JP2005207672A - Hot water storage type water heater - Google Patents

Hot water storage type water heater Download PDF

Info

Publication number
JP2005207672A
JP2005207672A JP2004014827A JP2004014827A JP2005207672A JP 2005207672 A JP2005207672 A JP 2005207672A JP 2004014827 A JP2004014827 A JP 2004014827A JP 2004014827 A JP2004014827 A JP 2004014827A JP 2005207672 A JP2005207672 A JP 2005207672A
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat
heat storage
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014827A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
彰 鈴木
Seiji Miwa
誠治 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004014827A priority Critical patent/JP2005207672A/en
Publication of JP2005207672A publication Critical patent/JP2005207672A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage type water heater capable of preventing the impairing of operation efficiency of a heating means by being constituted to positively circulate the heat storage fluid of intermediate temperature to a heat exchanger for supplying the hot water. <P>SOLUTION: A hot water storage tank 10 for storing the heat storage fluid is provided with a high-temperature taking-out pipe 12 for taking out the heat storage fluid of high temperature and an intermediate-temperature taking-out pipe 13 for taking the the heat storage fluid of intermediate temperature. A heat exchanger 50 for reheating is constituted to take out the heat exchanged-heat storage fluid to the intermediate-temperature taking-out pipe 13, and the heat exchanger 30 for supplying the hot water is constituted to circulate the heat storage fluid of high temperature taken out from the high-temperature taking-out pipe 12 or both of the heat storage fluid of high temperature taken out from the high-temperature taking-out pipe 12 and the heat storage fluid of intermediate temperature taken out from the intermediate-temperature taking-out pipe 13 to a first circulation part 30a. Whereby the impairing of operation efficiency can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、加熱手段により加熱された蓄熱用流体を貯える貯湯タンクと、この貯湯タンク内に貯えられた蓄熱用流体と給湯用水とを熱交換する給湯用熱交換器とを備える貯湯式給湯装置に関するものであり、特に、貯湯タンク内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体の消費に関する。   The present invention relates to a hot water storage tank comprising a hot water storage tank for storing the heat storage fluid heated by the heating means, and a hot water supply heat exchanger for exchanging heat between the heat storage fluid stored in the hot water storage tank and the hot water supply water. In particular, it relates to the consumption of medium temperature heat storage fluid among the heat storage fluid stored in the hot water storage tank.

従来、この種の貯湯式給湯装置として、例えば、特許文献1に示すような給湯システムが知られている。この貯湯式給湯装置では、図9に示すように、蓄熱用流体を内部に貯える貯湯タンク100と、この貯湯タンク100内の最下部の蓄熱用流体を貯湯タンク100内の最上部に送る流体加熱用流路110と、この流体加熱用流路110に設けられ、流体加熱用流路110を流れる蓄熱用流体を加熱する加熱手段120と、貯湯タンク100内の蓄熱用流体が流通する第1の流通部130aと給湯用水が流通する第2の流通部130bとを隣接して設け、かつ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行なう給湯用熱交換器130と、貯湯タンク100の上部から加熱された蓄熱用流体を取り出し、第1の流通部130aを通過させた後、貯湯タンク100の下部に戻すための循環通路140と、この循環通路140に蓄熱用流体を循環させるポンプ手段150と、循環通路140を介して第1の流通部130aを流通する蓄熱用流体の流量を制御する流量制御手段160とを備えている。   Conventionally, as this kind of hot water storage type hot water supply apparatus, for example, a hot water supply system as shown in Patent Document 1 is known. In this hot water storage type hot water supply apparatus, as shown in FIG. 9, the hot water storage tank 100 that stores the heat storage fluid therein, and the fluid heating that sends the lowermost heat storage fluid in the hot water storage tank 100 to the uppermost portion in the hot water storage tank 100. Channel 110, heating means 120 provided in the fluid heating channel 110 for heating the heat storage fluid flowing through the fluid heating channel 110, and the first heat storage fluid in the hot water storage tank 100 circulates. The hot water supply heat is configured such that the flow portion 130a and the second flow portion 130b through which the hot water supply water flows are provided adjacent to each other, and the heat storage fluid and the hot water supply water are opposed to each other, and exchange heat between them. The circulation path 140 for taking out the heat storage fluid heated from the exchanger 130 and the upper part of the hot water storage tank 100, passing the first circulation part 130a, and returning it to the lower part of the hot water storage tank 100, and this circulation path A pump means 150 for circulating the heat storage fluid 40, and a flow control means 160 for controlling the flow rate of the heat storage fluid flowing through the first flowing part 130a through the circulation passage 140.

以上の構成によれば、給湯用熱交換器130を使用し、かつ第1の流通部130aを流れる蓄熱用流体の流量を制御することにより、第1の流通部130aを通過した後の蓄熱用流体の温度を加熱前の給湯用水の温度近傍まで低減できる。これにより、蓄熱用流体と給湯用水との熱交換時における熱ロスを極力小さくすることが可能となり効率の良い給湯システムを実現できるようにしている(例えば、特許文献1参照)。   According to the above configuration, by using the hot water supply heat exchanger 130 and controlling the flow rate of the heat storage fluid flowing through the first circulation part 130a, the heat storage after passing through the first circulation part 130a. The temperature of the fluid can be reduced to near the temperature of the hot water supply water before heating. This makes it possible to minimize the heat loss during heat exchange between the heat storage fluid and the hot water supply water, thereby realizing an efficient hot water supply system (see, for example, Patent Document 1).

また、上記給湯機能の他に、貯湯タンク内に貯えられた蓄熱用流体を熱源として、この蓄熱用流体と浴槽内の浴水とで熱交換する追い焚き用熱交換器を貯湯タンク内に配設させ、この追い焚き用熱交換器に浴槽内の浴水を流通させて浴水を所定温度に追い焚きする浴水追い焚きシステムが知られている(例えば、特許文献2参照)。
特開2001−153458号公報 特開2003−194397号公報
In addition to the hot water supply function described above, a reheating heat exchanger for exchanging heat between the heat storage fluid stored in the hot water storage tank and the bath water in the bathtub is disposed in the hot water storage tank. A bath water replenishing system is known in which bath water in a bathtub is circulated through this reheating heat exchanger to retreat the bath water to a predetermined temperature (see, for example, Patent Document 2).
JP 2001-153458 A Japanese Patent Laid-Open No. 2003-19497

しかしながら、上記特許文献1によれば、加熱手段120により沸き上げを完了した直後における貯湯タンク100内の蓄熱用流体の湯温は、全量高温状態(例えば、85℃程度)であるが、蓄熱用流体と給湯用水とが熱交換される給湯使用後において、所定時間経過後の沸き上げ運転を開始するときに、図9に示すように、貯湯タンク100内の上方に高温部(例えば、85℃程度)、下方に低温部(例えば、9℃程度)および上方と下方との間に中温部(例えば、45℃程度)が比重差により形成される。   However, according to Patent Document 1, the hot water temperature of the heat storage fluid in the hot water storage tank 100 immediately after boiling by the heating means 120 is in a high temperature state (for example, about 85 ° C.). After starting the boiling operation after a predetermined time has elapsed after using hot water in which the fluid and hot water supply are subjected to heat exchange, as shown in FIG. 9, a high temperature portion (for example, 85 ° C.) is located above the hot water storage tank 100. Degree), a low temperature part (for example, about 9 ° C.) below, and a medium temperature part (for example, about 45 ° C.) between the upper side and the lower side due to the difference in specific gravity.

また、上記特許文献2によれば、貯湯タンク内に貯えられた高温の蓄熱用流体で浴水を追い焚きすることで、貯湯タンク内の高温部(例えば、85℃程度)と低温部(例えば、9℃程度)との間に中温(浴水温度程度)の蓄熱用流体が増加することになる。   Moreover, according to the above-mentioned Patent Document 2, the hot water stored in the hot water storage tank is replenished with hot water so that the hot water (for example, about 85 ° C.) and the low temperature part (for example, about 85 ° C.) , About 9 ° C.), the heat storage fluid having a medium temperature (about the bath water temperature) increases.

ところで、加熱手段として、例えば、ヒートポンプサイクルからなるヒートポンプ方式の加熱手段においては、蓄熱用流体を目標温度(例えば、65〜90℃)まで加熱する場合、加熱前の蓄熱用流体の湯温が高いほど高圧圧力が高くなることで運転効率(COP=加熱能力/消費電力)が低下する問題がある。   By the way, as a heating means, for example, in a heat pump type heating means comprising a heat pump cycle, when the heat storage fluid is heated to a target temperature (for example, 65 to 90 ° C.), the hot water temperature of the heat storage fluid before heating is high. The higher the high pressure, the lower the operating efficiency (COP = heating capacity / power consumption).

そこで、本発明の目的は、上記点を鑑みたものであり、中温の蓄熱用流体を積極的に給湯用熱交換器に流通するように構成させることで、加熱手段の運転効率の低下を防止することが可能な貯湯式給湯装置を提供することにある。   In view of the above, the object of the present invention is to prevent a decrease in the operating efficiency of the heating means by configuring the medium temperature heat storage fluid to actively circulate through the hot water supply heat exchanger. An object of the present invention is to provide a hot water storage type hot water supply device that can be used.

上記、目的を達成するために、請求項1ないし請求項12に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、蓄熱用流体を内部に貯える貯湯タンク(10)と、この貯湯タンク(10)内の最下部の蓄熱用流体を貯湯タンク(10)内の最上部に送る流体加熱用流路(21)と、この流体加熱用流路(21)に設けられ、流体加熱用流路(21)を流れる蓄熱用流体を加熱する加熱手段(20)と、貯湯タンク(10)内の蓄熱用流体が流通する第1の流通部(30a)と給湯用水が流通する第2の流通部(30b)とを隣接して設け、かつ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行なう給湯用熱交換器(30)とを備える貯湯式給湯装置において、
貯湯タンク(10)内の蓄熱用流体と浴槽内の浴水とで熱交換を行なう追い焚き用熱交換器(60)が設けられ、給湯用熱交換器(30)は、第1の流通部(30a)の下流端が貯湯タンク(10)の下方部に連通するように構成され、かつ加熱手段(20)により加熱された貯湯タンク(10)内に貯えられた蓄熱用流体のうち、高温の蓄熱用流体、もしくは追い焚き用熱交換器(60)により熱交換された蓄熱用流体を含む中温の蓄熱用流体、もしくは高温と中温の蓄熱用流体の両方を第1の流通部(30a)に流通するように構成されたことを特徴としている。
In order to achieve the above object, the technical means described in claims 1 to 12 are employed. That is, in the invention described in claim 1, the hot water storage tank (10) for storing the heat storage fluid therein, and the lowermost heat storage fluid in the hot water storage tank (10) are disposed at the uppermost portion in the hot water storage tank (10). A fluid heating channel (21) to be sent, a heating means (20) provided in the fluid heating channel (21) for heating the heat storage fluid flowing in the fluid heating channel (21), and a hot water storage tank ( 10) The 1st distribution part (30a) through which the fluid for heat storage in the inside distributes, and the 2nd distribution part (30b) through which hot water supply distributes are provided adjacent, and the heat storage fluid and hot water supply water counter flow In the hot water storage type hot water supply apparatus comprising the heat exchanger for hot water supply (30) configured to be and to exchange heat between the two,
A reheating heat exchanger (60) for exchanging heat between the heat storage fluid in the hot water storage tank (10) and the bath water in the bathtub is provided, and the hot water supply heat exchanger (30) is a first circulation part. Of the heat storage fluid stored in the hot water storage tank (10) which is configured such that the downstream end of (30a) communicates with the lower part of the hot water storage tank (10) and is heated by the heating means (20), 1st circulation part (30a) for the medium temperature heat storage fluid containing the heat storage fluid of the other, or the heat storage fluid heat-exchanged by the reheating heat exchanger (60), or both the high temperature and the medium temperature heat storage fluid It is characterized by being configured to circulate.

請求項1に記載の発明によれば、追い焚き用熱交換器(60)により浴水を追い焚きすることで、熱交換された湯温の低いほぼ中温の蓄熱用流体が増加するが、この中温の蓄熱用流体を第1の流通部(30a)に流通するように構成されたことにより、中温の蓄熱用流体を積極的に消費するとともに、第1の流通部(30a)を流通した後の蓄熱用流体の湯温を中温よりもさらに低下することができる。これにより、加熱前の蓄熱用流体の湯温を低下させることで沸き上げ運転時における加熱手段(20)の運転効率の低下が防止できる。   According to the invention described in claim 1, by replenishing the bath water by the reheating heat exchanger (60), the heat storage fluid having a medium temperature which is low in heat and subjected to heat exchange increases. After the medium temperature heat storage fluid is circulated to the first circulation part (30a), the medium temperature heat storage fluid is actively consumed and the first circulation part (30a) is circulated. The hot water temperature of the heat storage fluid can be further lowered than the intermediate temperature. Thereby, the fall of the operation efficiency of the heating means (20) at the time of a boiling operation can be prevented by reducing the hot water temperature of the heat storage fluid before heating.

請求項2に記載の発明では、貯湯タンク(10)には、高温の蓄熱用流体を取り出す高温取り出し配管(12)と、中温の蓄熱用流体を取り出す中温取り出し配管(13)とが設けられ、追い焚き用熱交換器(60)は、熱交換された蓄熱用流体が中温取り出し配管(13)に取り出されるように構成されるとともに、給湯用熱交換器(30)は、高温取り出し配管(12)から取り出される高温の蓄熱用流体、もしくは高温取り出し配管(12)から取り出される高温の蓄熱用流体と中温取り出し配管(13)から取り出される中温の蓄熱用流体との両方を第1の流通部(30a)に流通するように構成されることを特徴としている。   In the invention according to claim 2, the hot water storage tank (10) is provided with a high temperature extraction pipe (12) for extracting a high temperature heat storage fluid and an intermediate temperature extraction pipe (13) for extracting an intermediate temperature heat storage fluid, The reheating heat exchanger (60) is configured such that the heat-exchanged heat-exchanged fluid is taken out to the intermediate temperature take-out pipe (13), and the hot water supply heat exchanger (30) is made up of the high-temperature take-out pipe (12 ) Or a high-temperature heat storage fluid extracted from the high-temperature extraction pipe (12) and a medium-temperature heat storage fluid extracted from the medium-temperature extraction pipe (13). 30a) is configured to be distributed.

請求項2に記載の発明によれば、より具体的には、追い焚き用熱交換器(60)により熱交換された湯温の低いほぼ中温の蓄熱用流体を中温取り出し配管(13)から取り出して給湯用熱交換器(30)に流通するように構成されたことにより、中温の蓄熱用流体を積極的に消費するとともに、さらに、この中温の蓄熱用流体よりも温度低下した湯温の蓄熱用流体を貯湯タンク(10)に戻すことができるため沸き上げ運転時における加熱手段(20)の運転効率の低下が防止できる。   More specifically, according to the second aspect of the present invention, the medium-temperature heat storage fluid having a low hot water temperature, which has been heat-exchanged by the reheating heat exchanger (60), is taken out from the medium-temperature take-out pipe (13). The hot water storage heat exchanger (30) is configured to circulate, so that the medium temperature heat storage fluid is actively consumed, and the hot water storage temperature is lower than that of the medium temperature heat storage fluid. Since the working fluid can be returned to the hot water storage tank (10), it is possible to prevent the operating efficiency of the heating means (20) from being lowered during the boiling operation.

請求項3に記載の発明では、給湯用熱交換器(30)は、第1の流通部(30a)の上流端が高温取り出し配管(12)の下流側に接続され、かつ第1の流通部(30a)の中途が中温取り出し配管(13)の下流側に接続されていることを特徴としている。請求項3に記載の発明によれば、第1の流通部(30a)の中途から下流側は給湯用水が流通する第2の流通部(30b)の上流側と、中温の蓄熱用流体とが熱交換されることになるので、効率的に温度低下した湯温の蓄熱用流体を貯湯タンク(10)に戻すことができる。   In the invention according to claim 3, in the hot water supply heat exchanger (30), the upstream end of the first circulation part (30a) is connected to the downstream side of the high temperature extraction pipe (12), and the first circulation part The middle part of (30a) is connected to the downstream side of the intermediate temperature extraction pipe (13). According to the third aspect of the present invention, on the downstream side from the middle of the first circulation part (30a), the upstream side of the second circulation part (30b) through which the hot water supply water circulates and the medium temperature heat storage fluid. Since the heat exchange is performed, the hot water storage fluid having the temperature lowered efficiently can be returned to the hot water storage tank (10).

請求項4に記載の発明では、追い焚き用熱交換器(60)は、貯湯タンク(10)内の蓄熱用流体が流通する第3の流通部(60a)と浴槽内の浴水が流通する第4の流通部(60b)とを隣接して設け、かつ蓄熱用流体と浴槽内の浴水とが対向流となるように構成され、さらに、第3の流通部(60a)の上流端が高温取り出し配管(12)に接続され、第3の流通部(60a)の下流端が中温取り出し配管(13)に取り出されるように構成されることを特徴としている。   In the invention according to claim 4, in the reheating heat exchanger (60), the third circulation part (60a) through which the heat storage fluid in the hot water storage tank (10) circulates and the bath water in the bathtub circulates. The fourth circulation part (60b) is provided adjacently, the heat storage fluid and the bath water in the bathtub are configured to face each other, and the upstream end of the third circulation part (60a) It is connected to the high temperature take-out pipe (12), and the downstream end of the third circulation part (60a) is taken out to the medium temperature take-out pipe (13).

請求項4に記載の発明によれば、対向流式の熱交換器を用いることで、第3の流通部(60a)を流通した後の蓄熱用流体を熱交換前の浴水の湯温程度まで低下させてしまうが、この湯温の蓄熱用流体を積極的に給湯用熱交換器(30)により消費することで、中温よりも低い湯温の蓄熱用流体を貯湯タンク(10)に戻すことができる。これにより、沸き上げ運転時における加熱手段(20)の運転効率の低下が防止できる。   According to the fourth aspect of the present invention, by using a counter-flow heat exchanger, the heat storage fluid after flowing through the third circulation part (60a) is heated to about the hot water temperature of the bath water before heat exchange. The hot water storage fluid is actively consumed by the hot water supply heat exchanger (30), so that the hot water storage fluid lower than the intermediate temperature is returned to the hot water storage tank (10). be able to. Thereby, the fall of the operating efficiency of the heating means (20) at the time of boiling operation can be prevented.

請求項5に記載の発明では、追い焚き用熱交換器(60)は、貯湯タンク(10)内の上方に配設され、その貯湯タンク(10)内の蓄熱用流体と内部に流通する浴槽内の浴水との両者で熱交換するように構成されることを特徴としている。   In the invention described in claim 5, the reheating heat exchanger (60) is disposed above the hot water storage tank (10), and the heat storage fluid in the hot water storage tank (10) and the bathtub that circulates inside the hot water storage tank (10). It is characterized by being configured to exchange heat with both the bath water inside.

請求項5に記載の発明によれば、例えば、スパイラル状に形成させた追い焚き用熱交換器(60)を貯湯タンク(10)内に配設させることにより、浴水との熱交換により貯湯タンク(10)内にほぼ中温の用流体が貯えられるが、上記請求項4と同じように、この中温の蓄熱用流体を積極的に給湯用熱交換器(30)により消費することで、中温よりも低い湯温の蓄熱用流体を貯湯タンク(10)に戻すことができる。これにより、沸き上げ運転時における加熱手段(20)の運転効率の低下が防止できる。   According to the fifth aspect of the present invention, for example, by arranging the reheating heat exchanger (60) formed in a spiral shape in the hot water storage tank (10), the hot water storage is performed by heat exchange with the bath water. The medium temperature fluid is stored in the tank (10), and the medium temperature heat storage fluid is actively consumed by the hot water supply heat exchanger (30) in the same manner as in the fourth aspect. The heat storage fluid having a lower hot water temperature can be returned to the hot water storage tank (10). Thereby, the fall of the operating efficiency of the heating means (20) at the time of boiling operation can be prevented.

請求項6に記載の発明では、中温取り出し配管(13)の上流端近傍には、蓄熱用流体の湯温を検出する水温センサ(55)が設けられ、給湯用熱交換器(30)は、水温センサ(55)により検出された湯温が所定温度未満のときに高温取り出し配管(12)から取り出される高温の蓄熱用流体を第1の流通部(30a)に流通させ、水温センサ(55)により検出された湯温が所定温度以上のときに中温取り出し配管(13)から取り出される中温の蓄熱用流体、もしくは中温取り出し配管(13)から取り出される中温の蓄熱用流体と高温取り出し配管(12)から取り出される高温の蓄熱用流体との両方を第1の流通部(30a)に流通するように構成されたことを特徴としている。   In the invention described in claim 6, a water temperature sensor (55) for detecting the hot water temperature of the heat storage fluid is provided in the vicinity of the upstream end of the intermediate temperature extraction pipe (13), and the hot water supply heat exchanger (30) includes: When the hot water temperature detected by the water temperature sensor (55) is lower than a predetermined temperature, a high-temperature heat storage fluid taken out from the high-temperature take-out pipe (12) is circulated to the first circulation part (30a), and the water temperature sensor (55) The medium temperature heat storage fluid taken out from the medium temperature take-out pipe (13) when the hot water temperature detected by the temperature is equal to or higher than the predetermined temperature, or the medium temperature heat storage fluid taken out from the medium temperature take-out pipe (13) and the high temperature take-out pipe (12) Both the high-temperature heat storage fluid taken out from the first distribution section (30a) is distributed to the first distribution section (30a).

請求項6に記載の発明によれば、貯湯タンク(10)内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体を積極的に取り出すことができるとともに温度低下した湯温の蓄熱用流体を貯湯タンク(10)に戻すことができる。これにより、低温の蓄熱用流体の貯えが多量となって、沸き上げ運転時における加熱手段(20)の運転効率の低下が防止できる。   According to the invention described in claim 6, among the heat storage fluid stored in the hot water storage tank (10), the medium temperature heat storage fluid can be actively taken out and the hot water heat storage fluid whose temperature has decreased. Can be returned to the hot water storage tank (10). As a result, a large amount of low-temperature heat storage fluid is stored, and it is possible to prevent a decrease in operating efficiency of the heating means (20) during the boiling operation.

請求項7に記載の発明では、高温取り出し配管(12)と中温取り出し配管(13)との下流側合流部位にそれぞれの流量比を調節する流量比調節手段(16)が設けられ、流量比調節手段(16)は、水温センサ(55)により検出された湯温が所定温度以上のときに、中温取り出し配管(13)から取り出される中温の蓄熱用流体、もしくは中温取り出し配管(13)から取り出される中温の蓄熱用流体と高温取り出し配管(12)から取り出される高温の蓄熱用流体との両方を第1の流通部(30a)に流通するように調節されたことを特徴としている。   In the invention according to claim 7, the flow rate ratio adjusting means (16) for adjusting the respective flow rate ratios is provided at the downstream side joining portion of the high temperature take-out pipe (12) and the medium temperature take-out pipe (13), thereby adjusting the flow rate ratio. The means (16) is taken out from the intermediate temperature extraction pipe (13) or from the intermediate temperature extraction pipe (13) when the hot water temperature detected by the water temperature sensor (55) is equal to or higher than a predetermined temperature. The medium heat storage fluid and the high-temperature heat storage fluid extracted from the high-temperature extraction pipe (12) are adjusted so as to be distributed to the first distribution section (30a).

請求項7に記載の発明によれば、水温センサ(55)と流量比調節手段(16)とにより貯湯タンク(10)内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体を積極的に取り出すことができるとともに温度低下した湯温の蓄熱用流体を貯湯タンク(10)に戻すことが容易にできる。   According to the seventh aspect of the present invention, among the heat storage fluids stored in the hot water storage tank (10) by the water temperature sensor (55) and the flow rate adjusting means (16), the medium temperature heat storage fluid is positively The hot water storage fluid having a reduced temperature can be easily returned to the hot water storage tank (10).

請求項8に記載の発明では、中温取り出し配管(13)には、この中温取り出し配管(13)内を流通する中温の蓄熱用流体の流量を調節する第1流量調節手段(16a)が設けられ、この第1流量調節手段(16a)は、水温センサ(55)により検出された湯温が所定温度以上のときに、中温取り出し配管(13)から取り出される中温の蓄熱用流体、もしくは中温取り出し配管(13)から取り出される中温の蓄熱用流体と高温取り出し配管(12)から取り出される高温の蓄熱用流体との両方を第1の流通部(30a)に流通するように調節されたことを特徴としている。   In the invention described in claim 8, the intermediate temperature extraction pipe (13) is provided with a first flow rate adjusting means (16a) for adjusting the flow rate of the medium temperature heat storage fluid flowing through the intermediate temperature extraction pipe (13). The first flow rate adjusting means (16a) is a medium-temperature heat storage fluid or intermediate temperature extraction pipe that is taken out from the intermediate temperature extraction pipe (13) when the hot water temperature detected by the water temperature sensor (55) is equal to or higher than a predetermined temperature. It is characterized in that both the medium temperature heat storage fluid taken out from (13) and the high temperature heat storage fluid taken out from the high temperature take-out pipe (12) are adjusted to circulate in the first flow section (30a). Yes.

請求項8に記載の発明によれば、上述した請求項7と同じように、水温センサ(55)と第1流量調節手段(16a)とにより貯湯タンク(10)内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体を積極的に取り出すことができるとともに温度低下した湯温の蓄熱用流体を貯湯タンク(10)に戻すことが容易にできる。   According to the invention described in claim 8, as in the case of claim 7 described above, the heat storage fluid stored in the hot water storage tank (10) by the water temperature sensor (55) and the first flow rate adjusting means (16a). Among them, it is possible to positively take out the medium temperature heat storage fluid and to easily return the hot water heat storage fluid whose temperature has decreased to the hot water storage tank (10).

請求項9に記載の発明では、中温取り出し配管(13)は、少なくとも二つ以上の複数個設けられ、そのうちのいずれか一つの中温の蓄熱用流体を選択して第1の流通部(30a)に流通するように構成されたことを特徴としている。請求項9に記載の発明によれば、中温の蓄熱用流体が貯えられる部位は、貯湯タンク(10)の垂直方向に一様でないため複数個の中温取り出し配管(13)が設けられることにより、的確にかつ積極的に中温の蓄熱用流体を積極的に取り出すことができる。   In the invention according to claim 9, at least two or more intermediate temperature extraction pipes (13) are provided, and any one of the medium temperature storage fluids is selected to select the first circulation part (30 a). It is characterized by being configured to circulate. According to the ninth aspect of the present invention, the portion where the intermediate temperature storage fluid is stored is not uniform in the vertical direction of the hot water storage tank (10), so that a plurality of intermediate temperature extraction pipes (13) are provided. It is possible to positively and actively take out the medium-temperature heat storage fluid.

請求項10に記載の発明では、第1の流通部(30a)に流通する中温取り出し配管(13)から取り出された中温の蓄熱用流体の湯温を検出する熱交換前水温センサ(54)が設けられ、流量比調節手段(16)もしくは第1流量調節手段(16a)は、熱交換前水温センサ(54)により検出された湯温が所定温度以上となるように調節されることを特徴としている。   In the invention according to claim 10, the water temperature sensor before heat exchange (54) for detecting the hot water temperature of the medium temperature heat storage fluid taken out from the middle temperature take-out pipe (13) flowing through the first flow part (30a) is provided. The flow rate ratio adjusting means (16) or the first flow rate adjusting means (16a) is provided so that the hot water temperature detected by the pre-heat exchange water temperature sensor (54) is adjusted to be equal to or higher than a predetermined temperature. Yes.

請求項10に記載の発明によれば、給湯用熱交換器(30)に流通する湯温を所定温度以上とすることにより、第2の流通部(30b)下流側の給湯用水を所定温度(例えば、設定温度+5℃程度)以上確保することができる。   According to the invention described in claim 10, by setting the hot water temperature flowing through the hot water supply heat exchanger (30) to a predetermined temperature or higher, the hot water supply water downstream of the second circulation portion (30b) is set at a predetermined temperature ( For example, it is possible to ensure a set temperature + 5 ° C.

請求項11に記載の発明では、第2の流通部(30b)の下流側には、給湯用熱交換器(30)により熱交換された給湯用水に給湯用熱交換器(30)で熱交換される前の給湯用水とを混合して給湯用水の温度調節する給湯温度調節手段(35)が設けられることを特徴としている。   In the invention according to claim 11, on the downstream side of the second circulation section (30b), heat exchange is performed by the hot water supply heat exchanger (30) to the hot water supplied by the hot water supply heat exchanger (30). A hot water supply temperature adjusting means (35) for adjusting the temperature of the hot water supply water by mixing with the hot water supply water before being provided is provided.

請求項11に記載の発明によれば、給湯用熱交換器(30)により熱交換された給湯用水が給湯直後における過渡時のオーバーシュートもしくは定常の給湯中に給湯流量の変動などにより給湯温度が多少変動しても給湯温度調節手段(35)より給湯温度を再度水道水と混合して調節することにより、これらから生ずる給湯温度の変動を容易に吸収することができるとともに、設定温度に対して給湯用水の温度制御を精度良く行なうことができる。   According to the eleventh aspect of the present invention, the temperature of the hot water supplied by the hot water supply heat exchanger (30) is increased due to overshoot at the time of transition immediately after the hot water supply or due to fluctuations in the flow rate of the hot water during steady hot water supply. Even if the temperature fluctuates somewhat, the hot water temperature is again mixed with the tap water from the hot water temperature adjusting means (35) and adjusted, so that fluctuations in the hot water temperature resulting therefrom can be easily absorbed and The temperature control of the hot water supply water can be performed with high accuracy.

請求項12に記載の発明では、加熱手段(20)は、冷媒の高圧側圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱することを特徴としている。   In the invention according to claim 12, the heating means (20) is a supercritical heat pump cycle in which the high-pressure side pressure of the refrigerant is equal to or higher than the critical pressure, and heats the heat storage fluid with the refrigerant whose pressure is increased to the critical pressure or higher. It is characterized by.

請求項12に記載の発明によれば、超臨界ヒートポンプサイクルにおいては、蓄熱用流体を目標温度(例えば、65〜90℃)まで加熱する場合、加熱前の蓄熱用流体の湯温が低いほど、高圧圧力が低くなることでサイクル効率(COP=加熱能力/消費電力)が向上する。従って、加熱前の給湯用水の温度近傍まで低減された蓄熱用流体を超臨界ヒートポンプサイクルにて加熱することにより、サイクル効率が向上し、省動力運転を行なうことができる。   According to the invention of claim 12, in the supercritical heat pump cycle, when heating the heat storage fluid to a target temperature (for example, 65 to 90 ° C.), the lower the hot water temperature of the heat storage fluid before heating, Cycle efficiency (COP = heating capacity / power consumption) is improved by lowering the high pressure. Therefore, by heating the heat storage fluid that has been reduced to the vicinity of the temperature of the hot water supply water before heating in the supercritical heat pump cycle, cycle efficiency can be improved and power saving operation can be performed.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態による貯湯式給湯装置を図1ないし図3に基づいて説明する。図1は本発明を適用させた貯湯式給湯装置の全体構成を示す模式図であり、図2は給湯用熱交換器30および追い焚き用熱交換器60を構成する外側管と内側管の断面形状を示す断面図である。また、図3は本実施形態の変形例である貯湯式給湯装置の全体構成を示す模式図である。
(First embodiment)
Hereinafter, a hot water storage type hot water supply apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic view showing an overall configuration of a hot water storage type hot water supply apparatus to which the present invention is applied, and FIG. 2 is a cross section of an outer pipe and an inner pipe constituting a hot water supply heat exchanger 30 and a reheating heat exchanger 60. It is sectional drawing which shows a shape. FIG. 3 is a schematic diagram showing an overall configuration of a hot water storage type hot water supply apparatus that is a modification of the present embodiment.

本実施形態の貯湯式給湯装置は、一般家庭用として使用されるものであり、貯湯タンク10内に貯えられた蓄熱用流体を熱源として、給湯用水と熱交換させて台所、洗面所、浴室などへの給湯機能の他に、浴槽へのお湯張りおよびお湯張りされた浴水を追い焚きする機能を有するものである。   The hot water storage type hot water supply apparatus according to the present embodiment is used for general households, and uses a heat storage fluid stored in the hot water storage tank 10 as a heat source to exchange heat with hot water supply water, in a kitchen, a washroom, a bathroom, and the like. In addition to the hot water supply function, the hot water filling of the bathtub and the function of chasing the hot water filled bath water are provided.

まず、給湯機能は、図1に示すように、蓄熱用流体を内部に貯える貯湯タンク10と、この貯湯タンク10内の最下部の蓄熱用流体を貯湯タンク10内の最上部に送る流体加熱用流路21と、この流体加熱用流路21を流れる蓄熱用流体を加熱する加熱手段であるヒートポンプユニット20と、貯湯タンク10内の蓄熱用流体が流通する第1の流通部である外側管30aと給湯用水が流通する第2の流通部である内側管30bとを隣接して設け、かつ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行なう給湯用熱交換器30と、貯湯タンク10内の蓄熱用流体を給湯用熱交換器30の外側管30a側に流通させた後、貯湯タンク10内の下部に戻すための循環回路11と、給湯用熱交換器30の内側管30bの上流側に接続される給水用配管31と、内側管30bの下流側に接続される給湯用配管32、33と、本給湯システムの作動を制御する制御装置(給湯制御部41、熱源制御部42)とから構成されている。   First, as shown in FIG. 1, the hot water supply function includes a hot water storage tank 10 that stores a heat storage fluid therein, and a fluid heating fluid that sends the lowest heat storage fluid in the hot water storage tank 10 to the uppermost portion in the hot water storage tank 10. A heat pump unit 20 that is a heating means that heats the heat storage fluid that flows through the flow path 21, the fluid heating flow path 21, and an outer pipe 30 a that is a first flow section through which the heat storage fluid in the hot water storage tank 10 flows. And an inner pipe 30b, which is a second flow part through which hot water for water circulates, are provided adjacent to each other, and the heat storage fluid and the hot water for water supply are opposed to each other, and heat exchange is performed between them. The heat exchanger 30, the circulation circuit 11 for returning the heat storage fluid in the hot water storage tank 10 to the outer pipe 30a side of the hot water supply heat exchanger 30, and then returning to the lower part in the hot water storage tank 10, and the hot water supply heat On the inner tube 30b of the exchanger 30 Water supply pipe 31 connected to the side, hot water supply pipes 32 and 33 connected to the downstream side of the inner pipe 30b, and a control device for controlling the operation of the hot water supply system (hot water supply control unit 41, heat source control unit 42) It consists of and.

そして、お湯張りおよび追い焚き機能は、貯湯タンク10内の蓄熱用流体が流通する第3の流通部である外側管60aと浴槽内の浴水が流通する第4の流通部である内側管60bとを隣接して設け、かつ蓄熱用流体と浴水とが対向流となるように構成され、両者間で熱交換を行なう追い焚き用熱交換器60と、貯湯タンク10内の蓄熱用流体を追い焚き用熱交換器60の外側管60a側に流通させた後、貯湯タンク10内の中央部に戻すための循環回路11aと、浴槽内の浴水を追い焚き用熱交換器60の内側管60bに循環させて浴槽内に戻す浴水循環回路61と、浴槽へのお湯張りのための給湯用配管32a、33aと、浴水追い焚きシステムの作動を制御する制御装置(給湯制御部41)から構成されている。   The hot water filling and reheating function is performed by the outer pipe 60a that is the third circulation part through which the heat storage fluid in the hot water storage tank 10 circulates and the inner pipe 60b that is the fourth circulation part through which the bath water in the bathtub flows. Are disposed adjacent to each other, and the heat storage fluid and the bath water are configured to face each other, and a reheating heat exchanger 60 for exchanging heat between the two and a heat storage fluid in the hot water storage tank 10 are provided. After circulating to the outer pipe 60a side of the reheating heat exchanger 60, the circulation circuit 11a for returning to the center of the hot water storage tank 10 and the inner pipe of the reheating heat exchanger 60 for the bath water in the bathtub. From the bath water circulation circuit 61 that circulates to the bath 60b and returns to the bathtub, the hot water supply pipes 32a and 33a for filling the bath, and the control device (the hot water supply control unit 41) that controls the operation of the bath water reheating system It is configured.

そして、給湯機能を構成する構成部品についてより具体的に説明すると、本実施形態の貯湯タンク10は、空気孔10aを通じて大気に開放され、貯湯タンク10内部が大気圧に保たれている。この貯湯タンク10は、例えば、樹脂材料で形成され直方体形状に設けられている。また、貯湯タンク10内の蓄熱用流体に蓄えられた熱が貯湯タンク10の壁面より大気中へ放出されることを低減するために、貯湯タンク10の外周をグラスウールやウレタン等の断熱材で覆っても良い。   The components constituting the hot water supply function will be described more specifically. The hot water storage tank 10 of the present embodiment is opened to the atmosphere through the air holes 10a, and the interior of the hot water storage tank 10 is maintained at atmospheric pressure. The hot water storage tank 10 is formed of, for example, a resin material and has a rectangular parallelepiped shape. Further, in order to reduce the heat stored in the heat storage fluid in the hot water storage tank 10 from being released into the atmosphere from the wall surface of the hot water storage tank 10, the outer periphery of the hot water storage tank 10 is covered with a heat insulating material such as glass wool or urethane. May be.

また、使用される蓄熱用流体は主成分が水であり、防腐剤、凍結防止剤、LLC等が必要に応じて添加されている。なお、これらの他に高比熱を有する蓄熱材料をマイクロカプセルなどの手法にて封入し、それを水に分散混合させるか、またはスリラー化させて流動可能な蓄熱材を用いても良い。   Further, the heat storage fluid used is mainly water, and preservatives, antifreeze agents, LLC, and the like are added as necessary. In addition to these, a heat storage material having a high specific heat may be encapsulated by a technique such as a microcapsule and dispersed in water, or may be made into a thriller and flowable.

また、貯湯タンク10の外壁面には、蓄熱用流体の貯湯量、もしくは貯湯温度を検出するための水温センサである複数(本例では7つ)の貯湯サーミスタ55が縦方向(貯湯タンク10の高さ方向)にほぼ等間隔に配置され、貯湯タンク10内に満たされた蓄熱用流体の各水位レベルでの温度情報を後述する給湯制御部41に出力するようになっている。   Further, on the outer wall surface of the hot water storage tank 10, a plurality of (seven in this example) hot water storage thermistors 55, which are water temperature sensors for detecting the amount of hot water stored in the heat storage fluid or the hot water storage temperature, are provided in the vertical direction (of the hot water storage tank 10. Temperature information at each water level of the heat storage fluid filled in the hot water storage tank 10 is output to the hot water supply control unit 41 described later.

従って、給湯制御部41は複数の貯湯サーミスタ55からの温度情報に基づいて、貯湯タンク10内上方の沸き上げられた湯温と貯湯タンク10内下方の沸き上げられる前の低温の蓄熱用流体との境界位置を検出できるとともに、各水位レベルでの蓄熱用流体の湯温を検出できる。なお、複数の貯湯サーミスタ55のうち、最上部に設けられた貯湯サーミスタ55は高温の蓄熱用流体を出湯する出湯温度を検出する機能を有している。   Therefore, based on the temperature information from the plurality of hot water storage thermistors 55, the hot water supply control unit 41 and the hot water heated above the hot water storage tank 10 and the low temperature heat storage fluid before being heated below the hot water storage tank 10 Can be detected, and the hot water temperature of the heat storage fluid at each water level can be detected. Of the plurality of hot water storage thermistors 55, the hot water storage thermistor 55 provided at the uppermost part has a function of detecting the temperature of hot water discharged from the hot storage fluid.

蓄熱用流体を加熱するヒートポンプユニット20は、例えば、炭酸ガスを冷媒として使用することにより、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルを使用している。このヒートポンプサイクルは、周知のように図示しない圧縮機、蓄熱用熱交換器、膨張弁、蒸発器、およびアキュムレータ等の冷凍サイクル機能部品より構成されている。因みに、圧縮機(図示しない)は、内蔵する電動モータ(図示しない)によって駆動され、アキュムレータより吸引した気相冷媒を臨界圧力以上まで圧縮して吐出する。   The heat pump unit 20 that heats the heat storage fluid uses a supercritical heat pump cycle in which, for example, carbon dioxide gas is used as a refrigerant so that the refrigerant pressure on the high-pressure side becomes equal to or higher than the critical pressure of the refrigerant. As is well known, this heat pump cycle includes refrigeration cycle functional parts such as a compressor, a heat storage heat exchanger, an expansion valve, an evaporator, and an accumulator (not shown). Incidentally, the compressor (not shown) is driven by a built-in electric motor (not shown), compresses the gaseous refrigerant sucked from the accumulator to a critical pressure or more, and discharges it.

蓄熱用熱交換器(図示しない)は、冷媒と蓄熱用流体とを熱交換するもので、例えば、冷媒が流れる冷媒通路(図示しない)と蓄熱用流体が流れる蓄熱用流体通路(図示しない)とが二重管構造に設けられ、かつ冷媒の流れ方向と蓄熱用流体の流れ方向とが対向するように構成された対向流式の蓄熱用熱交換器(図示しない)である。膨張弁(図示しない)は、蓄熱用熱交換器から流出する冷媒を減圧して蒸発器(図示しない)に供給する。蒸発器(図示しない)は、膨張弁(図示しない)で減圧された冷媒を大気との熱交換によって蒸発させる。アキュムレータ(図示しない)は、蒸発器より流出する冷媒を気液分離して、気相冷媒のみ圧縮機に吸引させるとともに、サイクル中の余剰冷媒を蓄えている。   The heat storage heat exchanger (not shown) exchanges heat between the refrigerant and the heat storage fluid. For example, a refrigerant passage (not shown) through which the refrigerant flows and a heat storage fluid passage (not shown) through which the heat storage fluid flows are provided. Is a counterflow type heat storage heat exchanger (not shown) that is provided in a double-pipe structure and is configured such that the flow direction of the refrigerant and the flow direction of the heat storage fluid are opposed to each other. The expansion valve (not shown) depressurizes the refrigerant flowing out from the heat storage heat exchanger and supplies it to the evaporator (not shown). An evaporator (not shown) evaporates the refrigerant decompressed by an expansion valve (not shown) by heat exchange with the atmosphere. An accumulator (not shown) gas-liquid separates the refrigerant flowing out of the evaporator, sucks only the gas-phase refrigerant into the compressor, and stores excess refrigerant in the cycle.

また、蓄熱用熱交換器の蓄熱用流体通路(図示しない)は、上述した流体加熱用流路21を介して貯湯タンク10に接続され、図示しない電動ポンプが作動することで、貯湯タンク10内の蓄熱用流体が循環する。なお、流体加熱用流路21の上流端が貯湯タンク10の底部10bに接続され、流体加熱用流路21の下流端が貯湯タンク10の上部10cに接続されている。これにより、蓄熱用熱交換器(図示せず)で冷媒との熱交換により加熱された蓄熱用流体が貯湯タンク10の上部10cへ送り込まれるため、貯湯タンク10内の上部側から下部側へ向かって順次蓄熱用流体に蓄熱されていく。   In addition, a heat storage fluid passage (not shown) of the heat storage heat exchanger is connected to the hot water storage tank 10 via the fluid heating passage 21 described above, and an electric pump (not shown) is operated, whereby the hot water storage tank 10 The heat storage fluid circulates. The upstream end of the fluid heating channel 21 is connected to the bottom 10 b of the hot water storage tank 10, and the downstream end of the fluid heating channel 21 is connected to the upper part 10 c of the hot water storage tank 10. As a result, the heat storage fluid heated by heat exchange with the refrigerant in the heat storage heat exchanger (not shown) is sent to the upper part 10c of the hot water storage tank 10, so that the upper part in the hot water storage tank 10 moves from the upper side to the lower side. The heat is then stored in the heat storage fluid.

なお、ヒートポンプユニット20は後述する熱源制御部42からの制御信号により作動するとともに、作動状態を熱源制御部42に出力するようになっている。また、これらの動力源として交流電力を用い、主に料金設定の最も安い深夜時間帯における深夜電力を用いて、貯湯タンク10内の蓄熱用流体を沸き上げる蓄熱運転を行なっているが、昼間時間帯においても蓄熱用流体の湯温が低下してくると沸き上げ運転を行なうよう制御される。因みに、超臨界ヒートポンプサイクルによれば、一般的なヒートポンプサイクルよりも高温(例えば、85〜90℃)の蓄熱用流体を内部に貯えることができる。   The heat pump unit 20 is operated by a control signal from a heat source control unit 42 described later, and outputs an operation state to the heat source control unit 42. In addition, the AC power is used as the power source, and the heat storage operation for boiling the heat storage fluid in the hot water storage tank 10 is performed mainly using the midnight power in the midnight time zone where the rate setting is the cheapest. Even in the belt, when the hot water temperature of the heat storage fluid decreases, the boiling operation is controlled. Incidentally, according to the supercritical heat pump cycle, a heat storage fluid having a temperature higher than that of a general heat pump cycle (for example, 85 to 90 ° C.) can be stored therein.

次に、循環回路11は、貯湯タンク10内の蓄熱用流体を後述する給湯用熱交換器30の外側管30aに流通させ、給湯用熱交換器30により熱交換された蓄熱用流体を貯湯タンク10内の下方部10eに戻すための循環回路であり、高温取り出し管12、中温取り出し管13、往き管14、戻し管15、流量比調節手段である高中温混合弁16、および第1循環ポンプ17とから構成されている。   Next, the circulation circuit 11 distributes the heat storage fluid in the hot water storage tank 10 to an outer pipe 30a of the hot water supply heat exchanger 30 described later, and the heat storage fluid heat-exchanged by the hot water supply heat exchanger 30 is stored in the hot water storage tank. 10 is a circulation circuit for returning to the lower part 10e in the high-temperature take-out pipe 12, the medium-temperature take-out pipe 13, the forward pipe 14, the return pipe 15, the high-medium temperature mixing valve 16 serving as the flow rate adjusting means, and the first circulation pump. 17.

高温取り出し管12は、貯湯タンク10内に貯えられる蓄熱用流体のうち、高温の蓄熱用流体を取り出すための配管であり、貯湯タンク10内の上方部10dに上流端が接続されている。中温取り出し管13は、貯湯タンク10内に貯えられる蓄熱用流体のうち、高温の蓄熱用流体よりも湯温の低い中温の蓄熱用流体を取り出すための配管であり、貯湯タンク10内の上方部10dと下方部10eとの間に上流端が接続されている。   The high-temperature take-out pipe 12 is a pipe for taking out a high-temperature heat storage fluid among the heat storage fluid stored in the hot water storage tank 10, and an upstream end is connected to the upper portion 10 d in the hot water storage tank 10. The medium temperature take-out pipe 13 is a pipe for taking out the medium temperature heat storage fluid having a lower temperature than the high temperature heat storage fluid among the heat storage fluid stored in the hot water storage tank 10. The upstream end is connected between 10d and the lower part 10e.

往き管14は上流端が後述する高中温混合弁16の出口側に接続され、下流端が給湯用熱交換器30の外側管30aの上流端に接続されている。戻し管15は上流端が外側管30aの上流端に接続され、下流端が貯湯タンク10内の下方部10eに接続されている。なお、往き管14には、給湯用熱交換器30の外側管30aに流通させる蓄熱用流体の湯温を検出する熱交換前水温センサである熱交換前サーミスタ54が設けられ、往き管14内の温度情報を後述する給湯制御部41に出力するようにしている。   The upstream pipe 14 has an upstream end connected to an outlet side of a high / medium temperature mixing valve 16 described later, and a downstream end connected to an upstream end of the outer pipe 30 a of the hot water supply heat exchanger 30. The return pipe 15 has an upstream end connected to the upstream end of the outer pipe 30 a and a downstream end connected to the lower portion 10 e in the hot water storage tank 10. The forward pipe 14 is provided with a thermistor 54 before heat exchange, which is a pre-heat exchange water temperature sensor that detects the hot water temperature of the heat storage fluid that flows through the outer pipe 30 a of the hot water supply heat exchanger 30. The temperature information is output to a hot water supply control unit 41 described later.

次に、高中温混合弁16は、高温取り出し管12と中温取り出し管13との下流側合流部位に設けられ、給湯用熱交換器30の外側管30aに流通させる蓄熱用流体の湯温を調節する温度調節弁であり、それぞれの開口面積比を調節することで、高温取り出し管12から取り出した高温の蓄熱用流体と中温取り出し管13から取り出した中温の蓄熱用流体との混合比を調節するようにしている。   Next, the high / medium temperature mixing valve 16 is provided at the downstream junction of the high temperature take-out pipe 12 and the intermediate temperature take-out pipe 13 and adjusts the hot water temperature of the heat storage fluid that flows through the outer pipe 30a of the hot water supply heat exchanger 30. And adjusting the ratio of the respective opening areas to adjust the mixing ratio between the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 and the medium-temperature heat storage fluid taken out from the medium-temperature take-out pipe 13. I am doing so.

そして、この高中温混合弁16は、後述する給湯制御部41に電気的に接続されており、上記、貯湯サーミスタ55および熱交換前サーミスタ54により検出される蓄熱用流体の温度情報に基づいて制御される。因みに、本実施形態では、貯湯サーミスタ55(中温取り出し配管13の近傍)により検出された蓄熱用流体の湯温が所定温度(例えば、30℃)未満のときに、高温取り出し配管12から取り出される高温の蓄熱用流体を外側管30aに流通するように制御される。   The high / medium temperature mixing valve 16 is electrically connected to a hot water supply control unit 41 described later, and is controlled based on the temperature information of the heat storage fluid detected by the hot water storage thermistor 55 and the thermistor 54 before heat exchange. Is done. Incidentally, in this embodiment, when the hot water temperature of the heat storage fluid detected by the hot water storage thermistor 55 (in the vicinity of the intermediate temperature extraction pipe 13) is lower than a predetermined temperature (for example, 30 ° C.), the high temperature extracted from the high temperature extraction pipe 12 is high. The heat storage fluid is controlled to flow through the outer tube 30a.

一方、貯湯サーミスタ55(中温取り出し配管13の近傍)により検出された蓄熱用流体の湯温が所定温度(例えば、30℃)以上のときに中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方から混合させて外側管30aに流通するように制御される。   On the other hand, when the hot water temperature of the heat storage fluid detected by the hot water storage thermistor 55 (in the vicinity of the intermediate temperature extraction pipe 13) is equal to or higher than a predetermined temperature (for example, 30 ° C.), Control is performed so that both the medium-temperature heat storage fluid extracted from the medium-temperature extraction pipe 13 and the high-temperature heat storage fluid extracted from the high-temperature extraction pipe 12 are mixed and distributed to the outer pipe 30a.

さらに、高中温混合弁16は、熱交換前サーミスタ54により検出された一次側通路30A(外側管30a)に流通する蓄熱用流体の湯温を所定温度以上となるように温度調節することで二次側通路30B(内側管30b)を流れる給湯用水を所定温度(例えば、設定温度+5℃程度)以下とならないようにしている。これにより、高温の蓄熱用流体よりも所定温度(例えば、30℃)近傍の中温の蓄熱用流体をより多く外側管30aに流通するようにしている。また、高中温混合弁16は熱交換前サーミスタ54により検出された熱交換前の蓄熱用流体の湯温に基づいてフィードバック制御を行なうようにしている。   Further, the high / medium temperature mixing valve 16 adjusts the temperature of the hot water of the heat storage fluid flowing through the primary side passage 30A (outer pipe 30a) detected by the thermistor 54 before heat exchange so as to be equal to or higher than a predetermined temperature. The hot water supply water flowing through the secondary passage 30B (inner pipe 30b) is kept from being below a predetermined temperature (for example, about a set temperature + 5 ° C.). Thus, more medium temperature heat storage fluid in the vicinity of a predetermined temperature (for example, 30 ° C.) than the high temperature heat storage fluid is circulated to the outer pipe 30a. Further, the high / medium temperature mixing valve 16 performs feedback control based on the hot water temperature of the heat storage fluid before heat exchange detected by the thermistor 54 before heat exchange.

第1循環ポンプ17は戻し管15の中途に配置されており、貯湯タンク10内の蓄熱用流体を給湯用熱交換器30に流通させるポンプである。そして、後述する熱交換後サーミスタ52により検出された給湯用熱交換器30の内側管30bより熱交換された給湯用水の湯温に基づいて回転数が制御されるように後述する給湯制御部41に電気的に接続されている。   The first circulation pump 17 is arranged in the middle of the return pipe 15 and is a pump for circulating the heat storage fluid in the hot water storage tank 10 to the hot water supply heat exchanger 30. And the hot water supply control part 41 mentioned later so that a rotation speed may be controlled based on the hot water temperature of the hot water for the hot water exchanged from the inner side pipe | tube 30b of the heat exchanger 30 for hot water supply detected by the thermistor 52 after the heat exchange mentioned later. Is electrically connected.

なお、戻り管15に熱交換後の蓄熱用流体の湯温を検出する1次熱交換後サーミスタ56を設けて、熱交換後の蓄熱用流体の湯温に基づいて循環回路を循環する流量を第1循環ポンプ17により制御しても良い。つまり、貯湯タンク10内の下方部10eに戻される湯温が所定温度以上とならないように第1循環ポンプ17の回転数に規制値を設けることで、所定温度以下の湯温を貯湯タンク10内の下方部10eに戻すことができる。また、循環回路11および流体加熱用流路21には排水栓18が設けられており、必要に応じて貯湯タンク10内および循環回路11内の蓄熱用流体を手動により排水することができるようにしている。   The return pipe 15 is provided with a thermistor 56 after primary heat exchange for detecting the hot water temperature of the heat storage fluid after heat exchange, and the flow rate of circulating through the circulation circuit based on the hot water temperature of the heat storage fluid after heat exchange. It may be controlled by the first circulation pump 17. That is, by setting a restriction value for the number of rotations of the first circulation pump 17 so that the hot water temperature returned to the lower portion 10e in the hot water storage tank 10 does not exceed the predetermined temperature, the hot water temperature below the predetermined temperature is set in the hot water storage tank 10. Can be returned to the lower portion 10e. Further, a drain plug 18 is provided in the circulation circuit 11 and the fluid heating passage 21 so that the heat storage fluid in the hot water storage tank 10 and the circulation circuit 11 can be drained manually as needed. ing.

次に、給湯用熱交換器30は、循環回路11に接続されて貯湯タンク10内の蓄熱用流体が流れる一次側通路30Aと、給水用配管31および給湯用配管32に接続された二次側通路30Bとを有し、例えば、図2に示すように、一次側通路30Aを形成する第1の流通部である外側管30aの内部に二次側通路30Bを形成する第2の流通部である内側管30bが挿通する二重管構造である。ここで、外側管30aは、熱ロスを低く抑えるために樹脂材を使用し、内側管30bは熱伝導率の高い銅材を使用することが望ましい。   Next, the hot water supply heat exchanger 30 is connected to the circulation circuit 11 so that the heat storage fluid in the hot water storage tank 10 flows, and the secondary side connected to the water supply pipe 31 and the hot water supply pipe 32. For example, as shown in FIG. 2, a second circulation portion that forms a secondary passage 30 </ b> B inside an outer pipe 30 a that is a first circulation portion that forms the primary passage 30 </ b> A, as shown in FIG. 2. This is a double tube structure through which a certain inner tube 30b is inserted. Here, it is desirable that the outer tube 30a use a resin material in order to keep heat loss low, and the inner tube 30b use a copper material having a high thermal conductivity.

また、内側管30bは、外側管30aと同様に円筒管でも良いが、例えば、図2に示すように、その壁面に径方向の凹凸形状を設けても良い。この場合、一次側通路30Aと二次側通路30Bとの伝熱面積が増加して、蓄熱用流体と給湯用水との熱交換効率を向上できる。なお、図中に示す30cは蓄熱用流体の放熱を防止するための断熱材である。   Further, the inner tube 30b may be a cylindrical tube similarly to the outer tube 30a. For example, as shown in FIG. In this case, the heat transfer area between the primary side passage 30A and the secondary side passage 30B increases, and the heat exchange efficiency between the heat storage fluid and the hot water supply water can be improved. In addition, 30c shown in the figure is a heat insulating material for preventing heat dissipation of the heat storage fluid.

そして、給湯用熱交換器30は、図1に示すように、貯湯タンク10の外部に上下方向に配置されて外側管30a(一次側通路30A)の下流端が貯湯タンク10の下方部10dと連通するように戻し管15に接続され、外側管30a(一次側通路30A)の上流端が往き管14に接続されている。また、内側管30b(二次側通路30B)は、その上流端が給水用配管31に接続され、下流端が給湯用配管32に接続されている。従って、給湯用熱交換器30は、図1に矢印で示すように、外側管30aを上から下へ向かって流れる蓄熱用流体の流れ方向と、内側管30bを下から上へ向かって流れる給湯用水の流れ方向とが対向する対向流式の熱交換器である。   As shown in FIG. 1, the hot water supply heat exchanger 30 is arranged in the vertical direction outside the hot water storage tank 10, and the downstream end of the outer pipe 30 a (primary side passage 30 </ b> A) is connected to the lower portion 10 d of the hot water storage tank 10. Connected to the return pipe 15 so as to communicate with each other, the upstream end of the outer pipe 30 a (primary side passage 30 </ b> A) is connected to the forward pipe 14. The inner pipe 30b (secondary side passage 30B) has an upstream end connected to the water supply pipe 31 and a downstream end connected to the hot water supply pipe 32. Accordingly, as shown by arrows in FIG. 1, the hot water supply heat exchanger 30 has a flow direction of the heat storage fluid flowing through the outer tube 30a from the top to the bottom, and a hot water supply flowing through the inner tube 30b from the bottom to the top. It is a counterflow type heat exchanger with which the flow direction of water is opposed.

なお、給水用配管31の上流は水道配管に接続されて水道水が給湯用熱交換器30に導水されるようにしている。また、給水用配管31には給水サーミスタ51が設けられており、水道水の温度情報を後述する給湯制御部41に出力するようにしている。また、給湯用配管32には、内側管30bにて熱交換された給湯用水の流量を調節する流量調節弁34と、給湯用配管32の下流端と給水用配管31の合流部位において給湯温度調節手段である給湯用混合弁35が設けられている。そして、この給湯用混合弁35の出口側に給湯用配管33が接続されている。   The upstream of the water supply pipe 31 is connected to a water supply pipe so that the tap water is led to the hot water supply heat exchanger 30. Further, a water supply thermistor 51 is provided in the water supply pipe 31 so as to output temperature information of tap water to a hot water supply control unit 41 described later. The hot water supply pipe 32 has a flow rate adjusting valve 34 for adjusting the flow rate of hot water supplied through the inner pipe 30 b, and the hot water supply temperature adjustment at the junction of the downstream end of the hot water supply pipe 32 and the water supply pipe 31. A hot water mixing valve 35 is provided as a means. A hot water supply pipe 33 is connected to the outlet side of the hot water supply mixing valve 35.

給湯用配管33は台所、洗面所、浴室などの図示しない給湯水栓に通ずる給湯配管である。そして、その中途に給湯サーミスタ53および流量カウンタ58が設けられ、給湯サーミスタ53は給湯用配管33内の温度情報を、流量カウンタ58は給湯用配管33内の流量情報を後述する給湯制御部41に出力するようにしている。なお、給湯用配管32には、給湯用熱交換器30により熱交換された蓄熱用流体の湯温を検出する熱交換後サーミスタ52が設けられ、給湯用配管33内の温度情報を後述する給湯制御部41に出力するようにしている。   The hot water supply pipe 33 is a hot water supply pipe that leads to a hot water tap (not shown) such as a kitchen, a washroom, and a bathroom. A hot water supply thermistor 53 and a flow rate counter 58 are provided in the middle thereof. The hot water supply thermistor 53 provides temperature information in the hot water supply pipe 33, and the flow rate counter 58 provides flow information in the hot water supply pipe 33 to the hot water supply control unit 41 described later. I am trying to output. The hot water supply pipe 32 is provided with a post-heat exchange thermistor 52 that detects the hot water temperature of the heat storage fluid heat-exchanged by the hot water supply heat exchanger 30, and temperature information in the hot water supply pipe 33 is described later. The data is output to the control unit 41.

流量調節弁34は、内側管30bを流通する流量を調節する弁であり、内側管30bを流通する流量が所定流量以下となるように後述する給湯制御部41により制御される。つまり、給水される水道圧および給湯経路の圧力損失のばらつきにより流量が過大とならないように熱交換後サーミスタ52により検出される給湯用水の湯温に基づいて制御される。   The flow rate adjusting valve 34 is a valve that adjusts the flow rate flowing through the inner pipe 30b, and is controlled by the hot water supply control unit 41 described later so that the flow rate flowing through the inner pipe 30b is equal to or lower than a predetermined flow rate. That is, control is performed based on the hot water temperature of the hot water detected by the thermistor 52 after heat exchange so that the flow rate does not become excessive due to variations in the water pressure of the supplied water and the pressure loss in the hot water supply path.

給湯用混合弁35は、給湯用配管33に出湯させる給湯用水の湯温を調節する温度調節弁であり、それぞれの開口面積比を調節することで、内側管30bで熱交換された給湯用水と水道水との混合比を調節して設定温度に調節するように制御される。そして、給湯用混合弁35は、後述する給湯制御部41に電気的に接続されており、上記、給水サーミスタ51、熱交換後サーミスタ52、および給湯サーミスタ53により検出される給湯用水の温度情報に基づいて制御される。   The hot water supply mixing valve 35 is a temperature adjustment valve that adjusts the temperature of hot water for hot water discharged from the hot water supply pipe 33, and by adjusting the ratio of the respective opening areas, the hot water supply water exchanged with the inner pipe 30b It is controlled to adjust the mixing ratio with tap water to the set temperature. The hot-water supply mixing valve 35 is electrically connected to a hot-water supply control unit 41, which will be described later. The hot-water supply water temperature information detected by the hot-water supply thermistor 51, the post-heat exchange thermistor 52, and the hot-water supply thermistor 53 is used. Controlled based on.

因みに、給湯用混合弁35に流通される内側管30bで熱交換された給湯用水の湯温は、例えば、設定温度+5℃程度となるようにしている。つまり、循環回路11を循環する流量とその熱交換前サーミスタ54により検出される蓄熱用流体の湯温を制御させている。なお、給湯用混合弁35は、給湯サーミスタ53により検出される給湯用水の湯温に基づいてフィードバック制御を行なうようにしている。   Incidentally, the hot water temperature of the hot water supplied through the inner pipe 30b flowing through the hot water mixing valve 35 is set to, for example, about a set temperature + 5 ° C. That is, the flow rate circulating in the circulation circuit 11 and the hot water temperature of the heat storage fluid detected by the thermistor 54 before heat exchange are controlled. The hot water supply mixing valve 35 performs feedback control based on the hot water temperature of hot water supply water detected by the hot water supply thermistor 53.

ここで、追い焚き機能の構成部品について説明する。まず、循環回路11aは、貯湯タンク10内の蓄熱用流体を後述する追い焚き用熱交換器60の外側管60aに流通させ、この追い焚き用熱交換器60により熱交換された蓄熱用流体を貯湯タンク10内の上方部10dと下方部10eとの間に戻すための循環回路であり、高温取り出し管12、往き管14a、戻し管15aおよび第2循環ポンプ17aとから構成されている。   Here, the components of the tracking function will be described. First, the circulation circuit 11a distributes the heat storage fluid in the hot water storage tank 10 to the outer pipe 60a of the reheating heat exchanger 60 to be described later, and the heat storage fluid exchanged by the reheating heat exchanger 60 is used. It is a circulation circuit for returning between the upper part 10d and the lower part 10e in the hot water storage tank 10, and comprises a high temperature take-out pipe 12, an outgoing pipe 14a, a return pipe 15a, and a second circulation pump 17a.

往き管14aは上流端が高温取り出し管12の中途に接続され、下流端が追い焚き用熱交換器60の外側管60aの上流端に接続されている。戻し管15aは上流端が外側管60aの上流端に接続され、下流端が貯湯タンク10内の高さ方向に対して中央部10fに接続されている。また、第2循環ポンプ17aは戻し管15aの中途に配置されており、貯湯タンク10内の蓄熱用流体を追い焚き用熱交換器60に流通させるポンプである。   The upstream pipe 14 a has an upstream end connected to the middle of the high temperature extraction pipe 12 and a downstream end connected to the upstream end of the outer pipe 60 a of the reheating heat exchanger 60. The return pipe 15 a has an upstream end connected to the upstream end of the outer pipe 60 a and a downstream end connected to the central portion 10 f with respect to the height direction in the hot water storage tank 10. Further, the second circulation pump 17a is arranged in the middle of the return pipe 15a, and is a pump for circulating the heat storage fluid in the hot water storage tank 10 to the reheating heat exchanger 60.

そして、後述する追い焚きサーミスタ71により検出された追い焚き温度に基づいて回転数が制御されるように後述する給湯制御部41に電気的に接続されている。因みに、上記追い焚き温度が異常高温(例えば、60℃)を超えないように第2循環ポンプ17aの回転数を制御して追い焚き用熱交換器60に流通させる高温の蓄熱流体の流量を調整している。   And it connects electrically to the hot water supply control part 41 mentioned later so that a rotation speed may be controlled based on the reheating temperature detected by the reheating thermistor 71 mentioned later. Incidentally, the flow rate of the high-temperature heat storage fluid to be distributed to the reheating heat exchanger 60 is adjusted by controlling the rotation speed of the second circulation pump 17a so that the reheating temperature does not exceed an abnormally high temperature (for example, 60 ° C.). doing.

次に、追い焚き用熱交換器60は、上述した給湯用熱交換器30と同様な構成となっており、循環回路11aに接続されて貯湯タンク10内の蓄熱用流体が流れる一次側通路60Aと、浴水循環回路61に接続された二次側通路60Bとを有し、例えば、図2に示すように、一次側通路60Aを形成する第3の流通部である外側管60aの内部に二次側通路60Bを形成する第4の流通部である内側管60bが挿通する二重管構造である。ここで、外側管60aは、熱ロスを低く抑えるために樹脂材を使用し、内側管60bは熱伝導率の高い銅材を使用することが望ましい。   Next, the reheating heat exchanger 60 has the same configuration as the hot water supply heat exchanger 30 described above, and is connected to the circulation circuit 11a so that the heat storage fluid in the hot water storage tank 10 flows through the primary side passage 60A. And a secondary side passage 60B connected to the bath water circulation circuit 61. For example, as shown in FIG. 2, a second side passage 60B is formed in the outer pipe 60a, which is a third circulation portion forming the primary side passage 60A. This is a double-pipe structure through which an inner pipe 60b, which is a fourth flow section forming the secondary passage 60B, is inserted. Here, it is desirable to use a resin material for the outer tube 60a to keep heat loss low, and to use a copper material with a high thermal conductivity for the inner tube 60b.

また、内側管60bは、外側管60aと同様に円筒管でも良いが、例えば、図2に示すように、その壁面に径方向の凹凸形状を設けても良い。この場合、一次側通路60Aと二次側通路60Bとの伝熱面積が増加して、蓄熱用流体と浴水との熱交換効率を向上できる。なお、図中に示す60cは蓄熱用流体の放熱を防止するための断熱材である。   The inner tube 60b may be a cylindrical tube as with the outer tube 60a. For example, as shown in FIG. 2, the wall surface may be provided with a concavo-convex shape in the radial direction. In this case, the heat transfer area between the primary side passage 60A and the secondary side passage 60B increases, and the heat exchange efficiency between the heat storage fluid and the bath water can be improved. In addition, 60c shown in the figure is a heat insulating material for preventing heat dissipation of the heat storage fluid.

そして、追い焚き用熱交換器60は、図1に示すように、貯湯タンク10の外部に上下方向に配置されて外側管60a(一次側通路60A)の下流端が貯湯タンク10の中央部10fに連通するように戻し管15aに接続され、外側管60a(一次側通路60A)の上流端が往き管14aを介して高温取り出し管12に接続されている。   As shown in FIG. 1, the reheating heat exchanger 60 is vertically disposed outside the hot water storage tank 10, and the downstream end of the outer pipe 60 a (primary side passage 60 </ b> A) is the central portion 10 f of the hot water storage tank 10. Is connected to the return pipe 15a so that the upstream end of the outer pipe 60a (primary side passage 60A) is connected to the high temperature take-out pipe 12 via the forward pipe 14a.

また、内側管60b(二次側通路60B)は、浴水循環回路61に接続されている。従って、追い焚き用熱交換器60は、図1に矢印で示すように、外側管60aを上から下へ向かって流れる蓄熱用流体の流れ方向と、内側管60bを下から上へ向かって流れる浴水の流れ方向とが対向する対向流式の熱交換器である。   The inner pipe 60b (secondary passage 60B) is connected to the bath water circulation circuit 61. Accordingly, the reheating heat exchanger 60 flows in the direction of the heat storage fluid flowing from the top to the bottom in the outer tube 60a and from the bottom to the top in the inner tube 60b, as indicated by arrows in FIG. This is a counter-flow heat exchanger facing the bath water flow direction.

次に、浴水循環回路61は、浴槽内の浴水を内側管60b(二次側通路60B)の上流端に導く往き管62、内側管60b(二次側通路60B)で熱交換された浴水を浴槽内に導く戻り管63およびバイパス管64から構成されている。その往き管62には、上流側から順に、水圧スイッチ65、開閉弁66、第3循環ポンプ67、浴水温サーミスタ68、流水スイッチ69、および追い焚き三方弁70が設けられている。また、戻り管63には、下流側に追い焚きサーミスタ71が設けられている。   Next, the bath water circulation circuit 61 heat-exchanges in the forward pipe 62 and the inner pipe 60b (secondary side passage 60B) that guide the bath water in the bathtub to the upstream end of the inner pipe 60b (secondary side passage 60B). It is composed of a return pipe 63 and a bypass pipe 64 that guide water into the bathtub. The forward pipe 62 is provided with a water pressure switch 65, an on-off valve 66, a third circulation pump 67, a bath water temperature thermistor 68, a running water switch 69, and a reheating three-way valve 70 in order from the upstream side. Further, the return pipe 63 is provided with a recirculating thermistor 71 on the downstream side.

水圧スイッチ65は、浴槽内にお湯張りされた浴水の湯量、言い換えれば浴槽内の水位レベルを求めるための水圧を検出するセンサである。開閉弁66は浴水循環回路61を開閉する電磁弁であり、第3循環ポンプ67は浴槽内の浴水を追い焚き用熱交換器60に圧送する電動ポンプである。浴水温サーミスタ68は、往き管62を流通する浴水の湯温を検出する水温センサである。   The water pressure switch 65 is a sensor that detects the amount of hot water in the bathtub filled with hot water, in other words, the water pressure for determining the water level in the bathtub. The on-off valve 66 is an electromagnetic valve that opens and closes the bath water circulation circuit 61, and the third circulation pump 67 is an electric pump that pumps the bath water in the bathtub to the reheating heat exchanger 60. The bath water temperature thermistor 68 is a water temperature sensor that detects the hot water temperature of the bath water flowing through the forward pipe 62.

流水スイッチ69は、追い焚き三方弁70側の方向に浴水および後述する給湯用水が流通しているか否かを検出するための流水センサである。追い焚き三方弁70は、浴水を追い焚き用熱交換器60に流通させるか、追い焚き用熱交換器60を迂回するバイパス管64のいずれか一方に流通方向を切り換えるための切換弁である。追い焚きサーミスタ71は、戻り管63を流通する浴水の湯温を検出する水温センサであり、浴槽内に戻される浴水温度である。   The flowing water switch 69 is a flowing water sensor for detecting whether or not bath water and hot water supply water to be described later are circulating in the direction of the reheating three-way valve 70. The reheating three-way valve 70 is a switching valve for switching the flow direction to either one of the bypass pipe 64 that causes the bath water to flow to the reheating heat exchanger 60 or bypasses the reheating heat exchanger 60. . The reheating thermistor 71 is a water temperature sensor that detects the temperature of the bath water flowing through the return pipe 63, and is the bath water temperature that is returned into the bathtub.

なお、水圧スイッチ65、流水スイッチ69、浴水温サーミスタ68および追い焚きサーミスタ71は、それぞれの容積情報、流水情報および温度情報を後述する給湯制御部41に出力するようにされ、開閉弁66、第3循環ポンプ67および追い焚き三方弁70は後述する給湯制御部41により制御される。また、お湯張り後に浴槽内の浴水の温度を検出するときは、追い焚き三方弁70をバイパス管64側に流れ方向を切り換えるとともに、第3循環ポンプ67を作動させることで、浴槽内の浴水が往き管62、バイパス管64、戻り管63、浴槽内の順に循環されて浴水温サーミスタ68により浴水の湯温を検出するようにしている。   The water pressure switch 65, the flowing water switch 69, the bath water temperature thermistor 68, and the reheating thermistor 71 are configured to output volume information, flowing water information, and temperature information to the hot water supply control unit 41, which will be described later. The three-circulation pump 67 and the reheating three-way valve 70 are controlled by a hot water supply control unit 41 described later. In addition, when detecting the temperature of the bath water in the bathtub after filling with hot water, the flow direction of the reheating three-way valve 70 is switched to the bypass pipe 64 side and the third circulation pump 67 is operated, so that the bath in the bathtub is operated. Water is circulated in the order of the forward pipe 62, the bypass pipe 64, the return pipe 63, and the bathtub, and the hot water temperature of the bath water is detected by the bath water temperature thermistor 68.

また、追い焚きするときは、追い焚き三方弁70の流れ方向を追い焚き用熱交換器60側に切り換えることで、浴槽内の浴水が往き管62、追い焚き用熱交換器60、戻り管63、浴槽内の順に循環されて、浴水温サーミスタ68により検出された浴水の湯温が所定温度になるまで循環させるように制御される。   Further, when reheating, the flow direction of the reflowing three-way valve 70 is switched to the reheating heat exchanger 60 side, so that the bath water in the bathtub flows in the forward pipe 62, the reheating heat exchanger 60, and the return pipe. It is circulated in the order of 63 and in the bathtub, and is controlled to circulate until the hot water temperature of the bath water detected by the bath water temperature thermistor 68 reaches a predetermined temperature.

次に、お湯張り機能における構成部品について説明する。このお湯張り機能は給湯用配管32a、33aを介して給湯用水と水道水とを混合させて浴槽へ出湯するものであり、お湯張りを含めて差し湯およびたし湯することができるようにしている。具体的には、給湯用配管32から分岐した給湯用配管32a、33aを浴水循環回路61に設けられた分岐点62aに接続している。   Next, the components in the hot water filling function will be described. This hot water filling function is to mix hot water and tap water through the hot water supply pipes 32a and 33a and discharge to the bathtub, so that hot water and hot water including hot water can be poured. Yes. Specifically, hot water supply pipes 32 a and 33 a branched from the hot water supply pipe 32 are connected to a branch point 62 a provided in the bath water circulation circuit 61.

そして、給湯用配管32aの下流端と給水用配管31の合流部位において給湯温度調節手段であるお湯張り用混合弁35aが設けられ、そのお湯張り用混合弁35aの出口側に給湯用配管33aが接続されている。そして、その給湯用配管33aには、上流側から順に、お湯張り用給湯サーミスタ53a、お湯張り用開閉弁57、お湯張り用流量カウンタ58a、逆止弁59が設けられている。   A hot water filling mixing valve 35a, which is a hot water temperature adjusting means, is provided at the junction of the downstream end of the hot water supply piping 32a and the water supply piping 31, and a hot water supply piping 33a is provided on the outlet side of the hot water filling mixing valve 35a. It is connected. The hot water supply pipe 33a is provided with a hot water supply hot water supply thermistor 53a, a hot water supply open / close valve 57, a hot water supply flow rate counter 58a, and a check valve 59 in this order from the upstream side.

お湯張り用混合弁35aは、上述した給湯用混合弁35と同じように、給湯用配管33aに出湯させる給湯用水の湯温を調節する温度調節弁であり、それぞれの開口面積比を調節することで、内側管30bで熱交換された給湯用水と水道水との混合比を調節して設定温度に調節するように制御される。さらに、お湯張り用混合弁3aは、後述する給湯制御部41に電気的に接続されており、上述した給水サーミスタ51、熱交換後サーミスタ52、およびお湯張り用給湯サーミスタ53aにより検出される給湯用水の温度情報に基づいて制御される。   The hot water filling mixing valve 35a is a temperature adjustment valve that adjusts the hot water temperature of hot water to be discharged from the hot water supply pipe 33a in the same manner as the hot water supply mixing valve 35 described above, and adjusts the respective opening area ratios. Thus, the mixing ratio between the hot water supply water and the tap water exchanged by the inner pipe 30b is adjusted to be adjusted to the set temperature. Furthermore, the hot water filling mixing valve 3a is electrically connected to a hot water supply control unit 41 described later, and hot water supply water detected by the above-described hot water supply thermistor 51, the post-heat exchange thermistor 52, and the hot water hot water supply thermistor 53a. It is controlled based on the temperature information.

また、お湯張り用開閉弁57は、後述する給湯制御部41により制御され、給湯用配管33aに流れる混合湯を開閉する電磁弁である。お湯張り用流量カウンタ58aは給湯用配管33a内に流れる混合湯流量を検出するものであり、このお湯張り用流量カウンタ58aにより検出された流量情報を後述する給湯制御部41に出力するようにしている。そして、逆止弁59は浴水循環回路61内の浴水が給湯用配管33a内に流通させないための弁である。   The hot water filling on / off valve 57 is an electromagnetic valve that is controlled by a hot water supply control unit 41 described later and opens and closes the mixed hot water flowing through the hot water supply pipe 33a. The hot water flow rate counter 58a detects the flow rate of the mixed hot water flowing through the hot water supply pipe 33a, and outputs the flow rate information detected by the hot water flow rate counter 58a to the hot water supply control unit 41 described later. Yes. The check valve 59 is a valve for preventing the bath water in the bath water circulation circuit 61 from flowing into the hot water supply pipe 33a.

なお、お湯張り用開閉弁57を開弁させて浴槽にお湯張り、差し湯、たし湯をするときは、開閉弁66も開弁するように制御されるとともに、水圧スイッチ65により検出された水位レベルが所定レベルに達したときに、お湯張り用開閉弁57および開閉弁66が閉弁されて設定流量の混合湯が浴槽内にお湯張りされることになる。また、差し湯、たし湯は、お湯張り用流量カウンタ58aにより検出された流量情報に基づいて所定の流量の混合湯が出湯されるように制御される。   When the hot water filling on / off valve 57 is opened to fill the bathtub with hot water, hot water, or hot water, the on / off valve 66 is also controlled to be opened and detected by the water pressure switch 65. When the water level reaches a predetermined level, the hot water on / off valve 57 and the on / off valve 66 are closed, and the set hot water is filled in the bathtub. Further, the hot water and the hot water are controlled so that the mixed hot water having a predetermined flow rate is discharged based on the flow rate information detected by the hot water filling flow rate counter 58a.

次に、給湯制御部41は、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、各サーミスタ51〜55、53a、68、71からの温度情報、各流量カウンタ58、58aからの流量情報および図示しない操作盤に設けられた操作スイッチからの操作信号等に基づいて、循環回路11、11a内、浴水循環回路61内、給湯用配管32、32a、33、33a内の各種アクチュエータ類を制御するように構成されている。   Next, the hot water supply control unit 41 is mainly composed of a microcomputer, and a built-in ROM (not shown) is provided with a preset control program, and the thermistors 51 to 55, 53a, 68, 71, based on temperature information from 71, flow information from each flow counter 58, 58a, operation signal from an operation switch provided on an operation panel (not shown), etc., in circulation circuits 11, 11a, in bath water circulation circuit 61, hot water supply It is comprised so that the various actuators in the piping 32, 32a, 33, 33a for work may be controlled.

また、熱源制御部42は、給湯制御部41と同じように、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、図示しない各種サーミスタからの温度情報などに基づいてヒートポンプユニット20内のアクチュエータ類を制御する。この熱源制御部42では、蓄熱用熱交換器(図示しない)で加熱された蓄熱用流体の湯温を一定温度に保つために、加熱後の蓄熱用流体温度を検出する貯湯サーミスタ(最上部)55の検出温度に基づいて電動ポンプ(図示しない)の回転数制御を行っている。   Similarly to the hot water supply control unit 41, the heat source control unit 42 is mainly composed of a microcomputer, and a built-in ROM (not shown) is provided with a preset control program, not shown. The actuators in the heat pump unit 20 are controlled based on temperature information from various thermistors. In this heat source control unit 42, a hot water storage thermistor (the uppermost part) that detects the temperature of the heat storage fluid after heating in order to keep the hot water temperature of the heat storage fluid heated by the heat storage heat exchanger (not shown) at a constant temperature. Based on the detected temperature 55, the rotational speed of an electric pump (not shown) is controlled.

なお、本実施形態では、循環回路11において、貯湯タンク10内の上方部10dと下方部10eとの間に中温取り出し管13を一つ設けたが、これに限らず、図3に示すように、複数の中温取り出し管13を設けるとともに、そのうちのいずれか一つを選択するための切換弁19を設けても良い。これによれば、貯湯タンク10内に貯えられる蓄熱用流体のうち、中温の蓄熱用流体を容易に検出でき、かつ取り出すことができる。   In the present embodiment, in the circulation circuit 11, one intermediate temperature take-out pipe 13 is provided between the upper part 10d and the lower part 10e in the hot water storage tank 10, but not limited to this, as shown in FIG. A plurality of medium temperature take-out pipes 13 may be provided, and a switching valve 19 for selecting any one of them may be provided. According to this, of the heat storage fluid stored in the hot water storage tank 10, the medium temperature heat storage fluid can be easily detected and taken out.

次に、以上の構成による貯湯式給湯装置の作動について説明する。まず、図示しない電源スイッチがオンされると、例えば、深夜時間帯に達すると、熱源制御部42によりヒートポンプユニット20内のヒートポンプサイクル部品(図示しない)と電動ポンプ(図示しない)などのアクチュエータ類を制御させて貯湯タンク10内の蓄熱用流体を加熱して高温(例えば85℃)の蓄熱用流体が貯えられる。   Next, the operation of the hot water storage type hot water supply apparatus having the above configuration will be described. First, when a power switch (not shown) is turned on, for example, when a midnight time zone is reached, the heat source control unit 42 causes the heat pump cycle parts (not shown) in the heat pump unit 20 and actuators such as an electric pump (not shown) to be connected. The heat storage fluid in the hot water storage tank 10 is controlled to be heated, and a high temperature (for example, 85 ° C.) heat storage fluid is stored.

そして、貯えられた高温の蓄熱用流体を熱源として、給湯用熱交換器30により熱交換された給湯用水と水道水とを混合させて台所、洗面所、浴槽などの給湯対象個所に給湯するとともに、追い焚き用熱交換器60により浴水を追い焚きするものである。ところで、本実施形態の貯湯式給湯装置では、給湯の用途に供するときと追い焚きするときでは、各構成部品の作動が異なるため、給湯の用途に供する一例として、浴槽内にお湯張りするときと、浴水を追い焚きするときの作動について説明する。   Then, using the stored high-temperature heat storage fluid as a heat source, the hot-water supply heat exchanged by the hot-water supply heat exchanger 30 and tap water are mixed to supply hot water to a hot water supply target location such as a kitchen, washroom, and bathtub. The bath water is repelled by the reheating heat exchanger 60. By the way, in the hot water storage type hot water supply apparatus of the present embodiment, the operation of each component is different between when the hot water supply is used and when the hot water is used, so as an example for hot water use, Next, the operation when chasing the bath water will be described.

まず、浴槽内に給湯用水をお湯張りするときは、お湯張りスイッチ(図示せず)を操作することにより、給湯制御部41により、お湯張り用開閉弁57、開閉弁66を開弁させるとともに、第1循環ポンプ17が作動する。この第1循環ポンプ17が作動すると、貯湯タンク10内の蓄熱用流体が給湯用熱交換器30の一次側通路30A(外側管30a)に流通される。これにより、給湯用熱交換器30の二次側通路30B(内側管30b)を流れる給湯用水が蓄熱用流体の熱エネルギーを受けて加熱される。   First, when hot water is filled in the bathtub, by operating a hot water switch (not shown), the hot water controller 41 opens the hot water on / off valve 57 and the on / off valve 66, and The first circulation pump 17 operates. When the first circulation pump 17 is operated, the heat storage fluid in the hot water storage tank 10 is circulated to the primary side passage 30A (outer pipe 30a) of the hot water supply heat exchanger 30. Thereby, the hot water supply water flowing through the secondary side passage 30B (inner pipe 30b) of the hot water supply heat exchanger 30 receives the heat energy of the heat storage fluid and is heated.

ここで、給湯制御部41は、熱交換後サーミスタ52により検出される給湯用水の湯温が所定温度(例えば、設定温度+5℃程度)になるように第1循環ポンプ17の駆動状態(回転数)を制御する。つまり、熱交換後サーミスタ52により検出される湯温が所定温度(例えば、設定温度+5℃程度)より低いときは、第1循環ポンプ17の回転数を大きくして一次側通路30A(外側管30a)を流れる蓄熱用流体の循環量を増加させる。   Here, the hot water supply control unit 41 drives the first circulation pump 17 so that the hot water temperature detected by the thermistor 52 after heat exchange becomes a predetermined temperature (for example, about a set temperature + 5 ° C.). ) To control. That is, when the hot water temperature detected by the thermistor 52 after heat exchange is lower than a predetermined temperature (for example, about the set temperature + 5 ° C.), the rotation speed of the first circulation pump 17 is increased to increase the primary side passage 30A (outer pipe 30a). ) To increase the circulation rate of the heat storage fluid flowing through.

これにより、一次側通路30A(外側管30a)を流れる蓄熱用流体と二次側通路30B(内側管30b)を流れる給湯用水との熱交換量が増加するため、給湯用水の湯温が上昇する。   This increases the amount of heat exchange between the heat storage fluid flowing through the primary side passage 30A (outer pipe 30a) and the hot water supply water flowing through the secondary side passage 30B (inner pipe 30b), so the hot water temperature of the hot water supply rises. .

また、逆に、熱交換後サーミスタ52により検出される湯温が所定温度(例えば、設定温度+5℃程度)より高いときは、第1循環ポンプ17の回転数を小さくして一次側通路30A(外側管30a)を流れる蓄熱用流体の循環量を減少させる。これにより、一次側通路30A(外側管30a)を流れる蓄熱用流体と二次側通路30B(内側管30b)を流れる給湯用水との熱交換量が減少するため、給湯用水の湯温が上昇する。   Conversely, when the hot water temperature detected by the thermistor 52 after heat exchange is higher than a predetermined temperature (for example, about the set temperature + 5 ° C.), the rotation speed of the first circulation pump 17 is reduced to reduce the primary side passage 30A ( The circulation amount of the heat storage fluid flowing through the outer pipe 30a) is reduced. As a result, the amount of heat exchange between the heat storage fluid flowing through the primary side passage 30A (outer pipe 30a) and the hot water supply water flowing through the secondary side passage 30B (inner pipe 30b) is reduced, and the hot water temperature of the hot water supply rises. .

そして、このときに熱交換前サーミスタ54により検出される蓄熱用流体の湯温が所定温度以上となるように高中温混合弁16により制御されている。具体的には、貯湯サーミスタ55により検出された貯湯タンク10内の蓄熱用流体の湯温が所定温度(例えば、30℃)未満のときに、高温取り出し配管12から取り出される所定温度以上の高温の蓄熱用流体を一次側通路30A(外側管30a)に流通するように制御される。   At this time, the high / medium temperature mixing valve 16 controls the hot water temperature of the heat storage fluid detected by the thermistor 54 before heat exchange to be equal to or higher than a predetermined temperature. Specifically, when the hot water temperature of the heat storage fluid in the hot water storage tank 10 detected by the hot water storage thermistor 55 is lower than a predetermined temperature (for example, 30 ° C.), the hot water temperature is higher than the predetermined temperature extracted from the high temperature extraction pipe 12. The heat storage fluid is controlled to flow through the primary passage 30A (outer pipe 30a).

一方、貯湯サーミスタ55により検出された貯湯タンク10内の蓄熱用流体の湯温が所定温度(例えば、30℃)以上のときは、中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方から混合させて所定温度以上の湯温の蓄熱用流体を一次側通路30A(外側管30a)に流通するように制御される。   On the other hand, when the hot water temperature of the heat storage fluid in the hot water storage tank 10 detected by the hot water storage thermistor 55 is equal to or higher than a predetermined temperature (for example, 30 ° C.), the medium temperature heat storage fluid taken out from the intermediate temperature take-out pipe 13 or the medium temperature take-out The primary side passage 30A (outer pipe 30a) is mixed with both the medium-temperature heat storage fluid taken out from the pipe 13 and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 so that the hot water storage fluid having a predetermined temperature or higher is mixed. It is controlled to circulate.

これにより、中温の蓄熱用流体が一次側通路30A(外側管30a)に多く流通されることで貯湯タンク10内の下方部10eに低温(例えば、給水温度+5℃程度)の蓄熱用流体が戻されることになる。   As a result, a large amount of medium-temperature heat storage fluid is circulated through the primary passage 30A (outer pipe 30a), so that the low-temperature heat storage fluid is returned to the lower portion 10e in the hot water storage tank 10 (for example, about the water supply temperature + 5 ° C.). Will be.

なお、このときに中温の蓄熱用流体の流通が少ないときは、上記低温の蓄熱用流体よりも高めの温度となって貯湯タンク10内に戻されるが、貯湯タンク10内に戻された蓄熱用流体は、時間経過とともに、その蓄熱用流体の比重差により上方に高温、下方に低温および上方と下方との間に中間層(中温)が形成される。   At this time, when the circulation of the medium temperature heat storage fluid is small, the temperature becomes higher than that of the low temperature heat storage fluid and returned to the hot water storage tank 10, but the heat storage fluid returned to the hot water storage tank 10 is returned. Over time, due to the difference in specific gravity of the heat storage fluid, a high temperature is formed upward, a low temperature is formed below, and an intermediate layer (medium temperature) is formed between the upper and lower portions.

一方、お湯張り用混合弁35aでは、二次側通路30B(内側管30b)で熱交換された所定温度(設定温度+5℃程度)の給湯用水と、給水用配管31から給水される水とが混合されて設定温度に調節された給湯用水が往き管62を介して浴槽内に出湯される。そして、浴槽内の浴水の水位が予め設定した水位レベルに達すると、この水位レベルを水圧スイッチ65が検出することでお湯張り開閉弁57を閉弁させて所定量のお湯張りが完了するものである。   On the other hand, in the hot water filling mixing valve 35a, hot water supply water having a predetermined temperature (set temperature + 5 ° C.) exchanged in the secondary passage 30B (inner pipe 30b) and water supplied from the water supply pipe 31 are provided. Hot-water supply water that has been mixed and adjusted to the set temperature is discharged into the bathtub through the forward pipe 62. When the water level in the bath reaches a preset water level, the water pressure switch 65 detects the water level to close the hot water on-off valve 57 and complete the predetermined amount of hot water filling. It is.

次に、浴槽内の浴水を追い焚きする作動について説明する。追い焚きスイッチ(図示せず)を操作しておくと、所定時間毎に浴水温度を検出して、その浴水温度が追い焚き設定温度に未達であれば浴水を加熱するように作動する。つまり、給湯制御部41により、所定時間後に追い焚き三方弁70、開閉弁66、第3循環ポンプ67が作動して浴槽内の浴水を往き管62、バイパス管64、戻り管63の順に循環させる。   Next, the operation for chasing the bath water in the bathtub will be described. When the reheating switch (not shown) is operated, the bath water temperature is detected every predetermined time, and if the bath water temperature does not reach the reheating set temperature, the bath water is heated. To do. That is, the hot water control unit 41 activates the follow-up three-way valve 70, the on-off valve 66, and the third circulation pump 67 after a predetermined time, and circulates the bath water in the bathtub in the order of the forward pipe 62, the bypass pipe 64, and the return pipe 63. Let

このときに、浴水温サーミスタ68により浴水温を検出する。検出された浴水温が追い焚き設定温度以下であると、追い焚き三方弁70の流れ方向を追い焚き用熱交換器60側に切り換えて浴水を追い焚き用熱交換器60に流通させる。これにより、浴水が蓄熱用流体の熱エネルギーを受けて加熱される。そして、浴水温が設定温度に達すると、追い焚き三方弁70の流れ方向がバイパス管64側に切り換えられるとともに、開閉弁66が閉弁、第3循環ポンプ67が停止する。これにより、浴水が追い焚き設定温度を維持するように保温されるものである。   At this time, the bath water temperature is detected by the bath water temperature thermistor 68. When the detected bath water temperature is equal to or lower than the reheating set temperature, the flow direction of the reheating three-way valve 70 is switched to the reheating heat exchanger 60 side, and the bath water is circulated to the reheating heat exchanger 60. Thereby, bath water receives the heat energy of the fluid for thermal storage, and is heated. When the bath water temperature reaches the set temperature, the flow direction of the follow-up three-way valve 70 is switched to the bypass pipe 64 side, the on-off valve 66 is closed, and the third circulation pump 67 is stopped. Thus, the bath water is kept warm so as to maintain the set temperature.

この浴水の追い焚きにより、追い焚き用熱交換器60から戻り管15aを介して貯湯タンク10内に浴水温と同程度のほぼ中温の蓄熱用流体が戻されることになるが、追い焚き後に、中温取り出し管13から中温の蓄熱用流体を取り出して熱交換された給湯用水を給湯用配管33、33aから出湯させることで貯湯タンク10内の下方部10eに低温(例えば、給水温度+5℃程度)の蓄熱用流体が戻されることになる。   By reheating the bath water, the heat storage fluid having a substantially middle temperature similar to the bath water temperature is returned from the reheating heat exchanger 60 to the hot water storage tank 10 through the return pipe 15a. Then, the hot water supply water that has been subjected to heat exchange by taking out the intermediate temperature storage fluid from the intermediate temperature extraction pipe 13 is discharged from the hot water supply pipes 33 and 33a, so that the lower portion 10e in the hot water storage tank 10 has a low temperature (for example, about the supply water temperature + 5 ° C.). ) Of the heat storage fluid is returned.

以上の第1実施形態の貯湯式給湯装置によれば、追い焚き用熱交換器60により浴水を追い焚きすることで、熱交換された湯温の低いほぼ中温の蓄熱用流体が増加するが、高温の蓄熱用流体を取り出す高温取り出し配管12と、中温の蓄熱用流体を取り出す中温取り出し配管13とが設けられ、かつ追い焚き用熱交換器60を熱交換された蓄熱用流体が中温取り出し配管13に取り出されるように構成され、さらに、中温の蓄熱用流体を一次側通路30A(外側管30a)に流通するように構成されたことにより、中温の蓄熱用流体を積極的に消費するとともに、さらに、この中温の蓄熱用流体よりも温度低下した湯温の蓄熱用流体を貯湯タンク10に戻すことができるため沸き上げ運転時におけるヒートポンプユニット20の運転効率の低下が防止できる。   According to the hot water storage type hot water supply apparatus of the first embodiment described above, when the bath water is replenished by the reheating heat exchanger 60, the heat storage fluid having a substantially medium temperature with a low heat exchanged temperature is increased. The high temperature extraction pipe 12 for extracting the high temperature heat storage fluid and the intermediate temperature extraction pipe 13 for extracting the medium temperature heat storage fluid are provided, and the heat storage fluid heat exchanged in the reheating heat exchanger 60 is the medium temperature extraction pipe. 13 and further configured to circulate the medium temperature heat storage fluid in the primary passage 30A (outer pipe 30a), thereby actively consuming the medium temperature heat storage fluid, Furthermore, since the hot water storage fluid having a temperature lower than that of the intermediate temperature storage fluid can be returned to the hot water storage tank 10, the operating efficiency of the heat pump unit 20 during the boiling operation is low. There can be prevented.

また、追い焚き用熱交換器60を対向流式の熱交換器として構成され、さらに、一次側通路60A(外側管60a)の下流端が中温取り出し配管13に取り出されるように構成されることにより、一次側通路60A(外側管60a)を流通した後の蓄熱用流体を熱交換前の浴水の湯温程度まで低下させてしまうが、この湯温の蓄熱用流体を積極的に給湯用熱交換器30により消費することで、中温よりも低い湯温の蓄熱用流体を貯湯タンク10に戻すことができる。これにより、沸き上げ運転時における加熱手段(20)の運転効率の低下が防止できる。   Further, the reheating heat exchanger 60 is configured as a counterflow type heat exchanger, and further, the downstream end of the primary side passage 60A (outer tube 60a) is extracted to the intermediate temperature extraction pipe 13. The heat storage fluid after passing through the primary side passage 60A (outer pipe 60a) is lowered to about the hot water temperature of the bath water before heat exchange. When consumed by the exchanger 30, the heat storage fluid having a hot water temperature lower than the intermediate temperature can be returned to the hot water storage tank 10. Thereby, the fall of the operating efficiency of the heating means (20) at the time of boiling operation can be prevented.

また、中温取り出し配管13の上流端近傍、つまり、貯湯タンク10に複数の貯湯サーミスタ55が設けられ、給湯用熱交換器30は、この貯湯サーミスタ55により検出された湯温が所定温度未満のときに高温取り出し配管12から取り出される高温の蓄熱用流体を一次側通路30A(外側管30a)に流通させ、貯湯サーミスタ55により検出された湯温が所定温度以上のときに中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方を一次側通路30A(外側管30a)に流通するように構成したことにより、貯湯タンク10内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体を積極的に取り出すことができるとともに温度低下した湯温の蓄熱用流体を貯湯タンク10に戻すことができる。これにより、中温以下の蓄熱用流体の貯えが多量となって、沸き上げ運転時におけるヒートポンプユニット20の運転効率の低下が防止できる。   In addition, a plurality of hot water storage thermistors 55 are provided in the vicinity of the upstream end of the intermediate temperature take-out pipe 13, that is, the hot water storage tank 10, and the hot water supply heat exchanger 30 has a hot water temperature detected by the hot water storage thermistors 55 lower than a predetermined temperature. The high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 is circulated through the primary passage 30A (outer pipe 30a) and taken out from the intermediate-temperature take-out pipe 13 when the hot water temperature detected by the hot water storage thermistor 55 is equal to or higher than a predetermined temperature. The medium-temperature heat storage fluid or the medium-temperature heat storage fluid taken out from the medium-temperature take-out pipe 13 and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 are circulated through the primary passage 30A (outer pipe 30a). By constructing, among the heat storage fluid stored in the hot water storage tank 10, the medium temperature heat storage fluid is actively taken. The temperature reduced hot water temperature of the heat storage fluid it is Succoth can be returned to the hot water storage tank 10. Thereby, the storage of the heat storage fluid having an intermediate temperature or less becomes large, and a decrease in the operation efficiency of the heat pump unit 20 during the boiling operation can be prevented.

また、高温取り出し配管12と中温取り出し配管13との下流側合流部位にそれぞれの流量比を調節する高中温混合弁16が設けられ、この高中温混合弁16は、貯湯サーミスタ55により検出された湯温が所定温度以上のときに、中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方を一次側通路30A(外側管30a)に流通するように調節されたことにより、貯湯タンク10内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体を積極的に取り出すことができるとともに温度低下した湯温の蓄熱用流体を貯湯タンク10に戻すことが容易にできる。   Further, a high / intermediate temperature mixing valve 16 for adjusting the flow rate ratio is provided at a downstream side joining portion of the high temperature extraction pipe 12 and the intermediate temperature extraction pipe 13, and the high / intermediate temperature mixing valve 16 is a hot water detected by the hot water storage thermistor 55. When the temperature is equal to or higher than a predetermined temperature, the medium-temperature heat storage fluid taken out from the medium-temperature take-out pipe 13 or the medium-temperature heat storage fluid taken out from the medium-temperature take-out pipe 13 and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 By adjusting both to flow through the primary passage 30A (outer pipe 30a), among the heat storage fluid stored in the hot water storage tank 10, medium temperature heat storage fluid can be actively taken out. It is possible to easily return the hot water storage fluid having the lowered temperature to the hot water storage tank 10.

また、一次側通路30A(外側管30a)に流通する中温取り出し配管13から取り出された中温の蓄熱用流体の湯温を検出する熱交換前サーミスタ54が設けられ、高中温混合弁16は、熱交換前サーミスタ54により検出された湯温が所定温度以上となるように調節されることにより、二次側通路30B(内側管30b)下流側の給湯用水を所定温度(例えば、設定温度+5℃程度)以上確保することができる。   Further, a thermistor 54 before heat exchange for detecting the hot water temperature of the intermediate temperature storage fluid extracted from the intermediate temperature extraction pipe 13 flowing through the primary side passage 30A (outer pipe 30a) is provided. By adjusting the hot water temperature detected by the pre-replacement thermistor 54 to be equal to or higher than a predetermined temperature, the hot water supply water downstream of the secondary side passage 30B (inner pipe 30b) is changed to a predetermined temperature (for example, about a set temperature + 5 ° C.). ) Can be secured.

また、図3に示すように、中温取り出し配管13は、少なくとも二つ以上の複数個設けられ、そのうちのいずれか一つの中温の蓄熱用流体を選択して一次側通路30A(外側管30a)に流通するように構成されたことにより、中温の蓄熱用流体が貯えられる部位は、貯湯タンク10の垂直方向に一様でないため複数個の中温取り出し配管13が設けられることで、的確にかつ積極的に中温の蓄熱用流体を積極的に取り出すことができる。   Further, as shown in FIG. 3, at least two or more intermediate temperature take-out pipes 13 are provided, and one of the medium temperature heat storage fluids is selected as the intermediate temperature extraction pipe 13 to the primary side passage 30A (outer pipe 30a). By being configured to circulate, the portion where the intermediate temperature heat storage fluid is stored is not uniform in the vertical direction of the hot water storage tank 10, and thus a plurality of intermediate temperature extraction pipes 13 are provided, so that it is accurate and positive. In addition, medium temperature heat storage fluid can be positively removed.

また、二次側通路30B(内側管30b)の下流側には、給湯用熱交換器30により熱交換された給湯用水に水道水とを混合して給湯用水の温度調節する給湯用混合弁35が設けられることにより、給湯用熱交換器30により熱交換された給湯用水が給湯直後における過渡時のオーバーシュートもしくは定常の給湯中に給湯流量の変動などにより給湯温度が多少変動しても給湯用混合弁35により給湯温度を再度水道水と混合して調節することにより、これらから生ずる給湯温度の変動を容易に吸収することができるとともに、設定温度に対して給湯用水の温度制御を精度良く行なうことができる。   Further, on the downstream side of the secondary side passage 30B (inner pipe 30b), a hot water supply mixing valve 35 for adjusting the temperature of the hot water supply water by mixing the hot water supplied by the hot water supply heat exchanger 30 with tap water. Is provided for hot water supply even when the hot water temperature changes slightly due to overshoot at the time of transition immediately after the hot water supply or due to fluctuations in the flow rate of the hot water during steady hot water supply. By mixing and adjusting the hot water temperature again with tap water using the mixing valve 35, fluctuations in the hot water temperature resulting therefrom can be easily absorbed, and the temperature control of the hot water is accurately controlled with respect to the set temperature. be able to.

また、ヒートポンプユニット20は、冷媒の高圧側圧力が臨界圧力以上となる超臨界ヒートポンプであり、臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱することにより、超臨界ヒートポンプサイクルにおいては、蓄熱用流体を目標温度(例えば、65〜90℃)まで加熱する場合、加熱前の蓄熱用流体の湯温が低いほど、高圧圧力が低くなることでサイクル効率(COP=加熱能力/消費電力)が向上する。従って、加熱前の給湯用水の温度近傍まで低減された蓄熱用流体を超臨界ヒートポンプサイクルにて加熱することにより、サイクル効率が向上し、省動力運転を行なうことができる。   Further, the heat pump unit 20 is a supercritical heat pump in which the high-pressure side pressure of the refrigerant is equal to or higher than the critical pressure, and in the supercritical heat pump cycle, the heat storage fluid is heated by heating the heat storage fluid with the refrigerant whose pressure is increased to the critical pressure or higher. When the working fluid is heated to a target temperature (for example, 65 to 90 ° C.), the lower the hot water temperature of the heat storage fluid before heating, the lower the high pressure, resulting in cycle efficiency (COP = heating capacity / power consumption). improves. Therefore, by heating the heat storage fluid that has been reduced to the vicinity of the temperature of the hot water supply water before heating in the supercritical heat pump cycle, cycle efficiency can be improved and power saving operation can be performed.

(第2実施形態)
以上の第1実施形態では、高温取り出し配管12と中温取り出し配管13との下流側合流部位にそれぞれの流量比を調節する流量比調節手段である高中温混合弁16を設けたが、これに限らず、中温取り出し配管13に第1流量調節手段である流量調節弁16aを設けて、中温取り出し配管13の下流端を高温取り出し配管12の下流側に合流させても良い。
(Second Embodiment)
In the first embodiment described above, the high / medium temperature mixing valve 16 that is a flow rate adjusting means for adjusting the flow rate ratio is provided at the downstream side joining portion of the high temperature extraction pipe 12 and the intermediate temperature extraction pipe 13. Alternatively, the intermediate temperature extraction pipe 13 may be provided with a flow rate adjustment valve 16 a serving as a first flow rate adjusting unit, and the downstream end of the intermediate temperature extraction pipe 13 may be joined to the downstream side of the high temperature extraction pipe 12.

具体的には、図4に示すように、高中温混合弁16の代わりに中温取り出し配管13に流量調節弁16aを設けたものであり、この流量調節弁16aは給湯制御部41により制御され、第1実施形態と同じように、貯湯サーミスタ55により検出された湯温が所定温度未満のときに高温取り出し配管12から取り出される高温の蓄熱用流体を一次側通路30A(外側管30a)に流通させ、貯湯サーミスタ55により検出された湯温が所定温度以上のときに、中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方を一次側通路30A(外側管30a)に流通するように制御される。   Specifically, as shown in FIG. 4, a flow rate adjusting valve 16 a is provided in the intermediate temperature extraction pipe 13 instead of the high and intermediate temperature mixing valve 16, and the flow rate adjusting valve 16 a is controlled by the hot water supply control unit 41. As in the first embodiment, when the hot water temperature detected by the hot water storage thermistor 55 is lower than a predetermined temperature, the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 is circulated through the primary passage 30A (outer pipe 30a). When the hot water temperature detected by the hot water storage thermistor 55 is equal to or higher than a predetermined temperature, the medium temperature heat storage fluid extracted from the intermediate temperature extraction pipe 13 or the medium temperature heat storage fluid extracted from the intermediate temperature extraction pipe 13 and the high temperature extraction pipe 12 are used. Control is performed so that both the taken-out high-temperature heat storage fluid flows through the primary passage 30A (outer pipe 30a).

以上の第2実施形態の貯湯装置によれば、第1実施形態と同じように、貯湯サーミスタ55と流量調節弁16aとにより貯湯タンク10内に貯えられた蓄熱用流体のうち、中温の蓄熱用流体を積極的に取り出すことができるとともに温度低下した湯温の蓄熱用流体を貯湯タンク10に戻すことが容易にできる。従って、沸き上げ運転時におけるヒートポンプユニット20の運転効率の低下が防止できる。   According to the hot water storage device of the second embodiment described above, as in the first embodiment, among the heat storage fluids stored in the hot water storage tank 10 by the hot water storage thermistor 55 and the flow rate control valve 16a, the medium temperature heat storage device is used. It is possible to positively take out the fluid and to easily return the hot water storage fluid having a lowered temperature to the hot water storage tank 10. Accordingly, it is possible to prevent a decrease in operating efficiency of the heat pump unit 20 during the boiling operation.

(第3実施形態)
以上の実施形態では、追い焚き用熱交換器60の一次側通路60A(外側管60a)の下流端を中温取り出し配管13により中温の蓄熱用流体が取り出させる貯湯タンク10の中央部に構成させ、さらに、給湯用熱交換器30の一次側通路30A(外側管30a)の上流端に中温の蓄熱用流体が流通するように循環回路11を構成したが、これに限らず、給湯用熱交換器30の一次側通路30A(外側管30a)の上流端に高温取り出し配管12を接続し、一次側通路30A(外側管30a)の中途に中温取り出し配管13の下流端が接続するように構成するとともに、追い焚き用熱交換器60により熱交換された蓄熱用流体が貯湯タンク10に戻すか、または給湯用熱交換器30の一次側通路30A(外側管30a)に流通させるかのいずれか一方を選択するように構成しても良い。
(Third embodiment)
In the above embodiment, the downstream end of the primary side passage 60A (outer pipe 60a) of the reheating heat exchanger 60 is configured at the central portion of the hot water storage tank 10 from which the intermediate temperature storage fluid is taken out by the intermediate temperature extraction pipe 13, Furthermore, the circulation circuit 11 is configured so that the medium-temperature heat storage fluid flows through the upstream end of the primary passage 30A (outer pipe 30a) of the hot water supply heat exchanger 30, but the present invention is not limited thereto. The high temperature extraction pipe 12 is connected to the upstream end of the primary side passage 30A (outer pipe 30a), and the downstream end of the intermediate temperature extraction pipe 13 is connected to the middle of the primary side passage 30A (outer pipe 30a). Either the heat storage fluid exchanged by the reheating heat exchanger 60 is returned to the hot water storage tank 10 or is circulated through the primary passage 30A (outer pipe 30a) of the hot water supply heat exchanger 30. One may be configured to choose.

具体的には、図5に示すように、給湯用熱交換器30の循環回路11を一次側通路30A(外側管30a)の上流端に高温取り出し配管12を接続し、一次側通路30A(外側管30a)の中途に中温取り出し配管13の下流端が接続するように構成し、さらに、高温取り出し配管12と往き管14との分岐部に流量比を調節する流量比調節弁16cを設けるとともに、中温取り出し配管13の上流側に第2循環ポンプ17aとその下流側に流れ方向を切り換える三方弁16dを設け、さらに、流量比調節弁16cの一方に追い焚き用熱交換器60の一次側通路60A(外側管60a)の上流端が連通するように接続し、三方弁16dの一方が追い焚き用熱交換器60の一次側通路60A(外側管60a)の下流端に連通するように接続している。なお、54aは中温熱交換前サーミスタであり、一次側通路30A(外側管30a)に流通する中温の蓄熱用流体の湯温を検出する水温センサである。   Specifically, as shown in FIG. 5, the circulation circuit 11 of the hot water supply heat exchanger 30 is connected to the upstream end of the primary side passage 30A (outer pipe 30a) with a high temperature extraction pipe 12, and the primary side passage 30A (outside In the middle of the pipe 30a), the downstream end of the intermediate temperature extraction pipe 13 is connected, and a flow rate adjusting valve 16c for adjusting the flow ratio is provided at a branch portion between the high temperature extraction pipe 12 and the forward pipe 14, A second circulation pump 17a and a three-way valve 16d for switching the flow direction are provided on the upstream side of the intermediate temperature extraction pipe 13 and further on the downstream side thereof. Further, the primary side passage 60A of the reheating heat exchanger 60 is provided on one of the flow rate control valves 16c. (Outer pipe 60a) is connected so that the upstream end communicates, and one of the three-way valves 16d is connected so as to communicate with the downstream end of the primary passage 60A (outer pipe 60a) of the reheating heat exchanger 60. That. Reference numeral 54a denotes a thermistor prior to medium temperature heat exchange, which is a water temperature sensor that detects the hot water temperature of the medium temperature heat storage fluid flowing through the primary passage 30A (outer pipe 30a).

流量比調節弁16cは、給湯用熱交換器30および追い焚き用熱交換器60に流通させる蓄熱用流体の流量比を調節する弁であり、給湯用配管33、33aから出湯する給湯のときには、給湯用熱交換器30側に高温の蓄熱用流体の全流量が流れ、浴水を追い焚きするときは追い焚き用熱交換器60に全流量が流れ、追い焚きしているときに給湯が行なわれているときは両者に蓄熱用流体が流れるようにしている。   The flow rate ratio adjustment valve 16c is a valve that adjusts the flow rate ratio of the heat storage fluid to be circulated through the hot water supply heat exchanger 30 and the reheating heat exchanger 60, and when hot water is discharged from the hot water supply pipes 33 and 33a, The total flow rate of the high-temperature heat storage fluid flows to the hot water supply heat exchanger 30 side, and when the bath water is replenished, the total flow rate flows to the recuperation heat exchanger 60, and hot water supply is performed when reheating. When this happens, heat storage fluid flows through both.

また、三方弁16dは、上記と同じように、給湯のときは貯湯タンク10内と給湯用熱交換器30の一次側通路30A(外側管30a)側とが連通し、浴水を追い焚きするときに貯湯タンク10内と追い焚き用熱交換器60一次側通路60A(外側管60a)側とが連通し、追い焚きしているときに給湯が行なわれているときに、追い焚き用熱交換器60一次側通路60A(外側管60a)と給湯用熱交換器30の一次側通路30A(外側管30a)側とが連通するように給湯制御部41により制御される。   Similarly to the above, the three-way valve 16d communicates the hot water in the hot water storage tank 10 and the primary passage 30A (outer pipe 30a) side of the hot water supply heat exchanger 30 when hot water is supplied. Sometimes the inside of the hot water storage tank 10 communicates with the reheating heat exchanger 60 primary side passage 60A (outer pipe 60a), and reheating heat exchange is performed when hot water is supplied while reheating. The hot water supply controller 41 controls the primary side passage 60A (outer pipe 60a) of the water heater 60 and the primary side passage 30A (outer pipe 30a) side of the hot water supply heat exchanger 30 to communicate with each other.

以上の第3実施形態の貯湯式給湯装置によれば、一次側通路30A(外側管30a)の中途が中温取り出し配管13の下流側に接続されていることにより、一次側通路30A(外側管30a)の中途から下流側は給湯用水が流通する二次側通路30B(内側管30b)の上流側と、中温の蓄熱用流体とが熱交換されることになるので、効率的に温度低下した湯温の蓄熱用流体を貯湯タンク10に戻すことができる。   According to the hot water storage type hot water supply apparatus of the third embodiment described above, the middle of the primary side passage 30A (outer pipe 30a) is connected to the downstream side of the intermediate temperature takeout pipe 13, whereby the primary side passage 30A (outer pipe 30a). In the middle and downstream, the upstream side of the secondary side passage 30B (inner pipe 30b) through which hot water supply water circulates and the medium temperature heat storage fluid are heat-exchanged. The hot heat storage fluid can be returned to the hot water storage tank 10.

また、追い焚きしているときに給湯するときにおいて、浴水の追い焚きにより中温の蓄熱用流体が戻ってくるが、この中温の蓄熱用流体を給湯用熱交換器30側で消費することができるとともに、温度低下した湯温の蓄熱用流体を貯湯タンク10に戻すことができるので、以上の実施形態と同様の効果を奏する。   In addition, when hot water is supplied while reheating, the medium temperature heat storage fluid is returned by reheating the bath water, but this medium temperature heat storage fluid may be consumed on the hot water supply heat exchanger 30 side. In addition, since the heat storage fluid of the hot water whose temperature has decreased can be returned to the hot water storage tank 10, the same effects as those of the above embodiment can be obtained.

また、本実施形態の中温熱交換前サーミスタ54aは、一次側通路30A(外側管30a)に流通する中温の蓄熱用流体の湯温を所定温度以上とならないように流量比調節弁16cで調節すると良い。これにより、熱交換後の蓄熱用流体の湯温(戻り管15)を所定温度以上にならないように制御することができる。従って、貯湯タンク10内の下方部10eに戻される蓄熱用流体の湯温が高くならないように制御される。なお、本実施形態では、給湯用熱交換器30を一体で形成したが、別体であっても良い。   Further, the thermistor 54a before the medium temperature heat exchange in the present embodiment adjusts the hot water temperature of the medium temperature heat storage fluid flowing through the primary side passage 30A (outer pipe 30a) by the flow rate control valve 16c so as not to exceed a predetermined temperature. good. Thereby, the hot water temperature (return pipe 15) of the heat storage fluid after heat exchange can be controlled so as not to exceed a predetermined temperature. Therefore, the hot water temperature of the heat storage fluid returned to the lower portion 10e in the hot water storage tank 10 is controlled so as not to increase. In the present embodiment, the hot water supply heat exchanger 30 is integrally formed, but may be a separate body.

(第4実施形態)
以上の実施形態では、追い焚き用熱交換器60を貯湯タンク10の外部に配置したが、これに限らず、具体的に、図6に示すように、例えば、パイプからなりスパイラル状に形成した配管で追い焚き用熱交換器60を構成し、この熱交換器36を貯湯タンク10内の上方に収納させたものである。これによれば、貯湯タンク10内に中温の蓄熱用流体の温度層が増加するが、循環回路11a、第2循環ポンプ17aなどの部品が削減できる。これにより、部品コストが安くなる。
(Fourth embodiment)
In the above embodiment, the reheating heat exchanger 60 is disposed outside the hot water storage tank 10. However, the present invention is not limited thereto, and specifically, as shown in FIG. The reheating heat exchanger 60 is constituted by piping, and the heat exchanger 36 is accommodated above the hot water storage tank 10. According to this, although the temperature layer of the medium temperature heat storage fluid increases in the hot water storage tank 10, parts such as the circulation circuit 11a and the second circulation pump 17a can be reduced. This reduces the component cost.

なお、本実施形態では、循環回路11を第1実施形態で構成させたが、図7に示すように、第3実施形態と同じように、給湯用熱交換器30の一次側通路30A(外側管30a)の上流端に高温取り出し配管12を接続し、一次側通路30A(外側管30a)の中途に中温取り出し配管13の下流端が接続するように構成させても良い。これによれば、第3実施形態よりも循環回路11a、第2循環ポンプ17aおよび三方弁16dなどの部品が削減できる。   In addition, in this embodiment, although the circulation circuit 11 was comprised by 1st Embodiment, as shown in FIG. 7, as with 3rd Embodiment, the primary side channel | path 30A (outside of the hot water supply heat exchanger 30 is shown. The high temperature extraction pipe 12 may be connected to the upstream end of the pipe 30a), and the downstream end of the intermediate temperature extraction pipe 13 may be connected to the middle of the primary passage 30A (outer pipe 30a). According to this, parts, such as the circulation circuit 11a, the 2nd circulation pump 17a, and the three-way valve 16d, can be reduced rather than 3rd Embodiment.

(他の実施形態)
以上の実施形態では、冷媒に二酸化炭素を用いたヒートポンプユニット20を熱源装置として説明したが、これに限らず、フロン、代替フロンなどの冷媒を用いる一般的なヒートポンプサイクルでも良い。
(Other embodiments)
In the above embodiment, the heat pump unit 20 using carbon dioxide as a refrigerant has been described as a heat source device. However, the present invention is not limited to this, and a general heat pump cycle using a refrigerant such as chlorofluorocarbon or alternative chlorofluorocarbon may be used.

また、以上の実施形態では、貯湯タンク10は、必ずしも樹脂材料を使用する必要はなく、金属材料で成形しても良い。また、貯湯タンク10の形状は、直方体形状でなくても、例えば円筒形状でも良い。また、貯湯タンク10を大気開放形に形成したが、密閉タイプ構造の貯湯タンクでも良い。ただしこの場合には、減圧弁、圧力逃がし弁などのタンクを保護するための部品が必要となる。   Moreover, in the above embodiment, the hot water storage tank 10 does not necessarily need to use a resin material, and may be shape | molded with a metal material. Moreover, the shape of the hot water storage tank 10 may not be a rectangular parallelepiped shape but may be a cylindrical shape, for example. In addition, although the hot water storage tank 10 is formed in an open air type, a hot water storage tank having a sealed type structure may be used. In this case, however, parts for protecting the tank such as a pressure reducing valve and a pressure relief valve are required.

また、以上の実施形態では、給湯用熱交換器30の一次側通路30A(外側管30a)の内側に二次側通路30B(内側管30b)を設けたが、その逆に一次側通路30Aの外側に二次側通路30Bを設けても良い。また、上述した内側管30bおよび外側管30aに使用される材料は一例であり、例えば、内側管30bは熱伝導率の高いアルミニウムを使用することができ、外側管30aは金属製でも良い。   Moreover, in the above embodiment, the secondary side passage 30B (inner side tube 30b) is provided inside the primary side passage 30A (outer side tube 30a) of the hot water supply heat exchanger 30, but conversely, the primary side passage 30A The secondary side passage 30B may be provided outside. Moreover, the material used for the inner tube 30b and the outer tube 30a described above is an example. For example, the inner tube 30b can use aluminum having high thermal conductivity, and the outer tube 30a may be made of metal.

また、給湯用熱交換器30は、内側管30bと外側管30aからなる二重管構造に限定されるものでなく、図8に示すように、複数の流通部30A、30Bを有する一次側通路30a(外側管30a)、および二次側通路30b(内側管30b)を接合した対向流式の熱交換器で構成しても良い。さらに、同様の構造を金属製からなる板材より形成しても良い。なお、追い焚き用熱交換器60においても、上述した給湯用熱交換器30と同じ構成であっても良い。   Moreover, the heat exchanger 30 for hot water supply is not limited to the double pipe structure which consists of the inner side pipe | tube 30b and the outer side pipe | tube 30a, but as shown in FIG. 8, the primary side channel | path which has several distribution | circulation part 30A, 30B You may comprise with the counterflow type heat exchanger which joined 30a (outer pipe | tube 30a) and the secondary side channel | path 30b (inner pipe | tube 30b). Furthermore, a similar structure may be formed from a metal plate. The reheating heat exchanger 60 may have the same configuration as the above-described hot water supply heat exchanger 30.

本発明の第1実施形態における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における給湯用熱交換器30および追い焚き用熱交換器を構成する外側管と内側管の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the outer side pipe | tube and inner side pipe | tube which comprise the heat exchanger 30 for hot water supply in the 1st Embodiment of this invention, and the reheating heat exchanger. 本発明の第1実施形態の変形例における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply apparatus in the modification of 1st Embodiment of this invention. 本発明の第2実施形態における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in 2nd Embodiment of this invention. 本発明の第3実施形態における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in 3rd Embodiment of this invention. 本発明の第4実施形態における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in 4th Embodiment of this invention. 本発明の第4実施形態の変形例における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in the modification of 4th Embodiment of this invention. 他の実施形態における給湯用熱交換器30を構成する第1の流通部と第2の流通部の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the 1st distribution part and the 2nd distribution part which comprise the heat exchanger 30 for hot water supply in other embodiment. 従来技術における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply apparatus in a prior art.

符号の説明Explanation of symbols

10…貯湯タンク
12…高温取り出し配管
13…中温取り出し配管
16…高中温混合弁(流量比調節手段)
16a…流量調節弁(第1流量調節手段)
20…ヒートポンプユニット(加熱手段)
21…流体加熱用流路
30…給湯用熱交換器
30a…外側管(第1の流通部)
30b…内側管(第2の流通部)
35…給湯用混合弁(給湯温度調節手段)
54…熱交換前サーミスタ(熱交換前水温センサ)
55…貯湯サーミスタ(水温センサ)
60…追い焚き用熱交換器
60a…外側管(第3の流通部)
60b…内側管(第4の流通部)
DESCRIPTION OF SYMBOLS 10 ... Hot water storage tank 12 ... High temperature extraction piping 13 ... Medium temperature extraction piping 16 ... High / medium temperature mixing valve (flow rate adjustment means)
16a ... Flow control valve (first flow control means)
20 ... Heat pump unit (heating means)
21 ... Flow path for fluid heating 30 ... Heat exchanger for hot water supply 30a ... Outer pipe (first flow section)
30b ... Inner pipe (second circulation part)
35 ... Hot water mixing valve (hot water temperature control means)
54 ... Thermistor before heat exchange (Water temperature sensor before heat exchange)
55 ... Hot water storage thermistor (water temperature sensor)
60 ... Reheating heat exchanger 60a ... Outer pipe (third distribution section)
60b ... Inner pipe (fourth distribution section)

Claims (12)

蓄熱用流体を内部に貯える貯湯タンク(10)と、
前記貯湯タンク(10)内の最下部の蓄熱用流体を前記貯湯タンク(10)内の最上部に送る流体加熱用流路(21)と、
前記流体加熱用流路(21)に設けられ、前記流体加熱用流路(21)を流れる蓄熱用流体を加熱する加熱手段(20)と、
前記貯湯タンク(10)内の蓄熱用流体が流通する第1の流通部(30a)と給湯用水が流通する第2の流通部(30b)とを隣接して設け、かつ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行なう給湯用熱交換器(30)とを備える貯湯式給湯装置において、
前記貯湯タンク(10)内の蓄熱用流体と浴槽内の浴水とで熱交換を行なう追い焚き用熱交換器(60)が設けられ、
前記給湯用熱交換器(30)は、前記第1の流通部(30a)の下流端が前記貯湯タンク(10)の下方部に連通するように構成され、かつ前記加熱手段(20)により加熱された前記貯湯タンク(10)内に貯えられた蓄熱用流体のうち、高温の蓄熱用流体、もしくは前記追い焚き用熱交換器(60)により熱交換された蓄熱用流体を含む中温の蓄熱用流体、もしくは高温と中温の蓄熱用流体の両方を前記第1の流通部(30a)に流通するように構成されたことを特徴とする貯湯式給湯装置。
A hot water storage tank (10) for storing heat storage fluid therein;
A fluid heating flow path (21) for sending the lowest heat storage fluid in the hot water storage tank (10) to the uppermost part in the hot water storage tank (10);
A heating means (20) provided in the fluid heating channel (21) for heating the heat storage fluid flowing through the fluid heating channel (21);
A first circulation part (30a) through which heat storage fluid in the hot water storage tank (10) circulates and a second circulation part (30b) through which hot water supply circulates are provided adjacent to each other, and the heat storage fluid and hot water supply water are provided. In a hot water storage type hot water supply apparatus comprising a hot water supply heat exchanger (30) for performing heat exchange between the two,
A reheating heat exchanger (60) for exchanging heat between the heat storage fluid in the hot water storage tank (10) and the bath water in the bathtub is provided,
The hot water supply heat exchanger (30) is configured such that a downstream end of the first circulation part (30a) communicates with a lower part of the hot water storage tank (10), and is heated by the heating means (20). Among the heat storage fluid stored in the hot water storage tank (10), the medium temperature storage heat storage fluid includes a high-temperature heat storage fluid or a heat storage fluid heat-exchanged by the reheating heat exchanger (60). A hot water storage type hot water supply apparatus configured to circulate a fluid or a high-temperature and medium-temperature heat storage fluid to the first circulation part (30a).
前記貯湯タンク(10)には、高温の蓄熱用流体を取り出す高温取り出し配管(12)と、中温の蓄熱用流体を取り出す中温取り出し配管(13)とが設けられ、
前記追い焚き用熱交換器(60)は、熱交換された蓄熱用流体が前記中温取り出し配管(13)に取り出されるように構成されるとともに、前記給湯用熱交換器(30)は、前記高温取り出し配管(12)から取り出される高温の蓄熱用流体、もしくは前記高温取り出し配管(12)から取り出される高温の蓄熱用流体と前記中温取り出し配管(13)から取り出される中温の蓄熱用流体との両方を前記第1の流通部(30a)に流通するように構成されることを特徴とする請求項1に記載の貯湯式給湯装置。
The hot water storage tank (10) is provided with a high temperature extraction pipe (12) for extracting a high temperature heat storage fluid and a medium temperature extraction pipe (13) for extracting an intermediate temperature heat storage fluid,
The reheating heat exchanger (60) is configured such that the heat-exchanged heat storage fluid is extracted to the intermediate temperature extraction pipe (13), and the hot water supply heat exchanger (30) is the high temperature A high-temperature heat storage fluid taken out from the take-out pipe (12), or a high-temperature heat storage fluid taken out from the high-temperature take-out pipe (12) and an intermediate temperature heat storage fluid taken out from the intermediate-temperature take-out pipe (13) It is comprised so that it may distribute | circulate to the said 1st distribution part (30a), The hot water storage type hot-water supply apparatus of Claim 1 characterized by the above-mentioned.
前記給湯用熱交換器(30)は、前記第1の流通部(30a)の上流端が前記高温取り出し配管(12)の下流側に接続され、かつ前記第1の流通部(30a)の中途が前記中温取り出し配管(13)の下流側に接続されていることを特徴とする請求項2に記載の貯湯式給湯装置。   In the hot water supply heat exchanger (30), the upstream end of the first circulation part (30a) is connected to the downstream side of the high-temperature take-out pipe (12), and the middle of the first circulation part (30a) Is connected to the downstream side of the intermediate temperature extraction pipe (13). 前記追い焚き用熱交換器(60)は、前記貯湯タンク(10)内の蓄熱用流体が流通する第3の流通部(60a)と浴槽内の浴水が流通する第4の流通部(60b)とを隣接して設け、かつ蓄熱用流体と浴槽内の浴水とが対向流となるように構成され、さらに、前記第3の流通部(60a)の上流端が前記高温取り出し配管(12)に接続され、前記第3の流通部(60a)の下流端が前記中温取り出し配管(13)に取り出されるように構成されることを特徴とする請求項2または請求項3に記載の貯湯式給湯装置。   The reheating heat exchanger (60) includes a third circulation part (60a) through which heat storage fluid in the hot water storage tank (10) circulates and a fourth circulation part (60b) through which bath water in the bathtub circulates. ) And the heat storage fluid and the bath water in the bathtub are opposed to each other, and the upstream end of the third circulation part (60a) is connected to the high temperature take-out pipe (12 The hot water storage system according to claim 2 or 3, wherein a downstream end of the third circulation part (60a) is extracted to the intermediate temperature extraction pipe (13). Hot water supply device. 前記追い焚き用熱交換器(60)は、前記貯湯タンク(10)内の上方に配設され、その貯湯タンク(10)内の蓄熱用流体と内部に流通する浴槽内の浴水との両者で熱交換するように構成されることを特徴とする請求項2または請求項3に記載の貯湯式給湯装置。   The reheating heat exchanger (60) is disposed above the hot water storage tank (10), and both of the heat storage fluid in the hot water storage tank (10) and the bath water in the bathtub flowing inside. The hot water storage type hot water supply apparatus according to claim 2 or 3, wherein the hot water storage apparatus is configured to perform heat exchange. 前記中温取り出し配管(13)の上流端近傍には、蓄熱用流体の湯温を検出する水温センサ(55)が設けられ、
前記給湯用熱交換器(30)は、前記水温センサ(55)により検出された湯温が所定温度未満のときに前記高温取り出し配管(12)から取り出される高温の蓄熱用流体を前記第1の流通部(30a)に流通させ、前記水温センサ(55)により検出された湯温が所定温度以上のときに前記中温取り出し配管(13)から取り出される中温の蓄熱用流体、もしくは前記中温取り出し配管(13)から取り出される中温の蓄熱用流体と前記高温取り出し配管(12)から取り出される高温の蓄熱用流体との両方を前記第1の流通部(30a)に流通するように構成されたことを特徴とする請求項2ないし請求項5のいずれか一項に記載の貯湯式給湯装置。
A water temperature sensor (55) for detecting the hot water temperature of the heat storage fluid is provided in the vicinity of the upstream end of the intermediate temperature extraction pipe (13),
The hot water supply heat exchanger (30) supplies the high temperature heat storage fluid taken out from the high temperature extraction pipe (12) when the hot water temperature detected by the water temperature sensor (55) is lower than a predetermined temperature. When the hot water temperature detected by the water temperature sensor (55) is equal to or higher than a predetermined temperature, the medium temperature heat storage fluid taken out from the intermediate temperature takeout pipe (13) or the intermediate temperature takeout pipe ( 13) The medium-temperature heat storage fluid taken out from 13) and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe (12) are both circulated to the first flow part (30a). The hot water storage type hot water supply apparatus according to any one of claims 2 to 5.
前記高温取り出し配管(12)と前記中温取り出し配管(13)との下流側合流部位にそれぞれの流量比を調節する流量比調節手段(16)が設けられ、
前記流量比調節手段(16)は、前記水温センサ(55)により検出された湯温が所定温度以上のときに、前記中温取り出し配管(13)から取り出される中温の蓄熱用流体、もしくは前記中温取り出し配管(13)から取り出される中温の蓄熱用流体と前記高温取り出し配管(12)から取り出される高温の蓄熱用流体との両方を前記第1の流通部(30a)に流通するように調節されたことを特徴とする請求項6に記載の貯湯式給湯装置。
Flow rate ratio adjusting means (16) for adjusting the respective flow rate ratios is provided at the downstream side joining portion of the high temperature take-out pipe (12) and the intermediate temperature take-out pipe (13),
When the hot water temperature detected by the water temperature sensor (55) is equal to or higher than a predetermined temperature, the flow rate ratio adjusting means (16) is an intermediate temperature storage fluid that is taken out from the intermediate temperature take-out pipe (13), or the intermediate temperature take-out Adjustment was made so that both the medium-temperature heat storage fluid taken out from the pipe (13) and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe (12) are circulated to the first circulation part (30a). The hot water storage type hot water supply apparatus according to claim 6.
前記中温取り出し配管(13)には、前記中温取り出し配管(13)内を流通する中温の蓄熱用流体の流量を調節する第1流量調節手段(16a)が設けられ、
前記第1流量調節手段(16a)は、前記水温センサ(55)により検出された湯温が所定温度以上のときに、前記中温取り出し配管(13)から取り出される中温の蓄熱用流体、もしくは前記中温取り出し配管(13)から取り出される中温の蓄熱用流体と前記高温取り出し配管(12)から取り出される高温の蓄熱用流体との両方を前記第1の流通部(30a)に流通するように調節されたことを特徴とする請求項6に記載の貯湯式給湯装置。
The intermediate temperature extraction pipe (13) is provided with first flow rate adjusting means (16a) for adjusting the flow rate of the medium temperature heat storage fluid flowing through the intermediate temperature extraction pipe (13).
When the hot water temperature detected by the water temperature sensor (55) is equal to or higher than a predetermined temperature, the first flow rate adjusting means (16a) is an intermediate temperature heat storage fluid taken out from the intermediate temperature take-out pipe (13), or the intermediate temperature. It was adjusted so that both the medium temperature storage fluid extracted from the extraction pipe (13) and the high temperature storage fluid extracted from the high temperature extraction pipe (12) could be circulated to the first circulation part (30a). The hot water storage type hot water supply apparatus according to claim 6.
前記中温取り出し配管(13)は、少なくとも二つ以上の複数個設けられ、そのうちのいずれか一つの中温の蓄熱用流体を選択して前記第1の流通部(30a)に流通するように構成されたことを特徴とする請求項2ないし請求項8のいずれか一項に記載の貯湯式給湯装置。   The intermediate temperature take-out pipe (13) is provided with a plurality of at least two or more, and is configured to select any one of the medium temperature heat storage fluids and distribute it to the first circulation part (30a). The hot water storage type hot water supply apparatus according to any one of claims 2 to 8, wherein the hot water storage type hot water supply apparatus is provided. 前記第1の流通部(30a)に流通する前記中温取り出し配管(13)から取り出された中温の蓄熱用流体の湯温を検出する熱交換前水温センサ(54)が設けられ、前記流量比調節手段(16)もしくは前記第1流量調節手段(16a)は、前記熱交換前水温センサ(54)により検出された湯温が所定温度以上となるように調節されることを特徴とする請求項7ないし請求項9のいずれか一項に記載の貯湯式給湯装置。   A pre-heat exchange water temperature sensor (54) for detecting the hot water temperature of the medium temperature heat storage fluid taken out from the intermediate temperature take-out pipe (13) flowing through the first flow part (30a) is provided, and the flow rate ratio adjustment The means (16) or the first flow rate adjusting means (16a) is adjusted so that the hot water temperature detected by the pre-heat exchange water temperature sensor (54) is equal to or higher than a predetermined temperature. The hot water storage type hot water supply apparatus according to any one of claims 9 to 9. 前記第2の流通部(30b)の下流側には、前記給湯用熱交換器(30)により熱交換された給湯用水に前記給湯用熱交換器(30)で熱交換される前の給湯用水とを混合して給湯用水の温度調節する給湯温度調節手段(35)が設けられることを特徴とする請求項1ないし請求項10のいずれか一項に記載の貯湯式給湯装置。   On the downstream side of the second circulation section (30b), the hot water supply water before the hot water supply heat exchanger (30) exchanges heat with the hot water supply water heat exchanged by the hot water supply heat exchanger (30). The hot water storage type hot water supply apparatus according to any one of claims 1 to 10, further comprising a hot water supply temperature adjusting means (35) for adjusting the temperature of hot water supply water by mixing the water temperature. 前記加熱手段(20)は、冷媒の高圧側圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱することを特徴とする請求項1ないし請求項11のいずれか一項に記載の貯湯式給湯装置。   The said heating means (20) is a supercritical heat pump cycle in which the high-pressure side pressure of the refrigerant is equal to or higher than the critical pressure, and heats the heat storage fluid with the refrigerant whose pressure is increased to the critical pressure or higher. The hot water storage type hot water supply apparatus according to any one of claims 11 to 11.
JP2004014827A 2004-01-22 2004-01-22 Hot water storage type water heater Pending JP2005207672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014827A JP2005207672A (en) 2004-01-22 2004-01-22 Hot water storage type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014827A JP2005207672A (en) 2004-01-22 2004-01-22 Hot water storage type water heater

Publications (1)

Publication Number Publication Date
JP2005207672A true JP2005207672A (en) 2005-08-04

Family

ID=34900499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014827A Pending JP2005207672A (en) 2004-01-22 2004-01-22 Hot water storage type water heater

Country Status (1)

Country Link
JP (1) JP2005207672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147235A (en) * 2005-11-30 2007-06-14 Noritz Corp Liquid heater
JP2008241126A (en) * 2007-03-27 2008-10-09 Osaka Gas Co Ltd Bath device
JP2012007802A (en) * 2010-06-24 2012-01-12 Hitachi Appliances Inc Water heater and hot water supply system
JP2012042166A (en) * 2010-08-23 2012-03-01 Hitachi Appliances Inc Water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147235A (en) * 2005-11-30 2007-06-14 Noritz Corp Liquid heater
JP4711129B2 (en) * 2005-11-30 2011-06-29 株式会社ノーリツ Liquid heating device
JP2008241126A (en) * 2007-03-27 2008-10-09 Osaka Gas Co Ltd Bath device
JP2012007802A (en) * 2010-06-24 2012-01-12 Hitachi Appliances Inc Water heater and hot water supply system
JP2012042166A (en) * 2010-08-23 2012-03-01 Hitachi Appliances Inc Water heater

Similar Documents

Publication Publication Date Title
JP4485406B2 (en) Hot water storage water heater
JP2006336937A (en) Storage type hot water supply device
KR20160147027A (en) Heating and hot water supply system
JP2005274132A (en) Hot-water storage type water heating system
JP2008020100A (en) Hot water storage type hot water supply heating device
JP4407643B2 (en) Hot water storage water heater
JP2004286307A (en) Storage type water heater
JP5245217B2 (en) Hot water storage hot water heater
JP4104592B2 (en) Hot water storage water heater
JP3887781B2 (en) Heat pump water heater
JP4030394B2 (en) Hot water storage water heater
JP2006234314A (en) Heat pump water heater
JP2005233596A (en) Heat pump hot-water supply device
JP2005207672A (en) Hot water storage type water heater
JP4101190B2 (en) Hot water storage water heater
JP4207867B2 (en) Hot water storage water heater
JP4123201B2 (en) Hot water storage water heater
JP3868909B2 (en) Hot water storage water heater
JP4064356B2 (en) Hot water storage water heater
JP2004116889A (en) Hot water storage-type hot water supply device
JP4893165B2 (en) Heat pump type water heater
JP4779878B2 (en) Hot water storage water heater
JP2005201569A (en) Hot water storage type water heater
JP4100355B2 (en) Hot water storage water heater
JP3908768B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060301

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080229

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080321