

【0046】引続き5〜50℃/秒の冷却速度で350 ℃
以下まで冷却する。
Subsequently, at a cooling rate of 5 to 50 ° C./sec.
Cool to below.

【0047】次いで650 ℃以下でテンパー処理を施
す。
Next, tempering treatment is performed at 650 ° C. or less.

【0048】加熱温度:100 %γ(オーステナイト)化
させるために900 ℃以上に加熱する。Nbの固溶促進とい
う観点から望ましいのは1050℃以上である。一方、1200
℃を超えるとγ粒が粗大化して靱性の劣化を招く。
Heating temperature: Heat to 900 ° C. or more to make 100% γ (austenite). The temperature is preferably 1050 ° C. or more from the viewpoint of promoting the solid solution of Nb. On the other hand, 1200
If the temperature exceeds ℃, γ grains become coarse and the toughness is deteriorated.

【0049】熱間圧延仕上温度:650℃未満ではα(フ
ェライト)の加工硬化が著しく、靱性が劣化する。一
方、800 ℃を超えると組織の微細化が十分とならない。
Hot rolling finish temperature: If less than 650 ° C., work hardening of α (ferrite) is remarkable, and toughness is deteriorated. On the other hand, if the temperature is higher than 800 ° C., the microstructure is not sufficiently refined.

【0050】冷却速度:上記の熱間圧延完了後、直ちに
または設備的に不可避の空冷を挟んで加速強制冷却を行
う。冷却速度が5℃/秒未満では加速冷却の効果が得ら
れない。一方、50℃/秒を超えると過度の焼入れ組織と
なり、靱性が劣化する。
Cooling rate: Immediately after the completion of the above-mentioned hot rolling, accelerated forced cooling is performed immediately or with air unavoidable in equipment. If the cooling rate is less than 5 ° C./sec, the effect of accelerated cooling cannot be obtained. On the other hand, if the temperature exceeds 50 ° C./sec, an excessively quenched structure results, and the toughness is deteriorated.

【0051】冷却停止温度:350 ℃以下まで加速強制冷
却するのは、著しく強度上昇をもたらす低温変態生成物
を形成させるためである。
Cooling stop temperature: The purpose of accelerated forced cooling to 350 ° C. or less is to form a low-temperature transformation product which significantly increases strength.

【0052】テンパー処理温度:上記の冷却で形成され
た低温変態生成物は靱性の劣化もひきおこすため、テン
パー処理を施す。しかし、テンパー温度が 650℃を超え
ると強度低下が著しくなる。テンパー効果を考慮した望
ましい温度範囲は 450〜650 ℃である。
Tempering temperature: The low-temperature transformation product formed by the cooling described above is subjected to a tempering treatment because it causes deterioration of toughness. However, when the tempering temperature exceeds 650 ° C, the strength is significantly reduced. A desirable temperature range in consideration of the tempering effect is 450 to 650 ° C.

【0053】本発明の第3の方法は、前述の第1または
第2の素材鋼を、次の〜の工程と条件にしたがって
処理し、テンパー処理を省略するものである。
In the third method of the present invention, the above-mentioned first or second material steel is treated according to the following steps and conditions, and the tempering treatment is omitted.

【0054】 900〜1200℃に加熱して熱間圧延する。The material is heated to 900 to 1200 ° C. and hot-rolled.

【0055】仕上温度 650〜800 ℃で圧延を完了す
る。
The rolling is completed at a finishing temperature of 650 to 800 ° C.

【0056】引続き5〜50℃/秒の冷却速度で冷却を
開始し、 350〜600 ℃でその冷却を停止する。
Subsequently, cooling is started at a cooling rate of 5 to 50 ° C./sec, and stopped at 350 to 600 ° C.

【0057】その後、放冷する。Thereafter, it is left to cool.

【0058】上記およびの工程の熱間圧延条件とそ
れらの限定理由は、前述の本発明の第1および第2の方
法と同じである。熱間圧延完了後は、前述の第1および
第2の方法と同様の効果を得るために、引続き5〜50℃
/秒の冷却速度で加速冷却を開始する。
The hot rolling conditions in the above steps and the reasons for limiting them are the same as in the above-described first and second methods of the present invention. After the completion of the hot rolling, in order to obtain the same effect as in the above-described first and second methods, it is continued at 5 to 50 ° C.
Start accelerated cooling at a cooling rate of / sec.

【0059】上記冷却後の冷却停止温度の範囲を 350〜
600 ℃とするのは、最終のテンパー処理を省略するため
である。冷却停止温度を 350℃以上とすると、強度上昇
に寄与する低温変態生成物は少なくなるが、脆化をもた
らすマルテンサイト生成も抑えられるので靱性劣化の恐
れも少ない。一方、冷却停止温度が600 ℃を超えると加
速冷却の効果が得られない。
The range of the cooling stop temperature after the cooling is 350 to
The reason for setting the temperature at 600 ° C. is to omit the final tempering treatment. When the cooling stop temperature is 350 ° C. or higher, the amount of low-temperature transformation products contributing to an increase in strength decreases, but the formation of martensite that causes embrittlement is also suppressed, so that the risk of deterioration in toughness is reduced. On the other hand, if the cooling stop temperature exceeds 600 ° C., the effect of accelerated cooling cannot be obtained.

【0060】350〜600 ℃の温度域で加速強制冷却を停
止した後は、セルフテンパーを行わせるために常温まで
放冷(自然冷却)する。
After the accelerated forced cooling is stopped in the temperature range of 350 to 600 ° C., it is allowed to cool to room temperature (natural cooling) in order to perform self-tempering.

【0061】[0061]

【実施例】表1に示す化学組成の素材鋼スラブを連続鋳
造により製造し、表2に示す条件で大径溶接鋼管用の素
材鋼板とした。これらの鋼板を用いて、Al−Mn系酸化物
の性状と分散密度、強度、85%SATTおよび vE-30
を調査、測定した。これらの結果を表3に示す。
EXAMPLE A steel slab having the chemical composition shown in Table 1 was produced by continuous casting, and was used as a raw steel sheet for a large-diameter welded steel pipe under the conditions shown in Table 2. Using these steel sheets, the properties and dispersion density of Al-Mn-based oxides, 85% SATT and vE- 30
Was investigated and measured. Table 3 shows the results.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】表3からわかるように、本発明で定める条
件を満たして製造することにより、X80〜X100 グレー
ドを満たす高強度、かつ素材鋼板およびそのHAZ全域
において−30℃以下の仕様を満たす高靱性が得られてい
る。
As can be seen from Table 3, high strength meeting the X80 to X100 grade and high toughness satisfying the specification of −30 ° C. or less in the entire steel plate and its HAZ can be obtained by manufacturing under the conditions specified in the present invention. Has been obtained.

【0066】[0066]

【発明の効果】本発明方法によれば、X80〜X100 グレ
ードを満たす高強度と、素材鋼板およびそのHAZ全域
において−30℃以下の仕様を満たす高靱性とを有する大
径溶接鋼管用の素材を得ることができる。
According to the method of the present invention, a material for a large-diameter welded steel pipe having a high strength satisfying the X80 to X100 grades and a high toughness satisfying the specification of -30 ° C or less over the entire area of the HAZ is obtained. Obtainable.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−278736(JP,A) 特開 平8−20838(JP,A) 特開 平4−362126(JP,A) 特開 平2−125812(JP,A) 特開 昭64−25917(JP,A) 特開 平5−271864(JP,A) 特開 平5−255801(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/02,8/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-278736 (JP, A) JP-A-8-20838 (JP, A) JP-A-4-362126 (JP, A) JP-A-2- 125812 (JP, A) JP-A-64-25917 (JP, A) JP-A-5-271864 (JP, A) JP-A-5-255801 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8 / 02,8 / 10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.04〜0.09%、Si:0〜0.5
%、Mn:1.5〜2.5 %、Nb: 0.005〜0.060 %、Ti: 0.0
05〜0.025 %、Mo:0.05〜0.50%、sol.Al:0.05%以下
およびN:0.0050〜0.0100%を含有し、更にCu:0.05〜
2.5 %、Cr:0.05〜1.0 %、Ni:0.05〜1.0 %および
V:0.01〜0.1 %のうちの1種以上を含み、残部はFeお
よび不可避的不純物からなり、不純物中のPは0.010 %
以下、Sは 0.005%以下である素材鋼を、 900〜1200℃
に加熱して熱間圧延し、 650〜800 ℃で圧延を完了した
後、引続き5〜50℃/秒の冷却速度で350 ℃以下まで冷
却し、次いで 650℃以下でテンパー処理を施すことを特
徴とする高強度高靱性大径溶接鋼管素材の製造方法。
C .: 0.04 to 0.09% by weight, Si: 0 to 0.5% by weight.
%, Mn: 1.5 to 2.5%, Nb: 0.005 to 0.060%, Ti: 0.0
05-0.025%, Mo: 0.05-0.50%, sol. Al: 0.05% or less and N: 0.0050-0.0100%, Cu: 0.05-
2.5%, Cr: 0.05-1.0%, Ni: 0.05-1.0% and V: 0.01-0.1%, the balance being Fe and unavoidable impurities, and P in the impurities is 0.010%.
In the following, S is steel material of 0.005% or less, 900-1200 ℃
After hot rolling at 650-800 ° C, it is cooled to 350 ° C or less at a cooling rate of 5-50 ° C / sec, and then tempered at 650 ° C or less. Method for producing high-strength, high-toughness, large-diameter welded steel pipe material.
【請求項2】重量%で、C:0.04〜0.09%、Si:0〜0.5
%、Mn:1.5〜2.5 %、Nb: 0.005〜0.060 %、Ti: 0.0
05〜0.025 %、Mo:0.05〜0.50%、sol.Al:0.02%以下
およびO:0.0010〜0.0070%を含有し、更にCu:0.05〜
2.5 %、Cr:0.05〜1.0 %、Ni:0.05〜1.0 %および
V:0.01〜0.1 %のうちの1種以上を含み、残部はFeお
よび不可避的不純物からなり、不純物中のPは0.010 %
以下、Sは 0.005%以下であり、酸化物を構成する全金
属元素に対する酸化物中のAlモル%とMnモル%との関係
が下記式およびを満足する素材鋼を、 900〜1200℃
に加熱して熱間圧延し、 650〜800 ℃で圧延を完了した
後、引続き5〜50℃/秒の冷却速度で 350℃以下まで冷
却し、次いで650 ℃以下でテンパー処理を施すことを特
徴とする高強度高靱性大径溶接鋼管素材の製造方法。 (Alモル%+Mnモル%)≧40(モル%)・・・・・・・ (Alモル%/Mnモル%) = 1.0〜5.0 ・・・・・・・・
2. C .: 0.04 to 0.09% by weight, Si: 0 to 0.5% by weight.
%, Mn: 1.5 to 2.5%, Nb: 0.005 to 0.060%, Ti: 0.0
05-0.025%, Mo: 0.05-0.50%, sol. Al: 0.02% or less and O: 0.0010-0.0070%, further Cu: 0.05-
2.5%, Cr: 0.05-1.0%, Ni: 0.05-1.0% and V: 0.01-0.1%, the balance being Fe and unavoidable impurities, and P in the impurities is 0.010%.
In the following, S is 0.005% or less, and a material steel in which the relationship between the Al mole% and the Mn mole% in the oxide with respect to all the metal elements constituting the oxide satisfies the following formula and 900-1200 ° C.
After hot rolling at 650-800 ° C, it is cooled to 350 ° C or less at a cooling rate of 5-50 ° C / sec, and then tempered at 650 ° C or less. Method for producing high-strength, high-toughness, large-diameter welded steel pipe material. (Al mol% + Mn mol%) ≧ 40 (mol%) (Al mol% / Mn mol%) = 1.0 to 5.0
【請求項3】請求項1または請求項2に記載のいずれか
の素材鋼を、 900〜1200℃に加熱して熱間圧延し、 650
〜800 ℃で圧延を完了した後、引続き5〜50℃/秒の冷
却速度で冷却を開始し、 350〜600 ℃でその冷却を停止
し、その後放冷することを特徴とする高強度高靱性大径
溶接鋼管素材の製造方法。
3. The steel material according to claim 1, which is heated to 900 to 1200 ° C. and hot-rolled.
After rolling at ~ 800 ° C, cooling is started at a cooling rate of 5-50 ° C / sec, then stopped at 350-600 ° C, and then allowed to cool. Manufacturing method for large diameter welded steel pipe material.
JP16773794A 1994-07-20 1994-07-20 Manufacturing method of high strength, high toughness, large diameter welded steel pipe material Expired - Lifetime JP2910566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16773794A JP2910566B2 (en) 1994-07-20 1994-07-20 Manufacturing method of high strength, high toughness, large diameter welded steel pipe material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16773794A JP2910566B2 (en) 1994-07-20 1994-07-20 Manufacturing method of high strength, high toughness, large diameter welded steel pipe material

Publications (2)

Publication Number Publication Date
JPH0835011A JPH0835011A (en) 1996-02-06
JP2910566B2 true JP2910566B2 (en) 1999-06-23

Family

ID=15855200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16773794A Expired - Lifetime JP2910566B2 (en) 1994-07-20 1994-07-20 Manufacturing method of high strength, high toughness, large diameter welded steel pipe material

Country Status (1)

Country Link
JP (1) JP2910566B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404383A (en) * 2014-11-28 2015-03-11 钢铁研究总院 Ultra-low carbon hydrogen sulfide corrosion resistance X80 pipeline steel and preparation method
CN106244915B (en) * 2016-08-30 2018-02-02 山东钢铁股份有限公司 A kind of think gauge X80 pipe fitting steel pipes of excellent in low temperature toughness and preparation method thereof

Also Published As

Publication number Publication date
JPH0835011A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JP3526576B2 (en) Manufacturing method of high-strength steel with excellent weld strength and weld strength
JP3344308B2 (en) Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP3301348B2 (en) Manufacturing method of hot-rolled high-tensile steel sheet
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3064865B2 (en) Manufacturing method of high strength and high toughness steel with excellent HIC resistance
JP2711163B2 (en) Method for producing high corrosion resistant low alloy linepipe steel with excellent corrosion resistance
JP2910566B2 (en) Manufacturing method of high strength, high toughness, large diameter welded steel pipe material
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP5472423B2 (en) High-strength, high-toughness steel plate with excellent cutting crack resistance
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JPS582570B2 (en) Manufacturing method of non-tempered tough high tensile strength steel
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JP3526740B2 (en) Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

EXPY Cancellation because of completion of term