JP2903464B2 - Novel peptides and activated oxygen inhibitors - Google Patents

Novel peptides and activated oxygen inhibitors

Info

Publication number
JP2903464B2
JP2903464B2 JP9225477A JP22547797A JP2903464B2 JP 2903464 B2 JP2903464 B2 JP 2903464B2 JP 9225477 A JP9225477 A JP 9225477A JP 22547797 A JP22547797 A JP 22547797A JP 2903464 B2 JP2903464 B2 JP 2903464B2
Authority
JP
Japan
Prior art keywords
activated oxygen
peptide
fraction
nonapeptide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9225477A
Other languages
Japanese (ja)
Other versions
JPH1135598A (en
Inventor
邦男 末綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9225477A priority Critical patent/JP2903464B2/en
Publication of JPH1135598A publication Critical patent/JPH1135598A/en
Application granted granted Critical
Publication of JP2903464B2 publication Critical patent/JP2903464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、医薬品として有用性を
有する下記のアミノ酸配列で表されるペプチドならびに
それらペプチドを有効成分とする活性化酸素阻害剤に関
する。 Leu−Val−Pro−Pro−Gln−Glu−C
ys−Gln−Lys (式中、アミノ酸残基を表わす各記号は、アミノ酸化学
において慣用の表示法によるものである。)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a peptide having the following amino acid sequence which has utility as a pharmaceutical, and an activated oxygen inhibitor containing such a peptide as an active ingredient. Leu-Val-Pro-Pro-Gln-Glu-C
ys-Gln-Lys (wherein each symbol representing an amino acid residue is represented by a convention used in amino acid chemistry.)

【0002】[0002]

【従来の技術】活性化酸素が関与する疾病は、火傷、関
節炎などの炎症、再環流障害、抗癌剤の副作用、放射線
障害、消化性潰瘍、細菌性ショック、悪液質、自己免疫
疾患など幅広く存在する。好中球やマクロファージなど
の活性化によって、発生する大量の活性化酸素が引き起
こす疾患は、すべて対象となる。一般に、酸素には動物
に必須の酸素(三重項酸素分子:)と、特定の条
件あるいは体の不調時に生じるラジカル(活性化酸素)
とが存在する。ラジカルは直接又は間接的(過酸化反応
という形で)に細胞膜、細胞内顆粒膜、あるいはDNA
をはじめ種々の細胞成分を変質、損傷させたりする。こ
のラジカルは体内で生産され、その種類はスーパーオキ
シドアニオン(・)、一重項酸素(・)、
水酸化ラジカル(・OH)等が存在する。このうちスー
パーオキシドアニオン(・)は細胞膜の不飽和脂
肪酸等に作用して過酸化反応を引き起こし、脂質に対す
る酸化力は動物に必須な酸素の数千倍も高いといわれて
いる。活性化酸素阻害剤としてのスーパーオキシドジム
スターゼ(SOD、酵素番号EC1.15.1.1)
は、1969年マクコルドら[McCord,J.M.
&Fridovich,I. :J.Biol.Che
m.,244,6049(1969)]によってその作
用が発見された酵素であり、酸素分子が一電子還元され
て生じるスーパーオキシドアニオン(・)を不均
化する 2・+2H→ H+O を触媒する。人体が正常なときにはSODが働いてスー
パーオキシドアニオンの発生を抑えている。このSOD
活性は加齢と共に低下し、すなわち壮年期から老年期に
なると活性が低下し、SOD活性の増減は生体の老化、
癌化のバロメーターともいわれている。このようなSO
D活性が低下するとラジカルの発生は抑えにくくなりS
ODを摂取補強するか、又はラジカルを捕捉除去する活
性化酸素阻害剤の摂取が必要となってくる。一方、水溶
性の抗酸化剤としてのアミノ酸から蛋白質にいたるポリ
ペプチドの活性化酸素阻害作用は、油脂をペプチド類が
包み込むことにより酸素分子と不飽和脂肪酸の接触を阻
害し、脂質ペルオキシラジカル(LOO・)の発生を抑
制すると考えられており、BHA(ブチルヒドロキシル
アニソール)及びBHT(ジブチルヒドロキシトルエ
ン)の抗酸化作用のように、油脂(L)の酸化の際に生
じるラジカル(LOO・)に作用して、酸化の連鎖反応
を停止させるラジカル捕捉作用とは区別している。 LOO・+AH →LOOH+AH・2AH・→2A
+A 又は LOO・+AH・→LOOH+A(A
;抗酸化剤) このような背景のもとに、抗癌、老化防止に対する特効
薬がない今日、環境中からDNA損傷因子、突然変異因
子、発癌因子、老化因子等を取り除いたり不活性化し、
活性化酸素フリーラジカル消去作用並びに抗酸化作用を
示す活性化酸素阻害剤に関する研究や検討が進められて
いる。
2. Description of the Related Art Diseases involving activated oxygen are widely present, such as inflammation such as burns and arthritis, reperfusion injury, side effects of anticancer drugs, radiation injury, peptic ulcer, bacterial shock, cachexia, and autoimmune diseases. I do. Diseases caused by a large amount of activated oxygen generated by activation of neutrophils and macrophages are all covered. Generally, oxygen includes oxygen essential for animals (triplet oxygen molecule: 3 O 2 ) and radicals (activated oxygen) generated under specific conditions or when the body is upset.
And exists. Radicals can be directly or indirectly (in the form of peroxidation) in cell membranes, intracellular granule membranes, or DNA.
And alters and damages various cell components. The radicals are produced in the body, the type superoxide anion (- O 2 ·), singlet oxygen (1 O 2 ·),
There are hydroxyl radicals (.OH) and the like. Among superoxide anion (- O 2 ·) causes peroxidation acts on unsaturated fatty acids in cell membranes, the oxidizing power to lipid is said to be higher several thousand times the essential oxygen to animals. Superoxide dismutase as activated oxygen inhibitor (SOD, enzyme number EC 1.15.1.1)
In McCord, J. et al., 1969. M.
& Fridovich, I .; : J. Biol. Che
m. , 244,6049 (1969)] by an enzyme that acts is found, superoxide anion oxygen molecules occurs is one-electron reduction (- O 2 ·) the disproportionation 2 - O 2 · + 2H + → Catalyzes H 2 O 2 + O 2 . When the human body is normal, SOD works to suppress the generation of superoxide anions. This SOD
The activity decreases with aging, that is, the activity decreases from the middle age to the old age, and the increase or decrease of the SOD activity depends on the aging of the living body,
It is also called a barometer of canceration. Such SO
When the D activity decreases, it becomes difficult to suppress the generation of radicals and S
It is necessary to take up an activated oxygen inhibitor which supplements OD or scavenges and removes radicals. On the other hand, the activated oxygen inhibitory action of polypeptides ranging from amino acids to proteins as water-soluble antioxidants inhibits the contact between oxygen molecules and unsaturated fatty acids by encapsulating fats and oils by peptides, and the lipid peroxy radical (LOO) It is thought to suppress the generation of ()), and acts on radicals (LOO) generated during the oxidation of fats and oils (L), such as the antioxidant action of BHA (butylhydroxyanisole) and BHT (dibutylhydroxytoluene). Thus, it is distinguished from the radical scavenging action that stops the chain reaction of oxidation. LOO ・ + AH 2 → LOOH + AH ・ 2AH ・ → 2A
H 2 + A or LOO · + AH · → LOOH + A (A
(H 2 ; antioxidant) Against this background, there is no silver bullet for anti-cancer and anti-aging. Today, DNA damage factors, mutation factors, carcinogens, aging factors, etc. are removed or inactivated from the environment. ,
Studies and studies on activated oxygen inhibitors exhibiting an activated oxygen free radical scavenging action and an antioxidant action have been advanced.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術で、活性
化酸素阻害剤としてのSODはその製造が困難であり又
原料の入手に制限があり、ビタミンE、ビタミンC、カ
テキン類等は、生体を用いた実験では活性化酸素阻害作
用が十分でない等の難点があり、更に強力な作用を有す
る活性化酸素阻害剤が要望されている。又活性化酸素フ
リーラジカル消去作用並びに抗酸化作用を示す活性化酸
素阻害剤の多くは、その殆どが化学合成で製造されたも
のであり、又たとえ植物や動物からの材料を用いた天然
物由来のものであっても、その製造過程で人体に害を及
ぼす化学物質を用いたり、生成物の一部を化学物質と反
応させて作られたものが多い。水溶性の抗酸化剤とし
て、アミノ酸から蛋白質に至るポリペプチドのアミノ酸
配列と抗酸化力に関する知見は極めて少なく、山口ら
[ニューフードインダストリー、31巻、18−22頁
(1989年)]は、ジペプチドがアミノ酸や蛋白質よ
りも抗酸化力が強いことを示しており、又最近、拓殖ら
[日本農芸化学会誌、65巻、1635−1641頁
(1991年)]が、ヒスチジンを含む3種の抗酸化ペ
プチドを報告しているのみである。これら活性化酸素フ
リーラジカル消去作用並びに抗酸化作用を有する活性化
酸素剤が、未だ医薬品として開発が進んでいるとの報告
はない。
In the above-mentioned prior art, SOD as an activated oxygen inhibitor is difficult to produce and the availability of raw materials is limited. Vitamin E, vitamin C, catechins, etc. However, there is a drawback that the activated oxygen inhibitory action is not sufficient in the experiment using, and an activated oxygen inhibitor having a stronger action is demanded. In addition, most of activated oxygen inhibitors exhibiting an activated oxygen free radical scavenging action and an antioxidant action are mostly produced by chemical synthesis, and are derived from natural products using materials from plants and animals. Of these, many are made by using chemical substances that harm the human body during the manufacturing process or by reacting some of the products with the chemical substances. Very little is known about the amino acid sequence and antioxidant activity of polypeptides from amino acids to proteins as water-soluble antioxidants, and Yamaguchi et al. [New Food Industry, 31, 18-22 (1989)] Has a stronger antioxidant activity than amino acids and proteins, and recently Takushoku et al. [Journal of the Japanese Society of Agricultural Chemistry, Vol. 65, pp. 1635-1641 (1991)] reported that three types of antioxidant Only peptides are reported. There is no report that these activated oxygen agents having an active oxygen free radical scavenging action and an antioxidant action are still being developed as pharmaceuticals.

【0004】[0004]

【問題を解決するための手段】本発明者は、生大豆の蛋
白質分解酵素の分解液から薬理作用を有する物質を検索
し、新規なノナペプチドが強い活性化酸素阻害作用を有
することを見出した。そして、このペプチドを医薬とし
て実用化するための研究を鋭意行った。その結果、この
ペプチドが活性化酸素フリーラジカル消去作用並びに抗
酸化作用を有し、天然物由来の活性化酸素阻害剤として
の有用性を見出した。本発明は係る知見に基づくもので
ある。以下に、本発明を詳細に説明する。本発明に係る
新規なペプチドは、次式 Leu−Val−Pro−Pro−Gln−Glu−C
ys−Gln−Lys で示されるL体のアミノ酸配列で表わされる新規なノナ
ペプチドであり、常温における性状は白色の粉末であ
る。
Means for Solving the Problems The present inventor has searched for a substance having a pharmacological action from the degradation solution of the protease of raw soybean and has found that the novel nonapeptide has a strong activated oxygen inhibitory action. And, they intensively studied to put this peptide into practical use as a medicine. As a result, the present inventors have found that this peptide has an active oxygen free radical scavenging action and an antioxidant action, and is useful as an activated oxygen inhibitor derived from natural products. The present invention is based on such findings. Hereinafter, the present invention will be described in detail. The novel peptide according to the present invention has the following formula: Leu-Val-Pro-Pro-Gln-Glu-C
It is a novel nonapeptide represented by an L-form amino acid sequence represented by ys-Gln-Lys, and is a white powder at room temperature.

【0005】前記のノナペプチドは、化学的に合成する
方法又は生大豆の蛋白質分解酵素の分解液から分離精製
する方法を挙げることができる。本発明に係る新規なペ
プチドを化学的に合成する場合には、液相法または固相
法等の通常のペプチド合成法によってポリマー性の固相
支持体へペプチドのC末端(カルボキシル末端側)から
そのアミノ酸残基に対応したL体のアミノ酸を順次ペプ
チド結合によって結合していくのがよい。そして、その
ようにして得られた合成ペプチドは、トリフルオロメタ
ンスルホン酸、フッ化水素等を用いてポリマー性の固相
支持体から切断した後、アミノ酸側鎖の保護基を除去
し、逆相系のカラムを用いた通常の方法で精製すること
ができる。
[0005] The nonapeptide may be chemically synthesized or separated and purified from a raw soybean proteolytic enzyme degradation solution. When chemically synthesizing the novel peptide according to the present invention, a conventional peptide synthesis method such as a liquid phase method or a solid phase method is used to convert a C-terminal (carboxyl terminal side) of the peptide to a polymeric solid support. It is preferable that the L-form amino acids corresponding to the amino acid residues are sequentially bonded by peptide bonds. Then, the synthetic peptide thus obtained is cleaved from the polymeric solid support using trifluoromethanesulfonic acid, hydrogen fluoride, or the like, and then the protecting group of the amino acid side chain is removed. Can be purified by a usual method using a column described above.

【0006】上記のように、本発明に係る新規なノナペ
プチドは、生大豆の蛋白質分解酵素の分解液から分離精
製することができるが、その場合には、例えば、以下の
ようにして行うことができる。上記の新規なペプチドを
含有している生大豆部分を取り出し加水分解する。加水
分解は常法に従って行う。例えば、ペプシン等の蛋白質
分解酵素で加水分解する場合は、生大豆を必要とあれば
更に加水分解した後、酵素の至適値に調整し、酵素を加
えてインキュベートする。次いで必要に応じ中和した
後、酵素を失活させて加水分解液を得る。その加水分解
液を濾紙及び/又はセライト等を用いて濾過することに
よって不溶性成分を除去し、得られた濾液をセロファン
等の半透膜を用いて適当な溶媒(例えば、トリス−塩酸
緩衝液、リン酸緩衝液の中性の緩衝液等)中で充分に透
析し、その濾液中の成分で半透膜を通過した成分を含む
溶液を強酸性陽イオン交換樹脂(例えば、ダウケミカル
社製のDowex50W等)にかけ、その吸着画分から
活性化酸素阻害活性を有する成分を含有する画分を得、
得られた活性化酸素阻害活性画分を陽イオン交換ゲル濾
過(例えば、ファルマシア社製のSP−Sephade
x C−25等)によって分画し、得られた活性化酸素
阻害活性画分を更に逆相HPLCによって分画する。
As described above, the novel nonapeptide according to the present invention can be separated and purified from a raw soybean protease-degrading solution. In that case, for example, the following procedure is performed. it can. The raw soybean portion containing the novel peptide is removed and hydrolyzed. The hydrolysis is performed according to a conventional method. For example, when hydrolyzing with a proteolytic enzyme such as pepsin, raw soybeans are further hydrolyzed if necessary, and then adjusted to the optimal value of the enzyme, and the enzyme is added and incubated. Then, if necessary, after neutralization, the enzyme is inactivated to obtain a hydrolyzed solution. The hydrolyzed solution is filtered using a filter paper and / or celite to remove insoluble components, and the obtained filtrate is filtered using a semipermeable membrane such as cellophane or the like with a suitable solvent (for example, Tris-HCl buffer, After sufficient dialysis in a neutral buffer such as a phosphate buffer, the solution containing the components in the filtrate and having passed through the semipermeable membrane is subjected to a strongly acidic cation exchange resin (for example, Dow Chemical Co., Ltd.). Dowex 50W) to obtain a fraction containing a component having an activated oxygen inhibitory activity from the adsorbed fraction,
The obtained activated oxygen-inhibiting active fraction was subjected to cation exchange gel filtration (for example, SP-Sephade manufactured by Pharmacia).
x C-25), and the obtained activated oxygen inhibition active fraction is further fractionated by reverse phase HPLC.

【0007】この新規なノナペプチドは、静脈内への繰
り返し投与を行った場合、抗体産生を惹起せず、アナフ
ィラキシーショックを起こさない。又このペプチドはL
−アミノ酸のみの配列構造からなり、投与後、生体内の
プロテアーゼにより徐々に分解される為、毒性は極めて
低く安全性は極めて高い(LD50>5000mg/k
g:ラット経口投与)。本発明に係るノナペプチドは、
通常用いられる賦形剤等の添加物を用いて注射剤、錠
剤、カプセル剤、顆粒剤、散剤等に調製することができ
る。投与法としては、通常は、SODが欠乏している哺
乳類(例えば、ヒト、イヌ、ラット等)に注射するこ
と、あるいは経口投与することがあげられる。投与量
は、例えば、動物体重1kg当たりノナペプチド0.0
1−10mgの量である。投与回数は、通常、1日1回
から4回程度であるが、投与経路によって、適宜、調製
することができる。上記の各種製剤において用いられる
賦形剤、結合剤、崩壊剤、滑沢剤等の種類は、特に限定
されず、通常の注射剤、散剤、顆粒剤、錠剤あるいはカ
プセル剤に用いられるものを使用することができる。
The novel nonapeptide does not induce antibody production and does not cause anaphylactic shock when repeatedly administered intravenously. This peptide is L
-Consisting only of amino acid sequence structure, and is gradually degraded by in-vivo proteases after administration. Therefore, its toxicity is extremely low and its safety is extremely high (LD 50 > 5000 mg / k).
g: oral administration to rats). Nonapeptide according to the present invention,
Injections, tablets, capsules, granules, powders and the like can be prepared using commonly used additives such as excipients. The method of administration usually includes injection into mammals (eg, humans, dogs, rats, etc.) deficient in SOD or oral administration. The dose is, for example, 0.0% of nonapeptide per 1 kg of animal body weight.
It is an amount of 1-10 mg. The frequency of administration is usually about once to four times a day, but it can be appropriately adjusted depending on the administration route. The types of excipients, binders, disintegrants, lubricants, etc. used in the above various formulations are not particularly limited, and those used in ordinary injections, powders, granules, tablets or capsules are used. can do.

【0008】錠剤、カプセル剤、顆粒剤、散剤に用いる
添加剤としては、下記のものをあげることができる。賦
形剤としては、結晶セルロース等の糖類、マンニトール
等の糖アルコール類、でんぷん類、無水リン酸カルシウ
ム等;結合剤としては、でんぷん類、ヒドロキシプロピ
ルメチルセルロース等;崩壊剤としては、カルボキシメ
チルセルロース及びそのカリウム塩類;滑沢剤として
は、ステアリン酸及びその塩類、タルク、ワックス類を
あげることができる。又製剤の調製にあたっては、必要
に応じメントール、クエン酸及びその塩類、香料等の矯
臭剤を用いることができる。注射用の無菌組成物は、常
法により、本発明に係る新規なノナペプチドを、注射用
水、生理食塩液及びキシリトールやマンニトールなどの
糖アルコール注射液、プロピレングリコールやポリエチ
レングリコール等のグリコールに溶解又は懸濁させて注
射剤とすることができる。この際、緩衝液、防腐剤、酸
化防止剤等を必要に応じて添加することができる。本発
明の新規なノナペプチドを含有する製剤は凍結乾燥品又
は乾燥粉末の形とし、用時、通常の溶解剤、例えば水又
は生理食塩液にて溶解して用いることもできる。
[0008] Examples of additives used in tablets, capsules, granules and powders include the following. As excipients, sugars such as crystalline cellulose, sugar alcohols such as mannitol, starch, anhydrous calcium phosphate, etc .; as binders, starches, hydroxypropylmethyl cellulose, etc .; as disintegrants, carboxymethyl cellulose and its potassium salts Lubricating agents include stearic acid and its salts, talc and waxes. In preparing the preparations, odorants such as menthol, citric acid and salts thereof, and fragrances can be used as necessary. The sterile composition for injection can be prepared by dissolving or suspending the novel nonapeptide according to the present invention in water for injection, physiological saline, a sugar alcohol injection such as xylitol or mannitol, or a glycol such as propylene glycol or polyethylene glycol by an ordinary method. It can be turbid to obtain an injection. At this time, buffers, preservatives, antioxidants and the like can be added as necessary. The preparation containing the novel nonapeptide of the present invention may be in the form of a freeze-dried product or a dry powder, and may be used by dissolving it with a usual dissolving agent, for example, water or physiological saline when used.

【0009】活性化酸素はマクロファージ等の食細胞内
に生じ、食細胞が捕食した異物を分解する役割を有して
いるが、活性化酸素が過剰に生産されると細胞の外に分
泌され、他の組織に障害を起こす。本発明に係る新規な
ノナペプチドは、優れた活性化酸素阻害作用を有し、活
性化酸素フリーラジカル消去作用並びに抗酸化作用を示
すことから、組織障害を引き起こす過剰な活性酸素を分
解して組織を守る作用を持つことから、例えば抗炎症剤
として、関節炎やリュウマチなどに有効であるほか、ベ
ーチュット病、心筋梗塞等に対しても有用である。
[0009] Activated oxygen is generated in phagocytes such as macrophages, and has a role of decomposing foreign substances that have been engulfed by phagocytes. However, when activated oxygen is excessively produced, it is secreted out of cells. Disturb other organizations. The novel nonapeptide according to the present invention has an excellent activated oxygen inhibitory effect, exhibits an activated oxygen free radical scavenging effect and an antioxidant effect, and therefore degrades excessive active oxygen causing tissue damage to degrade tissue. Since it has a protective effect, it is effective, for example, as an anti-inflammatory agent for arthritis, rheumatism and the like, and is also useful for Behcet's disease, myocardial infarction and the like.

【0010】[0010]

【実施例】以下に実施例として、製造例及び試験例を記
載し、本発明を更に詳細に説明する。 製造例1 生大豆300gに脱イオン水1ιを加えてホモジナイズ
した。得られた大豆ホモジネイトにペプシン9gを加
え、pH2.0に調整して37℃で20時間インキュベ
ートした。このようにして調製した大豆ホモジネイトの
ペプシン分解液をDiaflow膜(アミコン社製、Y
M−10型膜、分画分子量1万)を用いて限外濾過し
た。得られた濾過液をDowex 50W×4(H
を充填したカラムを用いてクロマトグラフィー処理し
た。脱イオン水で水洗し、溶出は2N−NHOHで行
い溶出液を濃縮した。この濃縮液をSephadex
G−25カラムによりクロマトグラフィー処理して低分
子ペプチド画分(分画番号25−42)を分離した。そ
のカラムクロマトグラフを図1に示した。この低分子ペ
プチド画分を濃縮して大豆ペプチド液を得た。更にこの
ペプチド液をSP−Sephadex C−25
(H)カラムによりクロマトグラフィー処理して各ペ
プチド画分としてSP−1画分(分画番号13−2
2)、SP−2画分(分画番号23−29)、SP−3
画分(分画番号30−40)、SP−4画分(分画番号
41−50)、SP−5画分(分画番号51−70)及
びSP−6画分(分画番号71−100)を分離した。
そのカラムクロマトグラフを図2に示した。これら各ペ
プチド画分を凍結乾燥してペプチドパウダー(以下、大
豆ペプチドと称す。)として、SP−1画分2.4g、
SP−2画分5.2g、SP−3画分12.5g、SP
−4画分11.0g、SP−5画分24.6g及びSP
−6画分41.3gを得た。このようにして分画した大
豆ぺプチドの中で、活性化酸素阻害活性の高いSP−4
画分のペプチドパウダーを脱イオン水に溶解(5mg/
25μι)した後HPLCを行った。条件はカラムとし
て野村化学社製Develosil ODS−5(φ
4.6mm ID×25cmL)を使用し、移動相とし
て0.05%トリフルオロ酢酸(以下、TFAと略記す
る。)から25%アセトニトリル/0.05%TFAで
の濃度勾配法により、流速1.0ml/min、検出波
長220nmでクロマトグラフィー処理し、溶出時間7
4.5分に強い活性化酸素阻害作用を有するペプチドフ
ラグメントを得た。その結果は図3に示すとおりであ
る。このようにして得られた活性化酸素阻害作用を有す
るペプチドのアミノ酸配列は、アプライドバイオシステ
ム(ABI)社製のプロテインシークエンサー477A
型を用いて決定された。その結果、次式 Leu−Val−Pro−Pro−Gln−Glu−C
ys−Gln−Lys で示されるL体のアミノ酸配列で表わされるノナペプチ
ドであることが確認された。本発明に係る大豆ペプチド
を活性化酸素阻害剤として、例えば錠剤に製剤する場合
には、常法に従って、例えば次のように処理すればよ
い:(1)ペプチド13g、(2)乳糖87g、(3)
コーンスターチ29g、(4)ステアリン酸マグネシウ
ム1gを原料とし、先ず(1)、(2)及び17gのコ
ーンスターチを混和し、7gのコーンスターチから作っ
たペーストとともに顆粒化し、この顆粒に5gのコーン
スターチと(4)とを加え、得られた混合物を圧縮錠剤
機で打錠し、錠剤1000個を製造する。
The present invention will be described in more detail with reference to the following examples, which are production examples and test examples. Production Example 1 300 g of raw soybeans were homogenized by adding 1 l of deionized water. 9 g of pepsin was added to the obtained soybean homogenate, adjusted to pH 2.0, and incubated at 37 ° C. for 20 hours. The pepsin-decomposed solution of soybean homogenate prepared in this manner was applied to a Diaflow membrane (Amicon, Y.
Ultrafiltration was performed using an M-10 type membrane and a cut-off molecular weight of 10,000. The obtained filtrate is Dowex 50W × 4 (H + )
Was chromatographed using a column packed with. Washed with deionized water, elution the eluate was concentrated performed in 2N-NH 4 OH. This concentrated solution is Sephadex
A low molecular peptide fraction (fraction number 25-42) was separated by chromatography on a G-25 column. The column chromatograph is shown in FIG. The low molecular peptide fraction was concentrated to obtain a soybean peptide solution. Further, this peptide solution was added to SP-Sephadex C-25.
(H + ) column was subjected to chromatography and SP-1 fraction (fraction number 13-2) was used as each peptide fraction.
2), SP-2 fraction (fraction number 23-29), SP-3
Fraction (fraction number 30-40), SP-4 fraction (fraction number 41-50), SP-5 fraction (fraction number 51-70) and SP-6 fraction (fraction number 71- 100) were isolated.
The column chromatograph is shown in FIG. Each of these peptide fractions was freeze-dried to obtain peptide powder (hereinafter referred to as “soy peptide”) as SP-1 fraction (2.4 g).
5.2 g of SP-2 fraction, 12.5 g of SP-3 fraction, SP
-4 fraction 11.0 g, SP-5 fraction 24.6 g and SP
41.3 g of a -6 fraction was obtained. Among the fractionated soybean peptides, SP-4 having a high activated oxygen inhibiting activity
The peptide powder of the fraction was dissolved in deionized water (5 mg /
After 25 μιη), HPLC was performed. The conditions were as follows: Nomura Chemical's Develosil ODS-5 (φ
Using a 4.6 mm ID × 25 cmL), the flow rate was determined by a concentration gradient method from 0.05% trifluoroacetic acid (hereinafter abbreviated as TFA) to 25% acetonitrile / 0.05% TFA as a mobile phase. Chromatography at 0 ml / min, detection wavelength 220 nm, elution time 7
A peptide fragment having strong activated oxygen inhibitory action was obtained at 4.5 minutes. The result is as shown in FIG. The amino acid sequence of the thus-obtained peptide having an inhibitory effect on activated oxygen was obtained from Applied Biosystems (ABI) protein sequencer 477A.
Determined using type. As a result, the following equation: Leu-Val-Pro-Pro-Gln-Glu-C
It was confirmed to be a nonapeptide represented by the L-form amino acid sequence represented by ys-Gln-Lys. When the soybean peptide according to the present invention is formulated as an activated oxygen inhibitor, for example, in tablets, it may be treated according to a conventional method, for example, as follows: (1) 13 g of peptide, (2) 87 g of lactose, ( 3)
First, 29 g of corn starch and (4) 1 g of magnesium stearate were used as raw materials, (1), (2) and 17 g of corn starch were mixed and granulated together with a paste made from 7 g of corn starch. )) And the resulting mixture is compressed with a compression tablet machine to produce 1000 tablets.

【0011】製造例2 本例は、Leu−Val−Pro−Pro−Gln−G
lu−Cys−Gln−Lysの合成法による製造例で
ある。アプライドバイオシステム(ABI)社製のペプ
チド合成装置430A型を用いた固相法によって当該ノ
ナペプチドを合成した。固相担体としては、スチレン−
ジビニルベンゼン共重合体(ポリスチレン樹脂)をクロ
ロメチル化した樹脂を使用した。先ず、当該ノナペプチ
ドのアミノ酸配列に従って、常法どおり、そのC末端側
のLysからクロロメチル樹脂に反応させ、ペプチド結
合樹脂を得た。このときのアミノ酸は、t−ブトキシカ
ルボニル(以下、t−Bocと略記する。)基で保護さ
れたt−Bocアミノ酸を使用した。次にこのペプチド
結合樹脂をエタンジオールとチオアニソールからなる混
合液に懸濁し、室温で10分間撹拌後、氷冷下でトリフ
ルオロ酢酸を加え、更に10分間撹拌した。この混合液
にトリフルオロメタンスルホン酸を滴下し、室温で30
分間撹拌した後、無水エーテルを加えてその生成物を沈
澱させて分離し、その沈澱物を無水エーテルで数回洗浄
した後、減圧下で乾燥した。このようにして得られた未
精製の合成ペプチドは蒸留水に溶解した後、逆相系のカ
ラムC18(5μ)を用いたHPLCにより精製した。
移動相として(A)0.1%TFA含有蒸留水、(B)
0.1%TFA含有アセトニトリル溶液を使用し、
(A)液が20分間で93%−72%の濃度勾配法によ
り流速1.3ml/minでクロマトグラフィー処理し
た。紫外部波長218nmで検出し、最大の吸収を示し
た溶出画分を分取し、これを凍結乾燥することによって
目的とする合成ノナペプチドを得た。
Production Example 2 This example is based on Leu-Val-Pro-Pro-Gln-G
This is a production example by a synthesis method of lu-Cys-Gln-Lys. The nonapeptide was synthesized by a solid phase method using a peptide synthesizer model 430A manufactured by Applied Biosystems (ABI). As the solid support, styrene-
A resin obtained by chloromethylating a divinylbenzene copolymer (polystyrene resin) was used. First, according to the amino acid sequence of the nonapeptide, the C-terminal Lys was reacted with a chloromethyl resin in the usual manner to obtain a peptide-bound resin. At this time, a t-Boc amino acid protected with a t-butoxycarbonyl (hereinafter abbreviated as t-Boc) group was used. Next, this peptide-bonded resin was suspended in a mixture of ethanediol and thioanisole, stirred at room temperature for 10 minutes, added with trifluoroacetic acid under ice cooling, and further stirred for 10 minutes. Trifluoromethanesulfonic acid was added dropwise to this mixture, and the mixture was added at room temperature for 30 minutes.
After stirring for minutes, anhydrous ether was added to precipitate the product, which was separated, washed with anhydrous ether several times and dried under reduced pressure. The unpurified synthetic peptide thus obtained was dissolved in distilled water and then purified by HPLC using a reverse-phase column C 18 (5 μ).
(A) distilled water containing 0.1% TFA as a mobile phase, (B)
Using an acetonitrile solution containing 0.1% TFA,
The solution (A) was subjected to chromatography at a flow rate of 1.3 ml / min by a concentration gradient method of 93% -72% for 20 minutes. The eluted fraction which detected at an ultraviolet wavelength of 218 nm and showed the maximum absorption was collected and freeze-dried to obtain a target synthetic nonapeptide.

【0012】この合成ノナペプチドをマススペクトルに
より分析した結果、次式 Leu−Val−Pro−Pro−Gln−Glu−C
ys−Gln−Lys なるアミノ酸配列で表わされるペプチドであることが確
認された。このマススペクトルの結果は図4に示すとお
りである。合成によって得られた本発明に係る新規なノ
ナペプチドは、以下に示すinvitro(試験管内)
試験によって、活性化酸素フリーラジカル消去作用並び
に抗酸化作用を確認することにより、その活性化酸素阻
害効果が確認された。
As a result of analyzing the synthetic nonapeptide by mass spectrum, the following formula Leu-Val-Pro-Pro-Gln-Glu-C was obtained.
It was confirmed that the peptide was represented by the amino acid sequence ys-Gln-Lys. The result of this mass spectrum is as shown in FIG. The novel nonapeptide according to the present invention obtained by synthesis is in vitro (in a test tube) shown below.
The test confirmed the activated oxygen free radical scavenging effect and the antioxidant effect, thereby confirming the activated oxygen inhibitory effect.

【0013】試験例1 (活性化酸素フリーラジカル消去作用の測定)ウミホタ
ル−ルシフェリン誘導体(CLA)は一重項酸素(
・)、スーパーオキシドアニオン(・)を特異
的に検出する有効な化学発光試薬であり、発明者ら[A
gric.Biol.Chem.,55,157−16
0(1991)]の方法によりスーパーオキシドジムス
ターゼ(SOD)を消光剤に用いた消光実験によりCL
Aと・との反応速度が求められる。CLA(C
1311ON、東京化成社製、最終濃度1.39×
10−7〜4.64×10−8)溶液10μl、アルブ
ミン(50mg/ml、シグマ化学社製)500μl、
キサンチンオキシダーゼ(1.45unit/ml、シ
グマ化学社製)50μlを順に円筒方石英セル(内径1
4mm、高さ60mm)に入れ、ルミノメーター(Al
oka BLR−102B型、浜松ホトニクス社製)の
試料室内に移し、3mMヒポキサンチン溶液200μl
を注入して、セル底面から化学発光を単一光量子計数に
より測定した。消光剤が存在する場合並びに存在しない
場合の・の発光強度の比率(I/I)はI
I=1+[k/(k+k〔CLA〕)]×[Q]
で表される。ここで[Q]は活性化酸素阻害剤を、k
・の消光速度定数、k・と[CL
A]との反応速度定数、k・と[Q]との反
応速度定数を示す。本発明に係る大豆由来のペプチド画
分の、活性化酸素フリーラジカル消去作用を示す活性化
酸素阻害活性(消光速度)を表1に示す。
[0013] Test Example 1 (Measurement of activated oxygen free radical scavenging activity) Cypridina - luciferin derivative (CLA) is singlet oxygen (1 O
2 ·), superoxide anion (- it is effective chemiluminescence reagent that specifically detects O 2 ·), we [A
gric. Biol. Chem. , 55, 157-16
0 (1991)] by a quenching experiment using superoxide dismutase (SOD) as a quencher.
A and - rate of reaction with O 2 · is calculated. CLA (C
13 H 11 ON 3 , manufactured by Tokyo Chemical Industry, final concentration 1.39 ×
10 -7 to 4.64 × 10 -8 ) solution 10 μl, albumin (50 mg / ml, manufactured by Sigma Chemical Co.) 500 μl,
50 μl of xanthine oxidase (1.45 unit / ml, manufactured by Sigma Chemical Co.) was sequentially added to a cylindrical quartz cell (inner diameter: 1).
4mm, height 60mm), luminometer (Al
oka BLR-102B, manufactured by Hamamatsu Photonics, Inc.) and 200 μl of a 3 mM hypoxanthine solution.
Was injected, and chemiluminescence was measured from the bottom of the cell by single photon counting. In the absence and, if the quencher is present - O 2 of the emission intensities of the ratio (I 0 / I) is I 0 /
I = 1 + [k 3 / (k 1 + k 2 [CLA])] × [Q]
It is represented by Here, [Q] represents an activated oxygen inhibitor and k 1
Is - O 2 · quenching rate constant, k 2 is - O 2 · and [CL
The reaction rate constant of A], k 3 is - shows the rate constant for the reaction O 2 · and the [Q]. Table 1 shows the activated oxygen inhibitory activity (quenching rate) of the peptide fraction derived from soybean according to the present invention, which shows an activated oxygen free radical scavenging effect.

【表1】 本発明に係る新規なノナペプチドの活性化酸素フリーラ
ジカル消去作用を示す活性化酸素阻害活性値(反応速度
定数k)は0.98×10−6−1sec−1であ
る。尚、標品SODの活性化酸素フリーラジカル消去作
用を示す活性化酸素阻害活性値(反応速度定数k)は
3.47×10−8−1scc−1である。
[Table 1] The activated oxygen-inhibiting activity value (reaction rate constant k 3 ) of the novel nonapeptide according to the present invention, which exhibits the activated oxygen free radical scavenging action, is 0.98 × 10 −6 M −1 sec −1 . The activated oxygen inhibition activity value (reaction rate constant k 3 ) showing the activated oxygen free radical scavenging action of the standard SOD is 3.47 × 10 −8 M −1 scc −1 .

【0014】試験例2 (抗酸化作用の測定)抗酸化作用の測定として、反応液
はリノール酸51.1mg、エタノール4.052m
l、0.05Mリン酸緩衝液(pH7.0)4.0m
l、脱イオン水1.948mlの混合液に、抗酸化作用
を有するペプチド1−3mg添加し、全量が10mlと
なるように調製した。この溶液をネジ付き試験管で密封
し50℃の恒温器中に放置し、24時間毎にリノール酸
の過酸化物価をロダン鉄法で測定した。即ち反応液0.
1ml、75%エタノール液9.7ml30%ロダンア
ンモニウム液0.1ml、0.02M塩化第二鉄を含む
3.5%塩酸溶液0.1mlを添加し、3分間反応させ
た後、吸光度500nmを測定した。その際、500n
mの吸光値が0.35に達するまでの日数を誘導日数
(日)とした。本発明に係る大豆由来のペプチド画分
の、抗酸化作用を示す活性化酸素阻害活性値(誘導日
数)を図5に示す。本発明に係る新規なノナペプチドの
抗酸化作用を示す活性化酸素阻害活性値(誘導日数)
は、トコフェローノレ2mgの6.5日に対して、ノナ
ペプチド1mgの17日である。以上の試験の結果、本
発明に係る新規なノナペブチドは活性化酸素フリーラジ
カル消去作用並びに抗酸化作用を有することから、in
vitro(試験管内)試験において有意な活性化酸
素阻害作用を示すことが確認された。従って、本発明に
係るノナペプチドは活性化酸素阻害剤の対象となる虚血
性心疾患者、慢性関節リュウマチ及び重症火傷患者の治
療又は予防薬として有用である。尚、本発明に係るノナ
ペプチドは、構造的にそのアミノ酸配列で表わされるペ
プチドにおいて、構造中に採用することもできる。
Test Example 2 (Measurement of antioxidant action) To measure the antioxidant action, the reaction solution was composed of 51.1 mg of linoleic acid and 4.052 m of ethanol.
1, 0.05M phosphate buffer (pH 7.0) 4.0m
l to a mixed solution of 1.948 ml of deionized water, 1-3 mg of a peptide having an antioxidant effect was added to adjust the total amount to 10 ml. This solution was sealed in a test tube with a screw, left in a thermostat at 50 ° C., and the peroxide value of linoleic acid was measured every 24 hours by the iron-rodan method. That is, the reaction mixture was added.
1 ml, 9.7 ml of 75% ethanol solution, 0.1 ml of 30% rhodamonium solution, 0.1 ml of 3.5% hydrochloric acid solution containing 0.02 M ferric chloride, reacted for 3 minutes, and measured absorbance at 500 nm did. At that time, 500n
The number of days until the absorbance value of m reached 0.35 was defined as the number of days of induction (days). FIG. 5 shows the activated oxygen inhibitory activity (induction days) showing the antioxidant activity of the peptide fraction derived from soybean according to the present invention. Activated oxygen inhibitory activity (induction days) showing the antioxidant activity of the novel nonapeptide according to the present invention
Is 17 days with 1 mg of nonapeptide for 6.5 days with 2 mg of tocopherolone. As a result of the above test, the novel nonapeptide according to the present invention has an active oxygen free radical scavenging action and an antioxidant action.
In vitro (in a test tube) test, it was confirmed that a significant activated oxygen inhibitory effect was exhibited. Therefore, the nonapeptide according to the present invention is useful as a therapeutic or preventive drug for patients with ischemic heart disease, rheumatoid arthritis and severe burns who are the targets of activated oxygen inhibitors. The nonapeptide according to the present invention can also be employed in the structure of a peptide structurally represented by its amino acid sequence.

【0015】[0015]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る大豆のペプシン分解液の、製造例
1におけるSephadexG−25カラムクロマトグ
ラフィーによる活性化酸素阻害ペプチドの分離精製の結
果を示す図である。尚、図中マーカーとして分子量6千
のインシュリン、分子量3,500のインシュリンB
鎖、分子量2,550のインシュリンA鎖、分子量1,
450のバシトラシン及び分子量75のグリシンを用い
た。
FIG. 1 is a view showing the results of separation and purification of an activated oxygen-inhibiting peptide by Sephadex G-25 column chromatography in Production Example 1 of a soybean pepsin degradation solution according to the present invention. In the figure, insulin having a molecular weight of 6,000 and insulin B having a molecular weight of 3,500 are used as markers.
Chain, insulin A chain with molecular weight 2,550, molecular weight 1,
450 bacitracin and 75 molecular weight glycine were used.

【図2】本発明に係る大豆ぺプチドの、製造例1におけ
るSP−Sephadex C−25(H+)カラムク
ロマトグラフィーによる活性化酸素阻害ペプチドの分離
精製の結果を示す図である。
FIG. 2 is a graph showing the results of separation and purification of an activated oxygen-inhibiting peptide by SP-Sephadex C-25 (H +) column chromatography in Production Example 1 of the soybean peptide according to the present invention.

【図3】本発明に係る大豆ペプチドの製造例1における
逆相HPLCによる活性化酸素阻害ノナペプチドのフラ
グメントの分離精製の結果を示す図である。
FIG. 3 is a diagram showing the results of separation and purification of a fragment of an activated oxygen-inhibiting nonapeptide by reverse phase HPLC in Production Example 1 of a soybean peptide according to the present invention.

【図4】本発明に係るノナペプチドの、製造例2で得ら
れた合成ノナペプチドのマススペクトルを示す図であ
る。
FIG. 4 is a view showing a mass spectrum of the synthetic nonapeptide obtained in Production Example 2 of the nonapeptide according to the present invention.

【図5】本発明に係る大豆ペプチドの、製造例1におけ
るSP画分(1,2,3mg)の誘導日数(日)を示
し、抗酸化作用を表わし同時に活性化酸素阻害作用を示
す図である。
FIG. 5 is a graph showing the number of days (days) of inducing the SP fraction (1, 2, 3 mg) of the soybean peptide according to the present invention in Production Example 1, showing an antioxidant effect and, simultaneously, an activated oxygen inhibitory effect. is there.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI A61K 38/00 AED A61K 37/02 ABX C07K 14/415 AED ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI A61K 38/00 AED A61K 37/02 ABX C07K 14/415 AED

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次式;Leu−Val−Pro−Pro
−Gln−Glu−Cys−Gln−Lys で示されるL体のアミノ酸配列で表わされる新規なノナ
ペプチド。
1. The following formula: Leu-Val-Pro-Pro
A novel nonapeptide represented by an L-form amino acid sequence represented by -Gln-Glu-Cys-Gln-Lys.
【請求項2】 次式:Leu−Val−Pro−Pro
−Gln−Glu−Cys−Gln−Lys で示されるL体のアミノ酸配列で表わされる新規なノナ
ペプチドを有効成分として含有することを特徴とする活
性化酸素阻害剤。
2. The following formula: Leu-Val-Pro-Pro
An activated oxygen inhibitor comprising as an active ingredient a novel nonapeptide represented by an L-form amino acid sequence represented by -Gln-Glu-Cys-Gln-Lys.
JP9225477A 1997-07-16 1997-07-16 Novel peptides and activated oxygen inhibitors Expired - Lifetime JP2903464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9225477A JP2903464B2 (en) 1997-07-16 1997-07-16 Novel peptides and activated oxygen inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9225477A JP2903464B2 (en) 1997-07-16 1997-07-16 Novel peptides and activated oxygen inhibitors

Publications (2)

Publication Number Publication Date
JPH1135598A JPH1135598A (en) 1999-02-09
JP2903464B2 true JP2903464B2 (en) 1999-06-07

Family

ID=16829941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9225477A Expired - Lifetime JP2903464B2 (en) 1997-07-16 1997-07-16 Novel peptides and activated oxygen inhibitors

Country Status (1)

Country Link
JP (1) JP2903464B2 (en)

Also Published As

Publication number Publication date
JPH1135598A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP2860637B2 (en) Novel peptides and activated oxygen inhibitors
JP2835504B2 (en) Novel peptides and activated oxygen inhibitors
JP2920827B1 (en) New pentapeptides and activated oxygen inhibitors
JP2903464B2 (en) Novel peptides and activated oxygen inhibitors
JP2903465B2 (en) Novel peptides and activated oxygen inhibitors
JP3101875B2 (en) Novel tripeptides and activated oxygen inhibitors
JP2678181B2 (en) Novel hexapeptides and activated oxygen inhibitors
JP2007161696A (en) New heptapeptide and prolyl endopeptidase inhibitor
JP2006199671A (en) New hexapeptide and activated oxygen inhibitor
JP2005080655A (en) New composition containing isoflavone and activated oxygen inhibitor
JP2863898B2 (en) New peptides and immunostimulants
JP3893579B2 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP2003267994A (en) New peptide and inhibitor of angiotensin converting enzyme
JP2990354B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors
JP2678180B2 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP3972104B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
JP2873434B2 (en) New peptides and immunostimulants
JP3885214B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
JP3108920B1 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP3811922B2 (en) Novel hexapeptides, heptapeptides and immunostimulants
JP2001106699A (en) New hexapeptide and angiotensin-converting enzyme inhibitor
JPH08225593A (en) Novel tetrapeptide, pentapeptide and angiotensin-transferase inhibitor
JP2920829B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors
JP3709425B2 (en) Novel tripeptide and angiotensin converting enzyme inhibitors
JP2003267995A (en) New heptapeptide and inhibitor of angiotensin converting enzyme