JP2905443B2 - Cooling device with water tank - Google Patents

Cooling device with water tank

Info

Publication number
JP2905443B2
JP2905443B2 JP17580196A JP17580196A JP2905443B2 JP 2905443 B2 JP2905443 B2 JP 2905443B2 JP 17580196 A JP17580196 A JP 17580196A JP 17580196 A JP17580196 A JP 17580196A JP 2905443 B2 JP2905443 B2 JP 2905443B2
Authority
JP
Japan
Prior art keywords
temperature
cooling water
tank
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17580196A
Other languages
Japanese (ja)
Other versions
JPH102652A (en
Inventor
信幸 小林
明男 今福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP17580196A priority Critical patent/JP2905443B2/en
Publication of JPH102652A publication Critical patent/JPH102652A/en
Application granted granted Critical
Publication of JP2905443B2 publication Critical patent/JP2905443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ加工機に内
蔵されたレーザ発振器等の被冷却体を冷却する冷却水を
貯留した水槽を備えた冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device provided with a water tank for storing cooling water for cooling an object to be cooled such as a laser oscillator built in a laser beam machine.

【0002】[0002]

【従来の技術】レーザ発振器は、高温になると、その発
振機能が低下してしまうため、低温に冷却し続ける必要
がある。
2. Description of the Related Art When a laser oscillator is heated to a high temperature, its oscillation function is deteriorated.

【0003】このレーザ発振器等の被冷却体を冷却する
冷却装置として、図2に示したような、装置がある。
As a cooling device for cooling a cooled object such as a laser oscillator, there is a device as shown in FIG.

【0004】この冷却装置は、冷却水20を貯留した水
槽10を備えている。被冷却体30周囲には、第1熱交
換路40を形成している。
This cooling device includes a water tank 10 in which cooling water 20 is stored. A first heat exchange path 40 is formed around the object 30 to be cooled.

【0005】第1熱交換路40と水槽10内との間は、
第1循環路50で連結している。そして、冷却水20
を、第1循環路50を通して、水槽10内と第1熱交換
路40とに亙って循環させることができるようにしてい
る。
[0005] Between the first heat exchange path 40 and the inside of the water tank 10,
They are connected by a first circulation path 50. And cooling water 20
Can be circulated through the first circulation path 50 in the water tank 10 and the first heat exchange path 40.

【0006】第1循環路50には、第1循環ポンプ52
を備えて、該第1循環ポンプで水槽10内と第1熱交換
路40とに亙って冷却水20を強制循環させることがで
きるようにしている。
A first circulating pump 52 is provided in the first circulating path 50.
The cooling water 20 can be forcibly circulated in the water tank 10 and the first heat exchange path 40 by the first circulation pump.

【0007】60は、冷却回路であって、蒸発器62と
圧縮機と凝縮器と膨張弁とそれらの間を冷媒を循環させ
るための連結管64等から形成している。
Reference numeral 60 denotes a cooling circuit, which comprises an evaporator 62, a compressor, a condenser, an expansion valve, and a connecting pipe 64 for circulating a refrigerant between them.

【0008】冷却回路の蒸発器62周囲には、第2熱交
換路70を形成している。そして、その第2熱交換路7
0を水槽10内の冷却水20を循環させて、該冷却水を
蒸発器62で低温に冷却できるようにしている。
[0008] A second heat exchange path 70 is formed around the evaporator 62 in the cooling circuit. And the second heat exchange path 7
The cooling water 20 is circulated in the water tank 10 so that the cooling water can be cooled to a low temperature by the evaporator 62.

【0009】第2熱交換路70と水槽10内との間は、
第2循環路80で連結している。そして、その第2循環
路80を通して、水槽10内と第2熱交換路70とに亙
って冷却水20を循環させることができるようにしてい
る。
[0009] Between the second heat exchange path 70 and the inside of the water tank 10,
They are connected by a second circulation path 80. Then, the cooling water 20 can be circulated through the second circulation path 80 between the inside of the water tank 10 and the second heat exchange path 70.

【0010】第2循環路80には、第2循環ポンプ82
を備えて、該第2循環ポンプで水槽10内と第2熱交換
路70とに亙って冷却水20を強制循環させることがで
きるようにしている。
A second circulating pump 82 is
The cooling water 20 can be forcibly circulated through the water tank 10 and the second heat exchange path 70 by the second circulation pump.

【0011】この冷却装置においては、水槽10内に貯
留した冷却水20を、第1循環ポンプ52を用いて、第
1循環路50を通して、第1熱交換路40と水槽10内
とに亙って強制循環させることができる。そして、第1
熱交換路40内を循環させる冷却水20で、被冷却体3
0を冷却し続けることができる。
In this cooling device, the cooling water 20 stored in the water tank 10 is passed through the first circulation path 50 to the first heat exchange path 40 and the water tank 10 using the first circulation pump 52. Forced circulation. And the first
The cooling water 20 circulated in the heat exchange path 40 is
0 can continue to cool.

【0012】また、水槽10内の冷却水20を、第2循
環ポンプ82を用いて、第2循環路80を通して、第2
熱交換路70と水槽10内とに亙って強制循環させるこ
とができる。そして、第2熱交換路70を循環させる冷
却水20を、蒸発器62で冷却できる。そして、その冷
却した冷却水20を、第2循環路80を通して、水槽1
0内に流入させることができる。そして、その冷却水2
0で、水槽10内の冷却水20を低温に冷却し続けるこ
とができる。そして、第1熱交換路40から、第1循環
路50を通して、水槽10内に流入する冷却水20であ
って、被冷却体30で加熱されて高温となった冷却水2
0により、水槽10内の冷却水20が高温となるのを防
ぐことができる。
The cooling water 20 in the water tank 10 is passed through a second circulation path 80 by a second circulation pump
The forced circulation can be performed between the heat exchange path 70 and the inside of the water tank 10. Then, the cooling water 20 circulating through the second heat exchange path 70 can be cooled by the evaporator 62. Then, the cooled cooling water 20 is passed through the second circulation path 80 to the water tank 1.
0. And the cooling water 2
At 0, the cooling water 20 in the water tank 10 can be continuously cooled to a low temperature. Then, the cooling water 20 flowing into the water tank 10 from the first heat exchange path 40 through the first circulation path 50, the cooling water 2 being heated by the cooled object 30 and having a high temperature.
With 0, the cooling water 20 in the water tank 10 can be prevented from becoming high temperature.

【0013】この冷却装置では、水槽10を大型に形成
して、該水槽内に冷却水20を大量に貯留している。そ
の理由は、第1熱交換路40を循環させて水槽10内に
流入させる冷却水20であって、被冷却体30で加熱さ
れて高温となった冷却水20、又は第2熱交換路70を
循環させて水槽10内に流入させる冷却水20であっ
て、蒸発器62で冷却されて低温となった冷却水20
で、水槽10内に貯留した冷却水20の温度が大幅に上
昇又は低下するのを防ぐためである。そして、水槽10
内に貯留した被冷却体30冷却用の冷却水20を、所定
の低温状態に安定して保持できるようにするためであ
る。
In this cooling device, the water tank 10 is formed large, and a large amount of cooling water 20 is stored in the water tank. The reason is that the cooling water 20 which is circulated through the first heat exchange path 40 and flows into the water tank 10, and which is heated by the cooled body 30 and has a high temperature, or the second heat exchange path 70. Cooling water 20 circulated into the water tank 10 and cooled by the evaporator 62 to a low temperature.
This is to prevent the temperature of the cooling water 20 stored in the water tank 10 from significantly increasing or decreasing. And the water tank 10
This is because the cooling water 20 for cooling the object to be cooled 30 stored therein can be stably maintained at a predetermined low temperature state.

【0014】[0014]

【発明が解決しようとする課題】ところで、近時のレー
ザ加工機等に備える冷却装置のコンパクト化の要求か
ら、冷却装置に備える水槽10の小型化が切望されてい
る。
However, in recent years, there has been a long-awaited demand for downsizing of a water tank 10 provided in a cooling device due to a demand for downsizing of a cooling device provided in a laser beam machine or the like.

【0015】しかしながら、上記冷却装置において、水
槽10を小型化して、その水槽10内に貯留する冷却水
20の水量を少なくした場合には、水槽10内に貯留し
た冷却水20の温度が、第1熱交換路40又は第2熱交
換路70を循環させて水槽10内に流入させる冷却水2
0で、大幅に高温となったり低温となったりした。そし
て、水槽10内に貯留した冷却水20で被冷却体30を
所定の低温状態に的確に冷却し続けることができなかっ
た。
However, in the above cooling device, when the size of the water tank 10 is reduced and the amount of the cooling water 20 stored in the water tank 10 is reduced, the temperature of the cooling water 20 stored in the water tank 10 is reduced 1 cooling water 2 circulating through the heat exchange path 40 or the second heat exchange path 70 and flowing into the water tank 10
At 0, the temperature became significantly higher or lower. Then, the cooling target body 30 cannot be accurately cooled to a predetermined low temperature state by the cooling water 20 stored in the water tank 10.

【0016】その原因は、次の理由による。The cause is as follows.

【0017】上記冷却装置では、冷却回路60の運転を
間欠的にON、OFF制御して、蒸発器62の冷却能力
を大小に調整している。そして、蒸発器62周囲に形成
した第2熱交換路70を循環させて水槽10内に戻す冷
却水20の温度を高低に調整している。そして、その冷
却水20で、水槽10内の冷却水20の温度を所定の低
温状態に冷却し続けている。そして、第1熱交換路40
を循環させて水槽10内に戻す冷却水20であって、被
冷却体30で加熱されて高温となった冷却水20で、水
槽10内の冷却水20の温度が高まるのを防いでいる。
In the above-described cooling device, the operation of the cooling circuit 60 is intermittently turned on and off so that the cooling capacity of the evaporator 62 is adjusted to be large or small. Then, the temperature of the cooling water 20 that is circulated through the second heat exchange path 70 formed around the evaporator 62 and returned into the water tank 10 is adjusted to a high or low level. The cooling water 20 keeps the temperature of the cooling water 20 in the water tank 10 at a predetermined low temperature. And the first heat exchange path 40
The cooling water 20 is circulated and returned to the water tank 10. The cooling water 20 is heated by the object to be cooled 30 and has a high temperature, thereby preventing the temperature of the cooling water 20 in the water tank 10 from increasing.

【0018】ところで、冷却回路60の運転をON状態
として、蒸発器62の冷却能力を高めた場合には、第2
熱交換路70を循環させて蒸発器62で冷却した冷却水
20の温度が、低下する。他方、冷却回路60の運転を
OFF状態として、蒸発器62の冷却能力を低めた場合
には、第2熱交換路70を循環させて蒸発器62で冷却
した冷却水20の温度が、比較的高まる。
When the operation of the cooling circuit 60 is turned on to increase the cooling capacity of the evaporator 62, the second
The temperature of the cooling water 20 circulated through the heat exchange path 70 and cooled by the evaporator 62 decreases. On the other hand, when the operation of the cooling circuit 60 is turned off and the cooling capacity of the evaporator 62 is reduced, the temperature of the cooling water 20 circulated through the second heat exchange path 70 and cooled by the evaporator 62 becomes relatively low. Increase.

【0019】そのため、水槽10内に貯留した冷却水2
0の水量が少ないと、冷却回路60の運転をON状態と
して、蒸発器62で低温に冷却した冷却水20を、第2
循環路80を通して、水槽10内に戻した場合に、その
低温の冷却水20で、水槽10内に貯留された冷却水2
0の温度が大幅に低下してしまうからである。
Therefore, the cooling water 2 stored in the water tank 10
If the amount of water of 0 is small, the operation of the cooling circuit 60 is turned on, and the cooling water 20 cooled to low temperature by the evaporator 62 is
When returned to the water tank 10 through the circulation path 80, the cooling water 20 stored in the water tank 10 is
This is because the temperature of 0 significantly decreases.

【0020】同様に、水槽10内に貯留した冷却水20
の水量が少ないと、冷却回路60の運転をOFF状態と
して、蒸発器62で冷却した比較的高い温度の冷却水2
0を、第2循環路80を通して、水槽10内に戻した場
合に、その比較的高い温度の冷却水20で水槽10内に
貯留された冷却水20が充分に冷却されずに、水槽10
内の冷却水20の温度が大幅に上昇してしまうからであ
る。
Similarly, the cooling water 20 stored in the water tank 10 is
When the amount of water is small, the operation of the cooling circuit 60 is turned off, and the cooling water 2 of a relatively high temperature cooled by the evaporator 62 is turned off.
0 is returned into the water tank 10 through the second circulation path 80, the cooling water 20 stored in the water tank 10 is not sufficiently cooled by the cooling water 20 of the relatively high temperature.
This is because the temperature of the cooling water 20 in the inside rises significantly.

【0021】換言すれば、水槽10内に貯留した冷却水
20の水量が少ないと、蒸発器62で冷却して水槽10
内に戻す冷却水20の温度変化の影響を受けて、水槽1
0内の冷却水20の温度が大幅に高まったり低下したり
してしまうからである。
In other words, when the amount of the cooling water 20 stored in the water tank 10 is small, the cooling water 20 is cooled by the evaporator 62 and
Due to the temperature change of the cooling water 20 returned to the inside, the water tank 1
This is because the temperature of the cooling water 20 within 0 is significantly increased or decreased.

【0022】なお、このような難点を解消した、冷却装
置として、図3に示したような、装置がある。
As a cooling device which solves such a problem, there is a device as shown in FIG.

【0023】この冷却装置では、水槽10内に仕切り壁
14を水槽10内底部から起立させて設けている。そし
て、その仕切り壁14で、水槽10内を高温槽16と低
温槽18とに、左右に2分割している。
In this cooling device, a partition wall 14 is provided in the water tank 10 so as to rise from the bottom of the water tank 10. The partition wall 14 divides the inside of the water tank 10 into a high-temperature tank 16 and a low-temperature tank 18 on the left and right sides.

【0024】そして、低温槽18内の冷却水20を、第
1熱交換路40を循環させて、高温槽16内に戻すよう
に、第1循環路50を配管している。
The first circulation path 50 is arranged so that the cooling water 20 in the low temperature tank 18 is circulated through the first heat exchange path 40 and returned into the high temperature tank 16.

【0025】また、高温槽16内の冷却水20を、第2
熱交換路70を循環させて、低温槽18内に戻すよう
に、第2循環路80を配管している。
The cooling water 20 in the high-temperature tank 16 is
A second circulation path 80 is provided so as to circulate the heat exchange path 70 and return the inside of the low-temperature tank 18.

【0026】この冷却装置においては、冷却回路60の
運転をON状態とした際に、蒸発器62で低温に冷却し
て水槽10内に戻す冷却水20を、低温状態の冷却水2
0を貯留した低温槽18内に流入させることができる。
そして、その低温に冷却した冷却水20で、低温槽18
内に貯留した低温状態の冷却水20の温度が大幅に低下
するのを防ぐことができる。そして、低温槽18内に貯
留した冷却水20の温度を、所定の低温状態に安定させ
て保持し続けることができる。
In this cooling device, when the operation of the cooling circuit 60 is turned on, the cooling water 20 which is cooled to a low temperature by the evaporator 62 and returned to the water tank 10 is cooled by the cooling water 2 in a low temperature state.
0 can be flowed into the stored low-temperature tank 18.
Then, the cooling water 20 cooled to the low temperature is used to cool the low-temperature tank 18.
It is possible to prevent the temperature of the cooling water 20 in the low temperature state stored in the inside from dropping significantly. Then, the temperature of the cooling water 20 stored in the low-temperature tank 18 can be stably maintained at a predetermined low-temperature state.

【0027】また、冷却回路60の運転をOFF状態と
した際には、蒸発器62で比較的高い温度に冷却して水
槽10内に戻す冷却水20を、比較的高い温度の冷却水
20を貯留した高温槽16内に流入させることができ
る。そして、その比較的高い温度に冷却した冷却水20
で、高温槽16内に貯留した比較的高い温度の冷却水2
0の温度が大幅に上昇するのを防ぐことができる。そし
て、高温槽16内に貯留した冷却水20の温度を、所定
の比較的高い低温状態に安定させて保持し続けることが
できる。
When the operation of the cooling circuit 60 is turned off, the cooling water 20 cooled to a relatively high temperature in the evaporator 62 and returned to the water tank 10 is used as the cooling water 20 at a relatively high temperature. It can flow into the stored high-temperature tank 16. Then, the cooling water 20 cooled to the relatively high temperature
The cooling water 2 of a relatively high temperature stored in the high-temperature tank 16
0 can be prevented from increasing significantly. Then, the temperature of the cooling water 20 stored in the high-temperature tank 16 can be stably maintained at a predetermined relatively high low temperature state.

【0028】また、冷却回路60の運転をOFF状態と
して、蒸発器62で比較的高い温度に冷却して高温槽1
6内に流入させた冷却水20は、高温槽16内に貯留し
た比較的高い温度の冷却水20で、該冷却水の温度とほ
ぼ同じ温度まで低下させることができる。そして、その
冷却水20を、仕切り壁14の上端を乗り越えさせて、
高温槽16に隣合う低温槽18内に流入させることがで
きる。
Further, the operation of the cooling circuit 60 is set to the OFF state, and the cooling circuit 60 is cooled to a relatively high temperature by the evaporator 62 and
The cooling water 20 that has flowed into the cooling water 6 is a relatively high-temperature cooling water 20 stored in the high-temperature tank 16 and can be reduced to a temperature substantially equal to the temperature of the cooling water. Then, the cooling water 20 is made to pass over the upper end of the partition wall 14,
It can flow into the low temperature tank 18 adjacent to the high temperature tank 16.

【0029】換言すれば、蒸発器62で比較的高い温度
に冷却した冷却水20を、比較的高い温度の冷却水20
を貯留した高温槽16内を通して、高温槽16内の冷却
水20の温度とほぼ同じ温度まで低下させた後、低温槽
18内に流入させることができる。そして、蒸発器62
で比較的高い温度に冷却した冷却水20で、低温槽18
内に貯留した冷却水20の温度が大幅に高まるのを防ぐ
ことができる。そして、低温槽18内に貯留した冷却水
20の温度を安定させて所定の低温状態に保持し続ける
ことができる。
In other words, the cooling water 20 cooled to a relatively high temperature by the evaporator 62 is replaced with the cooling water 20 having a relatively high temperature.
After the temperature of the cooling water 20 in the high-temperature tank 16 is reduced to approximately the same temperature as the temperature of the cooling water 20 in the high-temperature tank 16, it can be made to flow into the low-temperature tank 18. And the evaporator 62
The cooling water 20 cooled to a relatively high temperature in the low-temperature tank 18
It is possible to prevent the temperature of the cooling water 20 stored therein from being significantly increased. Then, the temperature of the cooling water 20 stored in the low-temperature tank 18 can be stabilized and maintained at a predetermined low-temperature state.

【0030】そして、その安定して所定の低温状態にあ
る低温槽18内の冷却水20を、第1循環路50を通し
て、第1熱交換路40内を循環させて、該冷却水で、被
冷却体30を所定の低温状態に安定して冷却し続けるこ
とができる。
Then, the cooling water 20 in the low-temperature tank 18 which is stably kept at a predetermined low temperature state is circulated in the first heat exchange path 40 through the first circulation path 50, and is cooled by the cooling water. The cooling body 30 can be stably cooled to a predetermined low temperature state.

【0031】しかしながら、この冷却装置においても、
高温槽16と低温槽18とからなる水槽10を小型化し
て、低温槽18内に貯留する冷却水20の水量を少なく
した場合には、低温槽18内の冷却水20の温度が、未
だ蒸発器62で冷却して低温槽18内に戻す冷却水20
の温度変化の影響を受けて、大きく変動した。
However, in this cooling device,
When the water tank 10 composed of the high-temperature tank 16 and the low-temperature tank 18 is reduced in size and the amount of the cooling water 20 stored in the low-temperature tank 18 is reduced, the temperature of the cooling water 20 in the low-temperature tank 18 still evaporates. Cooling water 20 which is cooled by the heater 62 and returned into the low-temperature tank 18
Fluctuated greatly under the influence of the temperature change of

【0032】そのため、上記冷却装置において、水槽1
0を小型化した場合には、低温槽18内の冷却水20の
温度を、所定の低温状態に保持し続けるために、冷却回
路60の運転のON、OFF制御を繰り返し頻繁に行う
必要があった。そして、蒸発器62で冷却して低温槽1
8内に戻す冷却水20の温度変化を、極力小さく抑える
必要があった。
Therefore, in the cooling device, the water tank 1
When the temperature of the cooling water 20 is reduced, it is necessary to repeatedly and frequently perform ON / OFF control of the operation of the cooling circuit 60 in order to keep the temperature of the cooling water 20 in the low temperature tank 18 at a predetermined low temperature state. Was. Then, it is cooled by the evaporator 62 and
It was necessary to suppress the temperature change of the cooling water 20 returned to the inside 8 as small as possible.

【0033】その結果、水槽10を小型化した上記冷却
装置においては、その冷却回路60の運転のON、OF
F制御の頻繁な繰り返しが、冷却回路60の冷却効率を
大幅に低下させたり、冷却回路60の故障を招いたりし
た。
As a result, in the above-described cooling device in which the size of the water tank 10 is reduced, the operation of the cooling circuit 60 is turned on and off.
Frequent repetition of the F control drastically reduced the cooling efficiency of the cooling circuit 60 or caused a failure of the cooling circuit 60.

【0034】また、上記のようにして、冷却回路60の
運転のON、OFF制御を繰り返し頻繁に行った場合に
は、その都度、蒸発器62の冷却能力が繰り返し頻繁に
大きく変動した。そして、その蒸発器62で冷却して低
温槽18内に戻す冷却水20の温度が繰り返し頻繁に大
きく変動した。そして、そのために、低温槽18内に貯
留した冷却水20の水量が少ないと、その低温槽18内
の冷却水20の温度が、長期的に見た場合には、平均し
て所定の低温状態に保持されるが、短期的に見た場合に
は、一時的に大幅に高くなったり低くなったりした。そ
の結果、水槽10を小型化した上記冷却装置において
は、その低温槽18内に貯留した冷却水20で、被冷却
体30を常に所定の低温状態に安定して冷却し続けるこ
とができなかった。
Further, as described above, when the ON / OFF control of the operation of the cooling circuit 60 was repeatedly and frequently performed, the cooling capacity of the evaporator 62 repeatedly and frequently changed each time. Then, the temperature of the cooling water 20 cooled by the evaporator 62 and returned into the low-temperature tank 18 repeatedly and frequently fluctuated greatly. For this reason, if the amount of the cooling water 20 stored in the low-temperature tank 18 is small, the temperature of the cooling water 20 in the low-temperature tank 18 will be, on average, a predetermined low-temperature state in the long term. However, in the short term, it temporarily increased and decreased significantly. As a result, in the cooling device in which the water tank 10 is downsized, the cooling target 20 cannot always be stably cooled to a predetermined low temperature state by the cooling water 20 stored in the low temperature tank 18. .

【0035】本発明は、このような課題に鑑みてなされ
たもので、水槽の小型化が図れると共に、冷却回路の運
転のON、OFF制御を繰り返し頻繁に行わずに、冷却
回路を継続して運転しながら、低温槽内に貯留した冷却
水の温度を常に所定の低温状態に安定して保持し続ける
ことのできる、水槽を備えた冷却装置(以下、冷却装置
という)を提供することを目的としている。
The present invention has been made in view of such a problem, and it is possible to reduce the size of the water tank and to continue the cooling circuit without repeatedly and frequently performing ON / OFF control of the operation of the cooling circuit. An object of the present invention is to provide a cooling device provided with a water tank (hereinafter, referred to as a cooling device) capable of constantly and stably maintaining the temperature of cooling water stored in the low-temperature tank at a predetermined low temperature state while operating. And

【0036】[0036]

【課題を解決するための手段】上記目的を達成するため
に、本発明の冷却装置は、冷却水を貯留した水槽と、該
水槽内と被冷却体周囲に形成した第1熱交換路との間を
冷却水を循環させる第1循環路と、該第1循環路を通し
て前記水槽内と第1熱交換路とに亙って冷却水を強制循
環させる第1循環ポンプと、冷却回路の蒸発器周囲に形
成した第2熱交換路と前記水槽内との間を冷却水を循環
させる第2循環路と、該第2循環路を通して前記第2熱
交換路と水槽内とに亙って冷却水を強制循環させる第2
循環ポンプとを備えた冷却装置において、前記水槽内に
貯留すべき冷却水の平均液面レベル以上で水槽の上端縁
より丈の低い仕切り壁を前記水槽内に設けて、該仕切り
壁で水槽内を高温槽と低温槽とに左右に2分割し、前記
低温槽内の冷却水を前記第1熱交換路を循環させて前記
高温槽内に戻すように前記第1循環路を配管し、前記高
温槽内の冷却水を前記第2熱交換路を循環させて前記低
温槽内に戻すように前記第2循環路を配管し、前記第1
熱交換路に送り込む冷却水の温度を検知するセンサと、
該センサで検知した冷却水の温度に基づき、第1熱交換
路に送り込む前記低温槽内の冷却水の温度が所定の低温
状態に保持されるように、前記第2循環ポンプの運転を
ON、OFF制御する制御手段とを備えたことを特徴と
している。
In order to achieve the above object, a cooling apparatus according to the present invention comprises a water tank storing cooling water, and a first heat exchange path formed in the water tank and around the object to be cooled. A first circulation path for circulating the cooling water between the first circulation path, a first circulation pump for forcibly circulating the cooling water through the first circulation path in the water tank and the first heat exchange path, and an evaporator of the cooling circuit A second circulation path for circulating cooling water between a second heat exchange path formed in the periphery and the inside of the water tank; and cooling water passing through the second heat exchange path and the inside of the water tank through the second circulation path. Second to force circulation
In a cooling device provided with a circulation pump, a partition wall having a height equal to or higher than the average liquid level of the cooling water to be stored in the water tank and having a lower height than an upper edge of the water tank is provided in the water tank, and the partition wall is provided inside the water tank. Is divided into a high temperature tank and a low temperature tank, and the cooling water in the low temperature tank is circulated through the first heat exchange path, and the first circulation path is piped so as to return to the high temperature tank. Piping the second circulation path so that the cooling water in the high-temperature tank is circulated through the second heat exchange path and returned into the low-temperature tank;
A sensor for detecting the temperature of the cooling water sent into the heat exchange path,
On the basis of the temperature of the cooling water detected by the sensor, the operation of the second circulation pump is turned ON so that the temperature of the cooling water in the low-temperature tank fed into the first heat exchange path is maintained at a predetermined low temperature state. Control means for performing OFF control.

【0037】この冷却装置においては、第1熱交換路に
送り込む冷却水の温度を、センサを用いて、検知でき
る。そして、そのセンサで検知した第1熱交換路に送り
込む低温槽内の冷却水の温度が高くなった場合に、制御
手段を用いて、第2循環ポンプを運転させることができ
る。そして、高温槽内の冷却水を、第2循環路を通し
て、第2熱交換路を循環させることができる。そして、
第2熱交換路を循環させる冷却水を、蒸発器で冷却する
ことができる。そして、その冷却した冷却水を、第2循
環路を通して、低温槽内に流入させることができる。そ
して、その冷却水で、低温槽内に貯留した冷却水の温度
を低下させることができる。
In this cooling device, the temperature of the cooling water sent into the first heat exchange path can be detected using a sensor. Then, when the temperature of the cooling water in the low-temperature tank sent into the first heat exchange path detected by the sensor increases, the second circulation pump can be operated using the control means. Then, the cooling water in the high-temperature tank can be circulated through the second heat exchange path through the second circulation path. And
The cooling water circulating in the second heat exchange path can be cooled by the evaporator. Then, the cooled cooling water can flow into the low-temperature tank through the second circulation path. Then, the temperature of the cooling water stored in the low-temperature tank can be reduced by the cooling water.

【0038】逆に、センサで検知した第1熱交換路に送
り込む低温槽内の冷却水の温度が低くなった場合には、
制御手段を用いて、第2循環ポンプの運転を停止させる
ことができる。そして、第1熱交換路を循環させて、被
冷却体で加熱されて高温となった冷却水を、第1循環路
を通して、高温槽内に流入させて、高温槽内に貯留する
ことができる。そして、その高温槽内に貯留した冷却水
を、仕切り壁の上端を乗り越えさせて、高温槽に隣合う
低温槽内に流入させることができる。換言すれば、被冷
却体で加熱されて高温となった冷却水を、高温槽内の冷
却水で、該冷却水とほぼ同じ温度まで冷却した後、高温
槽に隣合う低温槽内に流入させることができる。そし
て、その高温槽内から低温槽内に流入させた比較的高い
温度の冷却水で、低温槽内に貯留した冷却水の温度を高
めることができる。
Conversely, when the temperature of the cooling water in the low-temperature tank sent to the first heat exchange path detected by the sensor becomes low,
The operation of the second circulation pump can be stopped using the control means. Then, by circulating through the first heat exchange path, the cooling water heated by the object to be cooled and having a high temperature can be caused to flow into the high-temperature tank through the first circulation path and stored in the high-temperature tank. . Then, the cooling water stored in the high-temperature tank can flow over the upper end of the partition wall and flow into the low-temperature tank adjacent to the high-temperature tank. In other words, the cooling water heated by the object to be cooled and heated to a high temperature is cooled to approximately the same temperature as the cooling water by the cooling water in the high-temperature tank, and then flows into the low-temperature tank adjacent to the high-temperature tank. be able to. The temperature of the cooling water stored in the low-temperature tank can be increased by the relatively high-temperature cooling water flowing from the high-temperature tank into the low-temperature tank.

【0039】そして、低温槽内の冷却水の温度を、所定
の低温状態に保持し続けることができる。そして、その
所定の低温状態に保持した低温槽内の冷却水を、第1循
環路を通して、第1熱交換路を循環させることができ
る。そして、その冷却水で、被冷却体を所定の低温状態
に冷却し続けることができる。
Then, the temperature of the cooling water in the low-temperature tank can be kept at a predetermined low-temperature state. Then, the cooling water in the low-temperature bath maintained at the predetermined low-temperature state can be circulated through the first heat exchange path through the first circulation path. Then, the object to be cooled can be continuously cooled to a predetermined low temperature state by the cooling water.

【0040】その際には、冷却回路を、停止させずに、
継続して運転し続けることができる。そして、冷却回路
の冷却効率を向上させたり、冷却回路の故障を少なく抑
えたりできる。
At that time, without stopping the cooling circuit,
It is possible to continue driving. In addition, the cooling efficiency of the cooling circuit can be improved, and the failure of the cooling circuit can be reduced.

【0041】また、冷却回路を継続して運転し続けて、
蒸発器の冷却能力を変動少なくほぼ一定値に保持でき
る。そして、蒸発器で冷却して低温槽内に戻す冷却水の
温度を常にほぼ一定値に保持できる。そして、長期的に
見ても、短期的に見ても、低温槽内に貯留した冷却水の
温度を、常に所定の低温状態に安定して保持し続けるこ
とができる。そして、その低温槽内に貯留した冷却水
で、被冷却体を常に所定の低温状態に安定して冷却し続
けることができる。
Further, the cooling circuit is continuously operated,
The cooling capacity of the evaporator can be maintained at a substantially constant value with little fluctuation. Then, the temperature of the cooling water that is cooled by the evaporator and returned to the low-temperature tank can always be maintained at a substantially constant value. Then, whether viewed in the long term or in the short term, the temperature of the cooling water stored in the low-temperature bath can be constantly maintained stably at a predetermined low-temperature state. Then, with the cooling water stored in the low-temperature tank, the object to be cooled can be constantly and stably cooled to a predetermined low-temperature state.

【0042】また、第2循環ポンプを運転させて、第2
熱交換路を冷却水を循環させた際に、第2熱交換路を循
環させて蒸発器で低温に冷却した冷却水を、第2循環路
を通して、低温状態の冷却水を貯留した低温槽内に流入
させることができる。そして、第2熱交換路から低温槽
内に流入させた低温の冷却水で、低温槽内の冷却水の温
度が大幅に低下するのを防ぐことができる。
Further, by operating the second circulation pump, the second circulation pump is operated.
When the cooling water is circulated through the heat exchange path, the cooling water circulated through the second heat exchange path and cooled to a low temperature by the evaporator is passed through the second circulation path into a low-temperature tank storing the cooling water in a low-temperature state. Can be flowed into. And it can prevent that the temperature of the cooling water in a low temperature tank falls sharply with the low temperature cooling water which flowed into the low temperature tank from the 2nd heat exchange path.

【0043】また、第2循環ポンプの運転を停止させ
て、第2熱交換路を冷却水を循環させるのを停止した際
には、第1熱交換路を循環させて被冷却体で加熱されて
高温となった冷却水を、第1循環路を通して、比較的高
い温度の冷却水を貯留した高温槽内に流入させることが
できる。そして、その高温となった冷却水を、高温槽内
に貯留した冷却水とほぼ同じ温度まで低下させることが
できる。そして、その温度を低下させた冷却水を、仕切
り壁の上端を乗り越えさせて、高温槽に隣合う低温槽内
に流入させることができる。そして、被冷却体で加熱さ
れて高温となった冷却水で、低温槽内の冷却水の温度が
大幅に上昇するのを防ぐことができる。
When the operation of the second circulating pump is stopped and the circulation of the cooling water through the second heat exchange path is stopped, the first heat exchange path is circulated to be heated by the object to be cooled. The high-temperature cooling water can flow into the high-temperature tank storing the relatively high-temperature cooling water through the first circulation path. Then, the high-temperature cooling water can be reduced to substantially the same temperature as the cooling water stored in the high-temperature tank. Then, the cooling water whose temperature has been reduced can flow over the upper end of the partition wall and flow into the low-temperature tank adjacent to the high-temperature tank. The cooling water heated by the cooled object and heated to a high temperature can prevent the temperature of the cooling water in the low-temperature tank from rising significantly.

【0044】また、高温槽内の比較的高い温度の冷却水
を、第2循環路を通して、第2熱交換路に送り込むこと
ができる。そして、第2熱交換路に送り込む冷却水の温
度を、高めることができる。そして、第2熱交換路に送
り込む冷却水の温度と冷却回路から蒸発器に送り込む冷
媒の温度との差を大きくして、蒸発器の冷却能力を向上
させることができる。そして、第2熱交換路を循環させ
る冷却水を、蒸発器で効率良く低温に冷却できる。
Further, the cooling water having a relatively high temperature in the high-temperature tank can be sent to the second heat exchange path through the second circulation path. Then, the temperature of the cooling water sent into the second heat exchange path can be increased. Then, the difference between the temperature of the cooling water sent into the second heat exchange path and the temperature of the refrigerant sent from the cooling circuit to the evaporator can be increased, and the cooling capacity of the evaporator can be improved. Then, the cooling water circulating in the second heat exchange path can be efficiently cooled to a low temperature by the evaporator.

【0045】また、水槽内に貯留すべき冷却水の平均液
面レベル以上で水槽の上端縁より丈の低い仕切り壁を水
槽内に設けて、水槽内を高温槽と低温槽とに左右に2分
割しているため、水槽内の冷却水を、仕切り壁の上端を
乗り越えさせて、低温槽内と高温槽内とに亙って相互移
動させることができる。そして、水槽内の冷却水を、高
温槽内と低温槽内とにほぼ均等な液面レベルで貯留でき
る。そして、水槽内の冷却水が、高温槽内又は低温槽内
の一方に過度に貯留された状態となって、その他方の低
温槽内又は高温槽内が空に近い状態となるのを防ぐこと
ができる。また、高温槽内又は低温槽内の冷却水が、仕
切り壁の上端を乗り越えて、低温槽内又は高温槽内に溢
出、流入できずに、水槽の上端縁から水槽外部に溢れ出
るのを防ぐことができる。
Further, a partition wall having a height equal to or higher than the average liquid level of the cooling water to be stored in the water tank and having a lower height than the upper edge of the water tank is provided in the water tank, and the inside of the water tank is divided into a high-temperature tank and a low-temperature tank. Due to the division, the cooling water in the water tank can move over the upper end of the partition wall and between the low-temperature tank and the high-temperature tank. Then, the cooling water in the water tank can be stored in the high-temperature tank and the low-temperature tank at a substantially uniform liquid level. And, to prevent the cooling water in the water tank from being excessively stored in one of the high-temperature tank and the low-temperature tank, so that the other low-temperature tank or the high-temperature tank is not nearly empty. Can be. In addition, the cooling water in the high-temperature tank or the low-temperature tank is prevented from flowing over the upper end of the partition wall and overflowing or flowing into the low-temperature tank or the high-temperature tank, and does not overflow from the upper edge of the water tank to the outside of the water tank. be able to.

【0046】[0046]

【発明の実施の形態】次に、本発明の実施の形態を図面
に従い説明する。図1は本発明の冷却装置の好適な実施
の形態を示し、詳しくはその回路構造説明図である。以
下に、この冷却装置を説明する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a preferred embodiment of a cooling device according to the present invention, and is a diagram for explaining its circuit structure in detail. Hereinafter, this cooling device will be described.

【0047】図の冷却装置では、前述図3に示した冷却
装置と同様にして、水槽10内に貯留すべき冷却水20
の平均液面レベル以上で、水槽の上端縁12より丈の低
い、仕切り壁14を、水槽10内に水槽10内底部から
起立させて設けている。そして、その仕切り壁14で、
水槽10内を、高温槽16と、低温槽18とに、左右に
2分割している。
In the cooling device shown in the figure, the cooling water 20 to be stored in the water tank 10 is similar to the cooling device shown in FIG.
The partition wall 14 having a height equal to or higher than the average liquid level and having a lower height than the upper end edge 12 of the water tank is provided in the water tank 10 so as to rise from the bottom inside the water tank 10. Then, at the partition wall 14,
The inside of the water tank 10 is divided into a high temperature tank 16 and a low temperature tank 18 on the left and right sides.

【0048】そして、水槽10内の冷却水20を、仕切
り壁14の上端を乗り越えさせて、高温槽16内と低温
槽18内とに亙って相互移動させることができるように
している。そして、水槽10内の冷却水20を、高温槽
16内と低温槽18内とにほぼ均等な液面レベルで貯留
できるようにしている。そして、水槽10内の冷却水2
0が、高温槽16内又は低温槽18内の一方に過度に貯
留された状態となって、その他方の低温槽18内又は高
温槽16内が空に近い状態となるのを防ぐことができる
ようにしている。
Then, the cooling water 20 in the water tank 10 can move over the high temperature tank 16 and the low temperature tank 18 by moving over the upper end of the partition wall 14. The cooling water 20 in the water tank 10 can be stored in the high-temperature tank 16 and the low-temperature tank 18 at a substantially uniform liquid level. And the cooling water 2 in the water tank 10
0 can be prevented from being excessively stored in one of the high-temperature tank 16 and the low-temperature tank 18 and the other low-temperature tank 18 or the high-temperature tank 16 being almost empty. Like that.

【0049】また、高温槽16内又は低温槽18内の冷
却水20が、仕切り壁14の上端を乗り越えて低温槽1
8内又は高温槽16内に溢出、流入できずに、水槽の上
端縁12から水槽10外部に溢れ出るのを防ぐことがで
きるようにしている。
The cooling water 20 in the high-temperature tank 16 or the low-temperature tank 18 passes over the upper end of the partition wall 14 and
It is possible to prevent the water from overflowing from the upper edge 12 of the water tank to the outside of the water tank 10 without being able to overflow or flow into the inside of the water tank 8 or the high-temperature tank 16.

【0050】第1循環路50は、低温槽18内の冷却水
20を、第1熱交換路40を循環させて、高温槽16内
に戻すことができるように、配管している。
The first circulation path 50 is provided so that the cooling water 20 in the low-temperature tank 18 can be circulated through the first heat exchange path 40 and returned to the high-temperature tank 16.

【0051】第2循環路80は、高温槽16内の冷却水
20を、第2熱交換路70を循環させて、低温槽18内
に戻すことができるように、配管している。
The second circulation path 80 is provided so that the cooling water 20 in the high-temperature tank 16 can be circulated through the second heat exchange path 70 and returned to the low-temperature tank 18.

【0052】第1循環路50には、該第1循環路を通し
て第1熱交換路40に送り込む冷却水20の温度を検知
するセンサ90を備えている。
The first circulation path 50 is provided with a sensor 90 for detecting the temperature of the cooling water 20 sent to the first heat exchange path 40 through the first circulation path.

【0053】第2循環ポンプ82には、センサ90で検
知した温度変化に基づき動作する制御手段92を付設し
ている。そして、その制御手段92を用いて、センサ9
0で検知した冷却水20の温度に基づき、第1熱交換路
40に送り込む低温槽18内の冷却水20の温度が所定
の低温状態に保持されるように、第2循環ポンプ82の
運転をON、OFF制御できるようにしている。
The second circulation pump 82 is provided with a control means 92 which operates based on a temperature change detected by the sensor 90. Then, using the control means 92, the sensor 9
Based on the temperature of the cooling water 20 detected at 0, the operation of the second circulation pump 82 is controlled so that the temperature of the cooling water 20 in the low-temperature tank 18 fed into the first heat exchange path 40 is maintained at a predetermined low temperature state. ON and OFF control is possible.

【0054】その他は、前述図2に示した冷却装置と同
様に構成していて、その同一部材には、同一符号を付
し、その説明を省略する。
The rest of the configuration is the same as that of the cooling device shown in FIG. 2, and the same members are denoted by the same reference numerals and description thereof will be omitted.

【0055】次に、この冷却装置の使用例並びにその作
用を説明する。
Next, an example of use of the cooling device and its operation will be described.

【0056】この冷却装置を用いて、被冷却体30を所
定の低温状態に冷却し続ける場合には、第1熱交換路4
0に送り込む冷却水20の温度を、センサ90を用い
て、検知する。そして、そのセンサ90で検知した第1
熱交換路40に送り込む低温槽18内の冷却水20の温
度が高くなった場合に、制御手段92を用いて、第2循
環ポンプ82を運転させる。そして、高温槽16内の冷
却水20を、第2循環路80を通して、第2熱交換路7
0を循環させる。そして、第2熱交換路70を循環させ
る冷却水20を、蒸発器62で低温に冷却する。そし
て、その低温に冷却した冷却水20を、第2循環路80
を通して、低温槽18内に流入させる。そして、その冷
却水20で、低温槽18内に貯留した冷却水20の温度
を低下させる。そして、その低温槽18内から、第1循
環路50を通して、第1熱交換路40に送り込む冷却水
20の温度を低下させる。
When the object to be cooled 30 is continuously cooled to a predetermined low temperature state using this cooling device, the first heat exchange path 4
The temperature of the cooling water 20 sent to 0 is detected using the sensor 90. Then, the first detected by the sensor 90
When the temperature of the cooling water 20 in the low-temperature tank 18 sent into the heat exchange passage 40 becomes high, the second circulation pump 82 is operated by using the control means 92. Then, the cooling water 20 in the high-temperature tank 16 is passed through the second circulation path 80 to the second heat exchange path 7.
Cycle 0. Then, the cooling water 20 circulating in the second heat exchange path 70 is cooled to a low temperature by the evaporator 62. Then, the cooling water 20 cooled to the low temperature is supplied to the second circulation path 80.
To flow into the low-temperature tank 18. Then, the cooling water 20 lowers the temperature of the cooling water 20 stored in the low-temperature tank 18. Then, the temperature of the cooling water 20 sent from the low-temperature tank 18 to the first heat exchange path 40 through the first circulation path 50 is reduced.

【0057】逆に、センサ90で検知した第1熱交換路
40に送り込む低温槽18内の冷却水20の温度が低く
なった場合には、制御手段92を用いて、第2循環ポン
プ82の運転を停止させる。そして、第1熱交換路40
を循環させて、被冷却体30で加熱されて高温となった
冷却水20を、第1循環路50を通して、高温槽16内
に流入させて、高温槽16内に貯留し続ける。そして、
その高温槽16内に貯留し続ける冷却水20の一部を、
仕切り壁14の上端を乗り越えさせて、高温槽16に隣
合う低温槽18内に流入させる。そして、その高温槽1
6内から流入させた比較的高い温度の冷却水20で、低
温槽18内に貯留した冷却水20の温度を高める。そし
て、低温槽18内から、第1循環路50を通して、第1
熱交換路40に送り込む冷却水20の温度を高める。
Conversely, when the temperature of the cooling water 20 in the low-temperature tank 18 sent to the first heat exchange path 40 detected by the sensor 90 becomes low, the control means 92 is used to control the second circulation pump 82 Stop operation. And the first heat exchange path 40
The cooling water 20 heated by the cooled object 30 and heated to a high temperature is caused to flow into the high-temperature tank 16 through the first circulation path 50 and is continuously stored in the high-temperature tank 16. And
A part of the cooling water 20 that is kept stored in the high-temperature tank 16 is
The upper end of the partition wall 14 is passed over the lower temperature tank 18 adjacent to the high temperature tank 16. And the high temperature tank 1
The temperature of the cooling water 20 stored in the low-temperature tank 18 is increased by the relatively high-temperature cooling water 20 that flows in from the inside 6. Then, from the inside of the low-temperature tank 18, the first
The temperature of the cooling water 20 sent into the heat exchange path 40 is increased.

【0058】すると、低温槽18内から第1熱交換路4
0に送り込む冷却水20の温度を、所定の低温状態に保
持し続けることができる。そして、その第1熱交換路4
0を循環させる冷却水20で、被冷却体30を所定の低
温状態に冷却し続けることができる。
Then, the first heat exchange path 4 is
The temperature of the cooling water 20 sent to zero can be kept at a predetermined low temperature state. And the first heat exchange path 4
With the cooling water 20 circulating 0, the object to be cooled 30 can be continuously cooled to a predetermined low temperature state.

【0059】その際には、冷却回路60を、停止させず
に、継続して運転し続けることができる。そして、冷却
回路60の冷却効率を向上させたり、冷却回路60の故
障を少なく抑えたりできる。
At that time, the cooling circuit 60 can be continuously operated without stopping. In addition, the cooling efficiency of the cooling circuit 60 can be improved, and the failure of the cooling circuit 60 can be reduced.

【0060】また、冷却回路60を継続して運転し続け
て、蒸発器62の冷却能力をほぼ一定値に保持できる。
そして、蒸発器62で冷却して低温槽18内に戻す冷却
水20の温度を常にほぼ一定値に保持できる。そして、
低温槽18内に貯留した冷却水20の水量が少ない場合
にも、その低温槽18内の冷却水20の温度を、長期的
に見ても、短期的に見ても、常にほぼ所定値に安定して
保持し続けることができる。そして、その低温槽18内
に貯留した冷却水20で、被冷却体30を常に所定の低
温状態に冷却し続けることができる。
In addition, the cooling capacity of the evaporator 62 can be maintained at a substantially constant value by continuously operating the cooling circuit 60.
Then, the temperature of the cooling water 20 that is cooled by the evaporator 62 and returned into the low-temperature tank 18 can always be maintained at a substantially constant value. And
Even when the amount of the cooling water 20 stored in the low-temperature tank 18 is small, the temperature of the cooling water 20 in the low-temperature tank 18 is always set to a substantially predetermined value regardless of the long-term or short-term. It can be kept stable. Then, the cooling object 20 can be constantly cooled to a predetermined low temperature state by the cooling water 20 stored in the low temperature tank 18.

【0061】また、第2循環ポンプ82を運転させて、
第2熱交換路70を冷却水20を循環させた際には、第
2熱交換路70を循環させて蒸発器62で低温に冷却し
た冷却水20を、第2循環路80を通して、低温状態の
冷却水20を貯留した低温槽18内に流入させることが
できる。そして、その第2熱交換路70から第2循環路
80を通して低温槽18内に流入させる低温の冷却水2
0で、低温槽18内の冷却水20の温度が大幅に低下す
るのを防ぐことができる。
Further, by operating the second circulation pump 82,
When the cooling water 20 is circulated through the second heat exchange path 70, the cooling water 20 circulated through the second heat exchange path 70 and cooled to a low temperature by the evaporator 62 is passed through the second circulation path 80 to a low temperature state. Of the cooling water 20 can flow into the low-temperature tank 18 in which the cooling water 20 is stored. Then, the low-temperature cooling water 2 flowing from the second heat exchange path 70 into the low-temperature tank 18 through the second circulation path 80
At 0, it is possible to prevent the temperature of the cooling water 20 in the low-temperature tank 18 from dropping significantly.

【0062】また、第2循環ポンプ82の運転を停止さ
せて、第2熱交換路70を冷却水20を循環させるのを
停止した際には、第1熱交換路40を循環させて被冷却
体30で加熱されて高温となった冷却水20を、第1循
環路50を通して、比較的高い温度の冷却水20を貯留
した高温槽16内に流入させることができる。そして、
その高温となった冷却水20を、高温槽16内に貯留し
た比較的高い温度の冷却水20の温度まで低下させるこ
とができる。そして、その温度を低下させた冷却水20
を、仕切り壁14の上端を乗り越えさせて、高温槽16
に隣合う低温槽18内に流入させることができる。そし
て、被冷却体30で加熱されて高温となった冷却水20
で、低温槽18内の冷却水20の温度が大幅に上昇する
のを防ぐことができる。
When the operation of the second circulation pump 82 is stopped and the circulation of the cooling water 20 through the second heat exchange path 70 is stopped, the first heat exchange path 40 is circulated to be cooled. The cooling water 20 heated by the body 30 and having a high temperature can flow through the first circulation path 50 into the high-temperature tank 16 in which the relatively high-temperature cooling water 20 is stored. And
The high-temperature cooling water 20 can be lowered to the temperature of the relatively high-temperature cooling water 20 stored in the high-temperature tank 16. Then, the cooling water 20 whose temperature has been lowered
Over the upper end of the partition wall 14
Can flow into the low-temperature tank 18 adjacent to. Then, the cooling water 20 that has been heated by the cooled
Thus, it is possible to prevent the temperature of the cooling water 20 in the low-temperature tank 18 from increasing significantly.

【0063】また、高温槽16内の比較的高い温度の冷
却水20を、第2循環路80を通して、第2熱交換路7
0に送り込むことができる。そして、第2熱交換路70
に送り込む冷却水20の温度を、高めることができる。
そして、第2熱交換路70に送り込む冷却水20の温度
と冷却回路60から連結管64を通して蒸発器62に送
り込む冷媒の温度との差を大きくして、蒸発器62の冷
却能力を向上させることができる。そして、第2熱交換
路70を循環させる冷却水20を、蒸発器62で効率良
く低温に冷却できる。
The cooling water 20 having a relatively high temperature in the high-temperature tank 16 is supplied through the second circulation path 80 to the second heat exchange path 7.
0 can be sent. And the second heat exchange path 70
, The temperature of the cooling water 20 fed into the cooling water can be increased.
Then, the difference between the temperature of the cooling water 20 sent into the second heat exchange path 70 and the temperature of the refrigerant sent from the cooling circuit 60 to the evaporator 62 through the connecting pipe 64 is increased to improve the cooling capacity of the evaporator 62. Can be. Then, the cooling water 20 circulating in the second heat exchange path 70 can be efficiently cooled to a low temperature by the evaporator 62.

【0064】この第2熱交換路70に送り込む冷却水2
0の温度と、蒸発器62に送り込む冷媒の温度との差を
大きくすることにより、蒸発器62の冷却能力が向上す
る実験データを示すと、図4のようになる。
The cooling water 2 fed into the second heat exchange path 70
FIG. 4 shows experimental data showing that the cooling capacity of the evaporator 62 is improved by increasing the difference between the temperature of 0 and the temperature of the refrigerant sent to the evaporator 62.

【0065】図4において、Twiは、第2熱交換路7
0に送り込む冷却水20の温度を示し、Teは、蒸発器
62に送り込む冷媒の温度を示している。図4から、T
wiとTeとの差が大きくなると、蒸発器62の冷却能
力が向上することが判る。
In FIG. 4, Twi is the second heat exchange path 7
0 indicates the temperature of the cooling water 20 to be sent, and Te indicates the temperature of the refrigerant sent to the evaporator 62. From FIG. 4, T
It can be seen that when the difference between wi and Te increases, the cooling capacity of the evaporator 62 improves.

【0066】また、この原理を式で示すと、次の数1の
ようになる。
When this principle is expressed by an equation, the following equation 1 is obtained.

【0067】[0067]

【数1】Q=hA(θw−θf)## EQU1 ## Q = hA (θw−θf)

【0068】この数1の式において、Qは熱量を示し、
hは熱交換器の熱伝達率を示し、Aは熱交換器の表面積
を示し、θwは熱交換器内を循環させる流体の温度を示
し、θfは熱交換器の壁の温度を示している。この数1
の式から、熱交換器内を循環させる流体の温度θw、即
ち第2熱交換路70に送り込む冷却水20の温度Twi
と、熱交換器の壁の温度θf、即ち蒸発器62を循環さ
せる冷媒の温度に近い蒸発器62に送り込む冷媒の温度
Teとの差が、大きいと、熱交換器から得られる熱量
Q、即ち蒸発器62が冷却水20から奪う熱量が高まっ
て、蒸発器62の冷却能力が向上することが判る。
In the equation (1), Q represents the amount of heat,
h indicates the heat transfer coefficient of the heat exchanger, A indicates the surface area of the heat exchanger, θw indicates the temperature of the fluid circulating in the heat exchanger, and θf indicates the temperature of the wall of the heat exchanger. . This number 1
From the equation, the temperature θw of the fluid circulating in the heat exchanger, that is, the temperature Twi of the cooling water 20 sent into the second heat exchange path 70
If the difference between the temperature of the wall of the heat exchanger θf and the temperature Te of the refrigerant sent to the evaporator 62 which is close to the temperature of the refrigerant circulating in the evaporator 62 is large, the heat quantity Q obtained from the heat exchanger, It can be seen that the amount of heat taken by the evaporator 62 from the cooling water 20 increases, and the cooling capacity of the evaporator 62 improves.

【0069】また、本発明の冷却装置に用いる冷却水2
0には、水のほかに、不凍液等を混入させた各種の冷却
液を用いても良く、そのようにしても、上述冷却装置と
同様な作用を持つ冷却装置を提供できる。
The cooling water 2 used in the cooling device of the present invention
For 0, various cooling liquids mixed with antifreeze or the like may be used in addition to water. Even in such a case, a cooling apparatus having the same function as the above-described cooling apparatus can be provided.

【0070】[0070]

【発明の効果】以上説明したように、本発明の冷却装置
によれば、水槽を小型化して、低温槽内に貯留する冷却
水の水量を少なくしても、その低温槽内の冷却水の温度
を、常に所定の低温状態に安定して保持し続けることが
できる。そして、その低温槽内の所定の低温状態に保持
した冷却水を、第1熱交換路を循環させて、被冷却体を
常に所定の低温状態に安定して的確に冷却し続けること
ができる。その結果、水槽を小型化して、冷却装置のコ
ンパクト化が図れる。
As described above, according to the cooling device of the present invention, even if the water tank is downsized and the amount of the cooling water stored in the low-temperature tank is reduced, the cooling water in the low-temperature tank can be reduced. The temperature can always be stably maintained at a predetermined low temperature state. Then, the cooling water maintained at a predetermined low-temperature state in the low-temperature tank is circulated through the first heat exchange path, so that the object to be cooled can always be stably and accurately cooled to the predetermined low-temperature state. As a result, the water tank can be downsized, and the cooling device can be downsized.

【0071】また、冷却回路の運転のON、OFF制御
を繰り返し頻繁に行う必要をなくして、冷却回路の冷却
効率を向上させたり、冷却回路の故障を減少させたりで
きる。
Further, it is not necessary to repeatedly and frequently perform ON / OFF control of the operation of the cooling circuit, so that the cooling efficiency of the cooling circuit can be improved and the failure of the cooling circuit can be reduced.

【0072】また、蒸発器周囲に形成した第2熱交換路
に送り込む冷却水の温度を高めて、その第2熱交換路に
送り込む冷却水の温度と、冷却回路から蒸発器に送り込
む冷媒の温度との差を、大きくすることができる。そし
て、蒸発器の冷却能力を高めることができる。
Further, the temperature of the cooling water sent to the second heat exchange path formed around the evaporator is increased, and the temperature of the cooling water sent to the second heat exchange path and the temperature of the refrigerant sent to the evaporator from the cooling circuit are increased. Can be increased. And the cooling capacity of an evaporator can be raised.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷却装置の回路構造説明図である。FIG. 1 is an explanatory diagram of a circuit structure of a cooling device of the present invention.

【図2】従来の冷却装置の回路構造説明図である。FIG. 2 is an explanatory diagram of a circuit structure of a conventional cooling device.

【図3】従来の冷却装置の回路構造説明図である。FIG. 3 is an explanatory diagram of a circuit structure of a conventional cooling device.

【図4】第2熱交換路に送り込む冷却水の温度と蒸発器
に送り込む冷媒の温度との差に対する蒸発器の冷却能力
を示す説明図である。
FIG. 4 is an explanatory diagram showing the cooling capacity of the evaporator with respect to the difference between the temperature of the cooling water sent to the second heat exchange path and the temperature of the refrigerant sent to the evaporator.

【符号の説明】[Explanation of symbols]

10 水槽 12 水槽の上端縁 14 仕切り壁 16 高温槽 18 低温槽 20 冷却水 30 被冷却体 40 第1熱交換路 50 第1循環路 52 第1循環ポンプ 60 冷却回路 62 蒸発器 64 連結管 70 第2熱交換路 80 第2循環路 82 第2循環ポンプ 90 センサ 92 制御手段 Reference Signs List 10 water tank 12 upper edge of water tank 14 partition wall 16 high temperature tank 18 low temperature tank 20 cooling water 30 cooled object 40 first heat exchange path 50 first circulation path 52 first circulation pump 60 cooling circuit 62 evaporator 64 connecting pipe 70th 2 heat exchange path 80 second circulation path 82 second circulation pump 90 sensor 92 control means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25D 17/02 B23Q 11/12 F25D 13/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F25D 17/02 B23Q 11/12 F25D 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷却水を貯留した水槽と、該水槽内と被
冷却体周囲に形成した第1熱交換路との間を冷却水を循
環させる第1循環路と、該第1循環路を通して前記水槽
内と第1熱交換路とに亙って冷却水を強制循環させる第
1循環ポンプと、冷却回路の蒸発器周囲に形成した第2
熱交換路と前記水槽内との間を冷却水を循環させる第2
循環路と、該第2循環路を通して前記第2熱交換路と水
槽内とに亙って冷却水を強制循環させる第2循環ポンプ
とを備えた冷却装置において、前記水槽内に貯留すべき
冷却水の平均液面レベル以上で水槽の上端縁より丈の低
い仕切り壁を前記水槽内に設けて、該仕切り壁で水槽内
を高温槽と低温槽とに左右に2分割し、前記低温槽内の
冷却水を前記第1熱交換路を循環させて前記高温槽内に
戻すように前記第1循環路を配管し、前記高温槽内の冷
却水を前記第2熱交換路を循環させて前記低温槽内に戻
すように前記第2循環路を配管し、前記第1熱交換路に
送り込む冷却水の温度を検知するセンサと、該センサで
検知した冷却水の温度に基づき、第1熱交換路に送り込
む前記低温槽内の冷却水の温度が所定の低温状態に保持
されるように、前記第2循環ポンプの運転をON、OF
F制御する制御手段とを備えたことを特徴とする水槽を
備えた冷却装置。
A first circulation path for circulating the cooling water between the water tank storing the cooling water, a first heat exchange path formed in the water tank and around the object to be cooled, and through the first circulation path. A first circulation pump for forcibly circulating cooling water in the water tank and the first heat exchange path; and a second circulation pump formed around the evaporator in the cooling circuit.
A second circulating cooling water between the heat exchange path and the inside of the water tank;
In a cooling device comprising a circulation path and a second circulation pump for forcibly circulating cooling water through the second circulation path and between the second heat exchange path and the inside of the water tank, cooling to be stored in the water tank. A partition wall having a height equal to or higher than the average liquid level of water and lower than the upper edge of the water tank is provided in the water tank, and the inside of the water tank is divided into a high-temperature tank and a low-temperature tank by the partition walls. Piping the first circulation path so that the cooling water is circulated through the first heat exchange path and returned into the high-temperature tank, and circulates the cooling water in the high-temperature tank through the second heat exchange path. A sensor for detecting a temperature of the cooling water sent to the first heat exchange path, and a first heat exchange based on the temperature of the cooling water detected by the sensor. So that the temperature of the cooling water in the low-temperature tank fed into the path is maintained at a predetermined low-temperature state. ON operation of the second circulation pump, OF
A cooling device comprising a water tank, comprising: a control unit for performing F control.
JP17580196A 1996-06-14 1996-06-14 Cooling device with water tank Expired - Lifetime JP2905443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17580196A JP2905443B2 (en) 1996-06-14 1996-06-14 Cooling device with water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17580196A JP2905443B2 (en) 1996-06-14 1996-06-14 Cooling device with water tank

Publications (2)

Publication Number Publication Date
JPH102652A JPH102652A (en) 1998-01-06
JP2905443B2 true JP2905443B2 (en) 1999-06-14

Family

ID=16002492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17580196A Expired - Lifetime JP2905443B2 (en) 1996-06-14 1996-06-14 Cooling device with water tank

Country Status (1)

Country Link
JP (1) JP2905443B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504608B2 (en) * 2000-12-06 2004-03-08 イノテック株式会社 Cooling system
KR100785313B1 (en) 2006-08-28 2007-12-17 주식회사 에프에스티 Refrigerating device
JP4795454B2 (en) * 2009-08-02 2011-10-19 好和 勝田 Cooling system
JP6083316B2 (en) * 2013-05-09 2017-02-22 富士通株式会社 Electronic equipment cooling system
CN104728917B (en) * 2013-12-18 2017-10-13 上海船厂船舶有限公司 Bathroom automatic water supply system and its control method
CN104864659B (en) * 2015-05-20 2017-06-30 郑成勋 Cooling water energy saving circulating system
CN105135778A (en) * 2015-09-24 2015-12-09 泰州市姜堰奥威机械有限公司 Precision water cooling machine
CN105091462A (en) * 2015-09-28 2015-11-25 西安石油大学 Circulating cooling system for large mechanical property testing machine and cooling method of circulating cooling system
CN108731349A (en) * 2017-04-25 2018-11-02 云南道精制冷科技有限责任公司 refrigeration station
CN108800632B (en) * 2017-05-05 2021-11-23 云南道精制冷科技有限责任公司 Prepare ice water station of 2 ℃ ice water
CN115042008B (en) * 2022-06-27 2023-12-01 南昌沪航工业有限公司 Closed water storage pressure maintaining temperature control water cooling system of numerical control machine tool

Also Published As

Publication number Publication date
JPH102652A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
US7788941B2 (en) Cooling system and method utilizing thermal capacitor unit(s) for enhanced thermal energy transfer efficiency
CN112292004B (en) Pump-driven two-phase cooling system and working method thereof
JP2905443B2 (en) Cooling device with water tank
JP6828821B2 (en) Phase change cooling device and phase change cooling method
JP2007232232A (en) Cooling/heating device
CN103062968A (en) Cooling system and cooling method
JPH09269162A (en) Absorbing type freezer
JP2020118348A (en) Chiller
JPH06257969A (en) Loop type heat pipe
JP2806663B2 (en) Liquid refrigerant circulation control device
JPH09159232A (en) Controlling method for ice storage type water chiller
JP2006200814A (en) Freezer
JP2005207672A (en) Hot water storage type water heater
JP2001153511A (en) Cooling device for ice making and method of operating form the device
JPH06347126A (en) Absorption freezer
JP2001082817A (en) Refrigeration system
JPH0972585A (en) Thermal storage type cold water device
JP6801665B2 (en) Phase change cooling device and its control method
JPS63157212A (en) Control device for temperature of cold water
GB2179128A (en) Apparatus for cooling liquids
JPS6157537B2 (en)
JP2001263903A (en) Peltier cooling system
KR200292766Y1 (en) Cooling apparatus
JPH0547608Y2 (en)
KR930010469A (en) Cooling system using fluid ice