JP3709425B2 - Novel tripeptide and angiotensin converting enzyme inhibitors - Google Patents

Novel tripeptide and angiotensin converting enzyme inhibitors Download PDF

Info

Publication number
JP3709425B2
JP3709425B2 JP2001355368A JP2001355368A JP3709425B2 JP 3709425 B2 JP3709425 B2 JP 3709425B2 JP 2001355368 A JP2001355368 A JP 2001355368A JP 2001355368 A JP2001355368 A JP 2001355368A JP 3709425 B2 JP3709425 B2 JP 3709425B2
Authority
JP
Japan
Prior art keywords
peptide
tripeptide
ace
tyr
converting enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001355368A
Other languages
Japanese (ja)
Other versions
JP2003128695A (en
Inventor
邦男 末綱
Original Assignee
オリエンタルバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタルバイオ株式会社 filed Critical オリエンタルバイオ株式会社
Priority to JP2001355368A priority Critical patent/JP3709425B2/en
Publication of JP2003128695A publication Critical patent/JP2003128695A/en
Application granted granted Critical
Publication of JP3709425B2 publication Critical patent/JP3709425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、医薬品として有用性を有する下記アミノ酸の配列のペプチド構造を有するトリペプチドならびにそのペプチドを有効成分とするアンジオテンシン変換酵素阻害剤に関する。
Tyr−Tyr−His
(式中、アミノ酸残基を表す各記号は、アミノ酸化学において慣用の表示法によるものである。)
【0002】
【従来の技術及び発明が解決しようとする課題】
レニン−アンジオテンシン系が生体の水・電解質及び血液の調節に重要な役割を果たしていることはよく知られている。このレニン−アンジオテンシン系にはアンジオテンシン変換酵素(以下ACEと略記する。)が存在し、アンジオテンシンIはACEによってアンジオテンシンIIに変換される。アンジオテンシンIIは強力な昇圧物質で、血管、副腎皮質のみならず中枢神経系ならびに末梢神経系に働いて血圧上昇を促す。又、ACEは生体内降圧物質であるブラジキニンを分解し、不活性化する作用を有し、昇圧系に関与している。従って、ACEの活性を阻害することによって血圧を降下させることが可能であり、又、そのことは臨床的に高血圧の予防、治療に有効であると考えられている。この目的のためプロリン誘導体であるカプトリルが合成され、その降圧作用が確認されて以来、カプトリルの構造研究に基づく種々のACE阻害物質の合成研究が盛んに行われ、最近ではマレイン酸エナラブリルやアラセブリル等の物質が、次々と臨床の場に供されている。現在、ACE阻害剤は本態性高血圧症、病候性高血圧症を問わず、又、軽症、重症を問わず、幅広く用いられ、高血圧症の第一次選択の治療薬中に加えられ、多く優れた点を有することが見出されている。一方、ACE阻害物質の作用機序としては、アンジオテンシンIIの産生抑制によるアルドステロンやバソプレッシンの分泌抑制、又、腎動脈収縮の解除によるナトリウムや水の排泄促進が考えられている。更に、ACE阻害物質については、それがカリクレン−キニン系の不活性化を抑制し、プロスタグランジン系を賦活させることにより末梢血管拡張やナトリウム及び水の排泄を更に促進させると考えられており、心不全の悪循環を断つ上で合目的な治療薬として期待されている。ところで、ACE阻害物質としては、上記の合成品の他に天然物又は天然物由来の物質として蛇毒由来のブラジキニン増強因子(C末端がPro)[S.H.Ferreia et al:Biochemistry,9,3583(1970)]、ゼラチンのコラゲナーゼ消化物由来の6種類のペプチド(いずれもC末端がAla−Hyp)[G.Oshima et al:Biochim.Biophs.Acta,566,128(1979)]、牛カゼインのトリプシン消化物由来のペプチド(C末端がGly−Lys)[S.Maruyama et al.:Agric.Biol.Chem.,46,1393(1983)]等に始まり本発明者等のイワシ筋肉由来の5種のヘクサペウチド(いずれもC末端から2番目又は3番目がPro、N末端がLeu)[特許第2046483号]、海苔由来のテトラペプチド(Pro−gly−Val−Ala)[特許第2678180号]、朝鮮人参由来のペンタペプチド(Ile−Gly−Pro−Ala−Gly)[特許第2920829号]、クロレラ由来のペンタペプチド(Val−Val−Pro−Pro−Ala)及び3種のワカメ由来のテトラペプチド(Tyr−Asn−Lys−Leu,Tyr−Lys−Tyr−Tyr,Ala−Ile−Tyr−Lys)[特許第3108920号]等が挙げられ、いずれもACE阻害剤となり得ることが開示されている。更に、合成法により得た鎖長の短いジ、トリペプチド[特開平6−87886号][特開平6−16568号]についての提案は行われているが、天然物由来の規則性を持ったアミノ酸配列を有するジ、トリペプチドのACE阻害作用並びに経口投与による降圧効果(薬理効果)は不明であり、発見されてから長時間経過しているが、未だ医薬品としての開発が進んでいるとの報告はない。
【0003】
【課題を解決するための手段】
本発明者は、褐藻コンブ目(Laminariales)の海藻種に属するワカメの蛋白質分解酵素の分解液から薬理作用を有する物質を検索し、新規なトリペプチドが強いアンジオテンシン変換酵素阻害作用を有することを見出した。そして、このトリペプチドを医薬として実用化するための研究を鋭意行った。その結果、このトリペプチドが血圧降下作用を有し、天然物由来のアンジオテンシン変換酵素阻害剤としての有用性を見出した。本発明は係る知見に基づくものである。本発明に係る新規なペプチドは、次式、
Tyr−Tyr−His
の式で示されるL体のアミノ酸の配列を有する新規なトリペプチドであり、常温における性状は白色の粉末である。
【0004】
前記のトリペプチドは、化学的に合成する方法またはワカメの蛋白質分解酵素の分解液から分離精製する方法を挙げることができる。本発明に係る新規なペプチドを化学的に合成する場合には、液相法または固相法等の通常のペプチド合成方法によって行うことができるが、好ましくは、固相法によってポリマー性の固相支持体へ前記ペプチドのC末端(カルボキシル末端側)からそのアミノ酸残基に対応したL体のアミノ酸を順次ペプチド結合によって結合して行くのが良い。そして、そのようにして得られた合成ペプチドは、トリフルオロメタンスルホン酸、フッ化水素等を用いてポロマー性の固相支持体から切断した後、アミノ酸側鎖の保護基を除去し、逆相系のカラムを用いた高速液体クロマトグラフィー(以下、HPLCと略記する。)などを用いた通常の方法で精製することができる。
【0005】
上記したように、本発明に係る新規なペプチドは、ワカメの蛋白質分解酵素の分解液から分離精製することができるが、その場合には、例えば以下のようにして行うことができる。上記の新規なペプチドを含有しているワカメのタンパク質部分を用いて加水分解する。加水分解は常法に従って行う。例えば、ペプシン等のタンパク質分解酵素で加水分解する場合は、ワカメを必要とあれば更に加水分解した後、酵素の至適温度まで加温しpHを至適値に調整し酵素を加えてインキュベートする。次いで必要に応じ中和した後、酵素を失活させて加水分解液を得る。その加水分解物を濾紙及び/又はセライト等を用いて濾過することによって不溶性成分を除去し、その得られた濾液をセロファンなどの半透膜を用いて適当な溶媒(例えば、水、トリス−塩酸緩衝液、リン酸緩衝液の中性の緩衝液等)中で十分に透析し、その濾液中の成分で半透膜を通過した成分を含む溶液を強酸性陽イオン交換樹脂(例えば、ダウケミカル社製のDowex 50W等)にかけ、その吸着溶出分画からアンジオテンシン変換酵素(以下、ACEと略記する。)阻害活性を有する成分を含有する分画を得、得られたACE阻害活性分画をゲル濾過(例えば、ファルマシア社製のSephadex G−25等)によって分画し、得られたACE阻害活性分画を陽イオン交換ゲル濾過(例えば、ファルマシア社製のSP−Sephadex C−25等)によって分画し、その得られたACE阻害活性画分を更に逆相HPLCによって分画する。
【0006】
本発明に係る新規なペプチドの製法において用いる褐藻類としては、本発明の目的を達成できる限りいかなる褐藻類を用いても良いが、好ましくはワカメを用いるのが良い。以上のようにして得られた本発明に係る新規なペプチドは、静脈内へ繰り返し投与を行った場合、抗体産生を惹起せず、アナフィラキシーショックを起こさせない。又、本発明に係る新規なペプチドはL−アミノ酸のみの配列構造からなり、投与後、生体内のプロテアーゼにより徐々に分解される為、毒性は極めて低く、安全性は極めて高い(LD50>5000mg/kg;ラット経口投与)。本発明に係る新規なペプチドは、通常用いられる賦形剤等の添加物を用いて注射剤、錠剤、カプセル剤、顆粒剤、散剤等に調製することができる。投与方法としては、通常は、ACEを有している哺乳類(例えば、ヒト、イヌ、ラット等)に注射すること、あるいは経口投与することがあげられる。投与量は、例えば、動物体1kg当りこのペプチドを0.01〜10mgの量である。投与回数は、通常1日1〜4回程度であるが、投与経路によって、適宜、調製することができる。
【0007】
上記の各種製剤において用いられる賦形剤、結合剤、潤沢剤の種類は、特に限定されず、通常の注射剤、散剤、顆粒剤、錠剤あるいはカプセル剤に用いられるものを使用することができる。錠剤、カプセル剤、顆粒剤、散剤に用いる添加物としては、下記のものをあげることができる。賦形剤としては、結晶セルロース等の糖類、マンニトール等の糖アルコール類、デンプン類、無水リン酸カルシウム等;結合剤としては澱粉類、ヒドロキシプロピルメチルセルローズ等;崩壊剤としてはカルボキシメチルセルロース及びそのカリウム塩類;潤滑剤としてはステアリン酸及びその塩類、タルク、ワックス類を挙げることができる。又、製剤の調整にあたっては必要に応じメントール、クエン酸及びその塩類、香料等の矯臭剤を用いることができる。注射用の無菌組成物は、常法により、本発明に係る新規なペプチドを、注射用水、生理食塩水及びキシリトールやマンニトール等の糖アルコール注射液、プロピレングリコールやポリエチレングリコール等のグリコールに溶解または懸濁させて注射剤とすることができる。この際、緩衝液、防腐剤、酸化防止剤等を必要に応じて添加することができる。本発明に係る新規なペプチドを含有する製剤は凍結乾燥品又は乾燥粉末の形とし、用時、通常の溶解剤、例えば水又は生理食塩液に溶解して用いることもできる。
【0008】
本発明に係る新規なペプチドは優れたアンジオテンシン変換酵素阻害作用を有し、血圧降下作用、ブラジキニン不活化抑制作用を示す。従って、本態性高血圧、腎性高血圧、副腎性高血圧等の高血圧症の予防、治療剤、これらうっ血性心不全に対する臓器循環の正常化と長期予後の改善(延命効果)作用を有し、心不全の治療剤として有用である。
【0009】
【実施例】
以下に実施例として、製造例および試験例を記載し、本発明を更に詳細に説明する。
製造例1
ワカメ粉末23.6gに脱イオン水708mιを加えホモジナイズしたワカメホモジネイトを用いた。透析チューブ(内径36インチ,和光純薬工業社製)に詰め、流水に対して3日間透析を行い透析内液を得た。この内液を1規定の塩酸にてpHを2.0に調整し、ペプシン(メルク社製、酵素番号EC3.4.23.1)708mgを添加し、45℃で5時間撹拌しながら加水分解を行った。分解反応液を直ちに限外濾過膜(アミコン社製、YM10型;分画分子量約1万)に通過させた通過液を、Dowex50W×4[H]カラム(φ4.0×55cm)に加えた。そのカラムを脱イオン水で十分洗滌した後、2規定の水酸化アンモニウム液2ιを用いて溶出した。減圧濃縮によりアンモニアを除去し濃縮液を予め脱イオン水で緩衝化したSephadexG−25(φ1.6×113cm)に負荷し、流速12mι/hr、各分画量5.7mιでゲル濾過を行った。その結果は図1のとおりである。ゲル濾過を繰り返して大量分取したACE阻害活性の高い画分を集め凍結乾燥してペプチド粉末とした。このペプチド粉末1.55gを20mlの脱イオン水に溶解後、予め、脱イオン水で緩衝化したSP−SephadexC−25[H]カラム(φ1.8×40cm)に負荷し、脱イオン水500mιから1.5%塩化ナトリウム500mιの濃度勾配法を行い、流速70mι/hr、各分画量10mιでクロマトグラフィーを行った。その結果は図2のとおりである。上記クロマトグラフ中、ACE阻害活性の高かった分画番号23〜51の画分を集めて凍結乾燥して精製ペプチド粉末(SP−II分画)を得た。この精製ペプチド粉末20mgを60μιの脱イオン水に溶解した後、高速液体クロマトグラフィー(HPLC)を行った。カラムとしては野村化学社製Develosil ODS−5(4.5mmID×25cmL)を使用し、移動相としては0.05%トリフルオロ酢酸(以下、TFAと略記する。)から25%アセトニトリル/0.05%TFAの濃度勾配法を行い、流速1.0mι/min、検出波長220nmでHPLCを行い、ACE阻害活性の高いペプチドフラグメントを得た。その結果は図3に示すとおりである。{溶出時間;51.3分}
このようにして得られたACE阻害作用を有するペプチドのアミノ酸配列は、アプライドバイオシステム(ABI)社製のプロテインシークエンサー477A型を用いて決定された。その結果、次式、
Tyr−Tyr−His
で示されるL体のアミノ酸配列で表わされる新規なトリペプチドであることが確認された。常温における性状は白色の粉末である。尚、本発明に係る新規なトリペプチドをACE阻害剤として、例えば錠剤に製剤する場合には、常法に従って、例えば次のように処理すればよい:▲1▼ペプチド10g、▲2▼乳糖68g、▲3▼コーンスターチ39g、▲4▼ステアリン酸マグネシウム1.2gを原料とし、先ず▲1▼、▲2▼及び20gのコーンスターチを混和し、11gのコーンスターチから作ったペーストとともに顆粒化し、この顆粒に9gのコーンスターチと▲4▼とを加え、得られた混合物を圧縮錠剤機で打錠し、錠剤1000個を製造する。
【0010】
製造例2
本例は、合成法による製造例である。
Tyr−Tyr−Hisの合成法
アプライドバイオシステム社製のペプチド自動合成装置430A型を用いた固相法によって当該ペプチドを合成した。固相担体としては、スチレンジビニルベンゼン共重合体(ポリスチレン樹脂)をクロロメチル化した樹脂を使用した。まず、当該トリペプチドのアミノ酸配列に従って、常法どおり、そのC末端側のヒスチジンからクロロメチル樹脂に反応させペプチド結合樹脂を得た。この時のアミノ酸は、t−ブトキシカルボニル(以下、t−Bocと略記する。)基で保護されたt−Bocアミノ酸を使用した。次にこのペプチド結合樹脂をエタンジチオールとチオアニソールからなる混合液に懸濁し、室温で10分間撹拌後、氷冷下でトリフルオロ酢酸を加え、更に10分間撹拌した。この混合液にトリフルオロメタンスルホン酸を滴下し、室温で30分間撹拌した後、無水エーテルを加えてその生成物を沈澱させて分離し、その沈澱物を無水エーテルで数回洗浄した後、減圧下で乾燥した。このようにして得られた未精製の合成ペプチドは蒸留水又はメタノールに溶解した後、逆相系のカラムC18(5μm)を用いたHPLCにより精製した。移動相として(A)0.1%TFA含有蒸留水、(B)0.1%TFA含有アセトニトリル溶液を使用し、(A)液が60分間で93%→52%の濃度勾配法により流速1.1mι/minでクロマトグラフィーを行った。紫外部波長216nmで検出し、最大の吸収を示した溶出画分を分取し、これを凍結乾燥することによって目的とする合成ペプチドを得た。
【0011】
この合成ペプチドをマススペクトルにより分析した結果、アミノ酸配列及びアミノ酸組成が前記で示したアミノ酸配列構造を有するトリペプチドであることが確認された。このマススペクトルの結果は図4に示す通りである。
合成によって得られた本発明のトリペプチドは、以下に示す試験によって薬理効果が確認された。
【0012】
試験例1
(アンジオテンシン変換酵素阻害活性測定法)ACE(シグマ社製、酵素番号EC3.4.15.1)2.5mU、合成基質Hippuryl−L−histidyl−L−leucine(ペプチド研究所製)12.5mMを用いLiebermanの測定法を改良した山本等の方法[日胸疾会誌,18巻,297−302頁(1989年)]に準じて測定した。すなわち、生成した馬尿酸を酢酸エチルにて抽出し225nmの吸光度で測定した。被検液での吸光度をEs、被検液の代わりに緩衝液を加えた時の値をEc、予め反応停止液を加えて反応させた時の値をEbとして次式から阻害率を求めた。
阻害率(%)=(Ec−Es)/(Ec−Eb)×100
ACE阻害剤の阻害活性IC50値は、ACEの酵素活性を50%(阻害率)阻害するために必要な試料の濃度(M)で示した。本発明に係るトリペプチドの牛肺血清のアンジオテンシン変換酵素に対する阻害活性(IC50値);(1)は0.96μMである。
【0013】
試験例2
(高血圧自然発症ラットへ投与時の降圧効果)実験動物は日本チャールズ・リバー社より15週齢雄性高血圧自然発症ラット(以下、SHRと略記する。)を購入し、1週間の予備飼育後、収縮期血圧が160mmHg以上(体重280〜330g)の動物6匹1群として用いた。ラットは、室温23±2℃、湿度55±10%および12時間明暗(午前6時〜午後6時点灯)に調整された飼育室でステンレスワイヤー製ラット用個別ゲージに1匹ずつ収容し飼育した。飼料はオリエンタル酵母社製MF粉末飼料を、飲水は自家揚水(水道水質基準適合)をそれぞれ自由に摂取させた。血圧は非観血的尾動脈血圧測定装置(理研開発社製、PS−100型)を用いtail−cuff法により、投与前、投与後1週間後、2週間後、3週間後、4週間後及び5週間後のSHR尾動脈の収縮期血圧(mmHg、上値)、拡張期血圧(mmHg、下値)及び平均血圧(mmHg)の測定を一定時間毎に各5回づつ行い、得られた測定値の最高値と最低値を棄却し、3回の平均値をもって各時間の測定値とした。本発明に係る合成トリペプチド10mg/kgをSHRに経口投与した時の各血圧値(mmHg)への作用についての結果は、図6に示すとおりである。以上の試験の結果、本発明に係るトリペプチドは、アンジオテンシン変換酵素阻害活性を有し、in vivo(生体内)においても有意な血圧降下作用を示すことが確認された。従って、本発明に係るトリペプチドは高血圧症の治療又は予防薬として有用である。尚、本発明に係るトリペプチドは、構造的にそのアミノ酸配列を部分構造とするペプチドにおいて、構造中に採用することもできる。
【0014】
【図面の簡単な説明】
【図1】本発明に係るワカメの蛋白質分解液の、製造例1におけるSephadexG−25カラムクロマトグラフィーによるACE阻害ペプチドの分離精製の結果を示す図である。尚、図中マーカーとして分子量6千のインスリン、分子量3,500のインスリンB鎖、分子量2,500のインスリンA鎖、分子量1,052のブラジキニン及び分子量75のグリシンを用いた。
【図2】本発明に係るワカメの蛋白質分解液の、製造例1におけるSP−Sephadex C−25(H)カラムクロマトグラフィーによるACE阻害ペプチドの分離精製の結果を示す図である。
【図3】本発明に係るトリペプチドの、製造例1における逆相HPLCによるACE阻害ペプチドの分離精製の結果を示す図である。
【図4】本発明に係るトリペプチドの、製造例2で得られた合成トリペプチドのマススペクトルを示す図である。
【図5】製造例2で得られた合成トリペプチド10mg/kgを、SHRに経口投与した場合の収縮期血圧値、拡張期血圧値及び平均血圧値(mmHg)の5週間の変化を示す図である。
[0001]
[Industrial application fields]
The present invention relates to a tripeptide having a peptide structure having the following amino acid sequence having utility as a pharmaceutical product, and an angiotensin converting enzyme inhibitor containing the peptide as an active ingredient.
Tyr-Tyr-His
(In the formula, each symbol representing an amino acid residue is based on a conventional notation method in amino acid chemistry.)
[0002]
[Prior art and problems to be solved by the invention]
It is well known that the renin-angiotensin system plays an important role in the regulation of biological water, electrolytes and blood. This renin-angiotensin system contains angiotensin converting enzyme (hereinafter abbreviated as ACE), and angiotensin I is converted to angiotensin II by ACE. Angiotensin II is a powerful vasopressor that works not only in blood vessels and adrenal cortex but also in the central nervous system and peripheral nervous system to promote an increase in blood pressure. ACE also has the action of degrading and inactivating bradykinin, which is a hypotensive substance in vivo, and is involved in the pressor system. Therefore, it is possible to lower blood pressure by inhibiting the activity of ACE, and this is clinically effective for the prevention and treatment of hypertension. Since captoryl, a proline derivative, was synthesized for this purpose and its antihypertensive activity was confirmed, various ACE inhibitors have been actively studied based on the structural study of captolyl. Recently, enalabril maleate, alacebryl, etc. These substances are being used in clinical settings one after another. At present, ACE inhibitors are widely used regardless of whether they are essential hypertension or symptomatic hypertension, mild or severe, and are added to the first-line treatment for hypertension. Has been found to have On the other hand, as the mechanism of action of ACE inhibitors, it is considered that aldosterone and vasopressin secretion are suppressed by suppressing production of angiotensin II, and that sodium and water excretion is promoted by releasing renal artery contraction. Furthermore, for ACE inhibitors, it is believed that it suppresses inactivation of the calicrene-kinin system and further promotes peripheral vasodilation and excretion of sodium and water by activating the prostaglandin system, It is expected to be an appropriate therapeutic agent in breaking the vicious circle of heart failure. By the way, as an ACE inhibitory substance, in addition to the above-mentioned synthetic products, snake venom-derived bradykinin enhancing factor (C-terminal is Pro) as a natural product or a natural product-derived substance [S. H. Ferreia et al: Biochemistry, 9, 3583 (1970)], six peptides derived from collagenase digest of gelatin (all C-terminal Ala-Hyp) [G. Oshima et al: Biochim. Biophs. Acta, 566, 128 (1979)], a peptide derived from a tryptic digest of bovine casein (C-terminal Gly-Lys) [S. Maruyama et al. : Agric. Biol. Chem. , 46, 1393 (1983)] and the like, the five hexapeptides derived from the sardine muscles of the present inventors (the second or third from the C-terminal is Pro and the N-terminal is Leu) [Patent No. 2046483], Tetrapeptide derived from seaweed (Pro-gly-Val-Ala) [Patent No. 2678180], Pentapeptide derived from Ginseng (Ile-Gly-Pro-Ala-Gly) [Patent No. 2920829], Pentapeptide derived from Chlorella (Val-Val-Pro-Pro-Ala) and three kinds of Wakame-derived tetrapeptides (Tyr-Asn-Lys-Leu, Tyr-Lys-Tyr-Tyr, Ala-Ile-Tyr-Lys) [Patent No. 3108920 It is disclosed that any of them can be an ACE inhibitor. Further, although proposals have been made for di- and tripeptides [JP-A-6-87886] [JP-A-6-16568] having a short chain length obtained by a synthesis method, they have regularity derived from natural products. The ACE inhibitory action of di- and tripeptides having amino acid sequences and the antihypertensive effect (pharmacological effect) by oral administration are unknown, and it has been a long time since it was discovered, but development as a pharmaceutical is still in progress There are no reports.
[0003]
[Means for Solving the Problems]
The present inventor searched for a substance having a pharmacological action from a decomposition solution of a seaweed proteolytic enzyme belonging to the seaweed species of the brown alga, Laminarias, and found that the novel tripeptide has a strong angiotensin converting enzyme inhibitory action. It was. And they have intensively studied to put this tripeptide into practical use as a medicine. As a result, this tripeptide has an antihypertensive action and has been found to be useful as a natural product-derived angiotensin converting enzyme inhibitor. The present invention is based on such knowledge. The novel peptide according to the present invention has the following formula:
Tyr-Tyr-His
A novel tripeptide having an L-amino acid sequence represented by the formula:
[0004]
Examples of the tripeptide include a method of chemically synthesizing and a method of separating and purifying from a decomposition solution of seaweed proteolytic enzyme. In the case of chemically synthesizing the novel peptide according to the present invention, it can be carried out by an ordinary peptide synthesis method such as a liquid phase method or a solid phase method. It is preferable that L-form amino acids corresponding to the amino acid residues are sequentially bonded to the support by peptide bonds from the C-terminal (carboxyl terminal side) of the peptide. The synthetic peptide thus obtained is cleaved from the porous solid support using trifluoromethanesulfonic acid, hydrogen fluoride, etc., and then the amino acid side chain protecting group is removed, and the reverse phase system is removed. It can be purified by a conventional method using high performance liquid chromatography (hereinafter abbreviated as HPLC) using the above column.
[0005]
As described above, the novel peptide according to the present invention can be separated and purified from the decomposition solution of seaweed proteolytic enzyme. In that case, for example, it can be carried out as follows. Hydrolysis is carried out using the wakame protein portion containing the novel peptide. Hydrolysis is performed according to conventional methods. For example, when hydrolyzing with a proteolytic enzyme such as pepsin, further hydrolyze wakame if necessary, then warm to the optimal temperature of the enzyme, adjust the pH to the optimal value, add the enzyme and incubate . Next, after neutralization as necessary, the enzyme is deactivated to obtain a hydrolyzed solution. The hydrolyzate is filtered using filter paper and / or celite to remove insoluble components, and the obtained filtrate is filtered using a semipermeable membrane such as cellophane to form a suitable solvent (for example, water, tris-hydrochloric acid). Dialyze sufficiently in a buffer solution or neutral buffer solution of a phosphate buffer solution, and a solution containing a component that has passed through a semipermeable membrane with a component in the filtrate is a strongly acidic cation exchange resin (for example, Dow Chemical). And a fraction containing an angiotensin converting enzyme (hereinafter abbreviated as ACE) inhibitory activity is obtained from the adsorbed elution fraction, and the obtained ACE inhibitory activity fraction is gelled. Fractionation (for example, Sephadex G-25 manufactured by Pharmacia) and fractionation of the obtained ACE inhibitory activity were performed by cation exchange gel filtration (for example, SP-Sep manufactured by Pharmacia). Fractionated by Adex C-25, etc.), further fractionated by reverse phase HPLC ACE inhibitory activity fraction obtained thereof.
[0006]
As the brown algae used in the method for producing a novel peptide according to the present invention, any brown algae may be used as long as the object of the present invention can be achieved, but wakame is preferably used. The novel peptide according to the present invention obtained as described above does not induce antibody production and does not cause anaphylactic shock when repeatedly administered intravenously. Further, the novel peptide according to the present invention has a sequence structure consisting of only L-amino acids, and is gradually degraded by protease in vivo after administration. Therefore, toxicity is extremely low and safety is extremely high (LD 50 > 5000 mg). / Kg; rat oral administration). The novel peptide according to the present invention can be prepared into injections, tablets, capsules, granules, powders and the like using additives such as commonly used excipients. The administration method usually includes injection into a mammal having ACE (for example, human, dog, rat, etc.) or oral administration. The dose is, for example, 0.01 to 10 mg of this peptide per 1 kg of the animal body. The number of administration is usually about 1 to 4 times a day, but can be appropriately prepared depending on the administration route.
[0007]
The types of excipients, binders, and lubricants used in the various preparations are not particularly limited, and those used for ordinary injections, powders, granules, tablets, or capsules can be used. Examples of additives used in tablets, capsules, granules, and powders include the following. Examples of excipients include sugars such as crystalline cellulose, sugar alcohols such as mannitol, starches, anhydrous calcium phosphate and the like; starches such as hydroxypropylmethylcellulose as binders; carboxymethylcellulose and potassium salts thereof as disintegrants; Examples of the lubricant include stearic acid and its salts, talc, and waxes. In preparation of the preparation, flavoring agents such as menthol, citric acid and salts thereof, and fragrance can be used as necessary. A sterile composition for injection is prepared by dissolving or suspending the novel peptide according to the present invention in water for injection, physiological saline, sugar alcohol injection solution such as xylitol or mannitol, or glycol such as propylene glycol or polyethylene glycol by a conventional method. It can be made cloudy to make an injection. At this time, a buffer solution, a preservative, an antioxidant and the like can be added as necessary. The preparation containing the novel peptide according to the present invention is in the form of a freeze-dried product or a dry powder, and can be used by dissolving it in a normal solubilizing agent such as water or physiological saline at the time of use.
[0008]
The novel peptide according to the present invention has an excellent angiotensin converting enzyme inhibitory action, and exhibits a blood pressure lowering action and a bradykinin inactivation inhibiting action. Therefore, prevention of hypertension such as essential hypertension, renal hypertension, adrenal hypertension, therapeutic agent, normalization of organ circulation and improvement of long-term prognosis (life extension effect) for these congestive heart failure, treatment of heart failure Useful as an agent.
[0009]
【Example】
In the following, production examples and test examples are described as examples, and the present invention is described in more detail.
Production Example 1
Wakame homogenate obtained by adding 708 ml of deionized water to 23.6 g of wakame powder and homogenizing it was used. A dialysis tube (inner diameter 36 inches, manufactured by Wako Pure Chemical Industries, Ltd.) was packed and dialyzed against running water for 3 days to obtain a dialyzed internal solution. The internal solution was adjusted to pH 2.0 with 1 N hydrochloric acid, added with 708 mg of pepsin (Merck, enzyme number EC 3.4.23.1), and hydrolyzed while stirring at 45 ° C. for 5 hours. Went. The passing solution, in which the decomposition reaction solution was immediately passed through an ultrafiltration membrane (Amicon, YM10 type; fractional molecular weight of about 10,000), was added to a Dowex 50W × 4 [H + ] column (φ4.0 × 55 cm). . The column was thoroughly washed with deionized water and eluted with 2N ammonium hydroxide solution 2ι. Ammonia was removed by concentration under reduced pressure, and the concentrate was loaded on Sephadex G-25 (φ1.6 × 113 cm) previously buffered with deionized water, and gel filtration was performed at a flow rate of 12 mι / hr and each fraction amount of 5.7 mι. . The result is as shown in FIG. Fractions with high ACE inhibitory activity, collected in large quantities by repeated gel filtration, were collected and lyophilized to obtain peptide powder. After dissolving 1.55 g of this peptide powder in 20 ml of deionized water, it was loaded on an SP-Sephadex C-25 [H + ] column (φ1.8 × 40 cm) previously buffered with deionized water, and 500 ml of deionized water was added. To 1.5% sodium chloride (500 mι), followed by chromatography at a flow rate of 70 mι / hr and a fraction of 10 mι. The result is as shown in FIG. In the above chromatograph, fractions 23 to 51 having high ACE inhibitory activity were collected and lyophilized to obtain purified peptide powder (SP-II fraction). 20 mg of this purified peptide powder was dissolved in 60 μι 脱 deionized water and then subjected to high performance liquid chromatography (HPLC). As a column, Develosil ODS-5 (4.5 mm ID × 25 cmL) manufactured by Nomura Chemical Co., Ltd. was used, and as a mobile phase, 0.05% trifluoroacetic acid (hereinafter abbreviated as TFA) to 25% acetonitrile / 0.05. A concentration gradient method of% TFA was performed, and HPLC was performed at a flow rate of 1.0 mι / min and a detection wavelength of 220 nm to obtain a peptide fragment having high ACE inhibitory activity. The result is as shown in FIG. {Elution time; 51.3 minutes}
The amino acid sequence of the thus obtained peptide having ACE inhibitory action was determined using a protein sequencer type 477A manufactured by Applied Biosystems (ABI). As a result,
Tyr-Tyr-His
It was confirmed to be a novel tripeptide represented by the amino acid sequence of L-form represented by The property at room temperature is a white powder. In addition, when a novel tripeptide according to the present invention is formulated as an ACE inhibitor, for example, into a tablet, it may be treated according to a conventional method, for example, as follows: (1) 10 g of peptide, (2) 68 g of lactose , (3) Corn starch 39g, (4) Magnesium stearate 1.2g, first mix (1), (2) and 20g corn starch, granulate with paste made from 11g corn starch, 9 g of corn starch and (4) are added, and the resulting mixture is compressed with a compression tablet machine to produce 1000 tablets.
[0010]
Production Example 2
This example is an example of production by a synthesis method.
Synthesis method of Tyr-Tyr-His The peptide was synthesized by a solid phase method using an automatic peptide synthesizer type 430A manufactured by Applied Biosystems. As the solid support, a resin obtained by chloromethylating a styrene divinylbenzene copolymer (polystyrene resin) was used. First, according to the amino acid sequence of the tripeptide, histidine on the C-terminal side was reacted with chloromethyl resin in the usual manner to obtain a peptide-bonded resin. As the amino acid at this time, a t-Boc amino acid protected with a t-butoxycarbonyl (hereinafter abbreviated as t-Boc) group was used. Next, this peptide-bonded resin was suspended in a mixed solution composed of ethanedithiol and thioanisole, stirred for 10 minutes at room temperature, added with trifluoroacetic acid under ice cooling, and further stirred for 10 minutes. Trifluoromethanesulfonic acid was added dropwise to the mixture, and the mixture was stirred at room temperature for 30 minutes. Then, anhydrous ether was added to precipitate the product, and the precipitate was washed several times with anhydrous ether. And dried. The crude synthetic peptide thus obtained was dissolved in distilled water or methanol, and then purified by HPLC using a reverse phase column C 18 (5 μm). (A) 0.1% TFA-containing distilled water and (B) 0.1% TFA-containing acetonitrile solution were used as the mobile phase, and (A) the flow rate was 1% by a concentration gradient method of 93% → 52% over 60 minutes. Chromatography was performed at 1 mι / min. The elution fraction that was detected at the ultraviolet wavelength of 216 nm and showed the maximum absorption was collected and lyophilized to obtain the target synthetic peptide.
[0011]
As a result of analyzing this synthetic peptide by mass spectrum, it was confirmed that the amino acid sequence and amino acid composition were tripeptides having the amino acid sequence structure shown above. The result of this mass spectrum is as shown in FIG.
The tripeptide of the present invention obtained by synthesis was confirmed to have a pharmacological effect by the following test.
[0012]
Test example 1
(Angiotensin converting enzyme inhibitory activity measurement method) ACE (manufactured by Sigma, enzyme number EC 3.4.15.1) 2.5 mU, synthetic substrate Hippuryl-L-histidyl-L-leucine (manufactured by Peptide Institute) 12.5 mM The measurement was carried out in accordance with the method of Yamamoto et al., Which improved the measurement method of Lieberman used [Nipporyukaikai, Vol. 18, 297-302 (1989)]. That is, the produced hippuric acid was extracted with ethyl acetate and measured by absorbance at 225 nm. The inhibition rate was calculated from the following equation, where Es is the absorbance in the test solution, Ec is the value when the buffer solution is added instead of the test solution, and Eb is the value when the reaction stop solution is added and reacted in advance. .
Inhibition rate (%) = (Ec−Es) / (Ec−Eb) × 100
The inhibitory activity IC 50 value of the ACE inhibitor was expressed as the concentration (M) of the sample required to inhibit the enzyme activity of ACE by 50% (inhibition rate). Inhibitory activity (IC 50 value) of the tripeptide according to the present invention against angiotensin converting enzyme in bovine lung serum; (1) is 0.96 μM.
[0013]
Test example 2
(Antihypertensive effect when administered to spontaneously hypertensive rats) As experimental animals, 15-week-old male spontaneously hypertensive rats (hereinafter abbreviated as SHR) were purchased from Japan's Charles River, and contracted after one week of pre-breeding. A group of 6 animals having a period blood pressure of 160 mmHg or more (weight 280 to 330 g) was used. Rats were housed individually in stainless steel rat individual gauges in a breeding room adjusted to room temperature 23 ± 2 ° C., humidity 55 ± 10%, and 12 hours light / dark (lights on from 6 am to 6 pm). . The feed was MF powder feed manufactured by Oriental Yeast Co., Ltd., and the drinking water was ingested by private pumping (conforming to tap water quality standards). Blood pressure was measured by tail-cuff method using a non-invasive tail artery blood pressure measuring device (manufactured by Riken Development Co., Ltd., PS-100 type) before administration, 1 week after administration, 2 weeks later, 3 weeks later, 4 weeks later. And the measurement value obtained by measuring the systolic blood pressure (mmHg, upper value), diastolic blood pressure (mmHg, lower value), and mean blood pressure (mmHg) of the SHR tail artery after 5 weeks each 5 times at regular intervals. The highest and lowest values were rejected, and the average value of three times was taken as the measured value for each time. The results of the effect on each blood pressure value (mmHg) when 10 mg / kg of the synthetic tripeptide according to the present invention is orally administered to SHR are as shown in FIG. As a result of the above test, it was confirmed that the tripeptide according to the present invention has an angiotensin converting enzyme inhibitory activity and exhibits a significant blood pressure lowering effect even in vivo (in vivo). Therefore, the tripeptide according to the present invention is useful as a therapeutic or prophylactic agent for hypertension. The tripeptide according to the present invention can also be employed in the structure of a peptide structurally having the amino acid sequence as a partial structure.
[0014]
[Brief description of the drawings]
1 is a diagram showing the results of separation and purification of an ACE-inhibiting peptide by Sephadex G-25 column chromatography in Production Example 1 of a seaweed proteolysate according to the present invention. In the figure, as a marker, insulin having a molecular weight of 6,000, insulin B chain having a molecular weight of 3,500, insulin A chain having a molecular weight of 2,500, bradykinin having a molecular weight of 1,052, and glycine having a molecular weight of 75 were used.
FIG. 2 is a diagram showing the results of separation and purification of ACE-inhibiting peptides by SP-Sephadex C-25 (H + ) column chromatography in Production Example 1 of the Wakame proteolytic solution according to the present invention.
FIG. 3 is a diagram showing the results of separation and purification of an ACE-inhibiting peptide by reverse-phase HPLC in Production Example 1 of a tripeptide according to the present invention.
FIG. 4 is a diagram showing a mass spectrum of the synthetic tripeptide obtained in Production Example 2 of the tripeptide according to the present invention.
FIG. 5 is a graph showing changes in systolic blood pressure value, diastolic blood pressure value, and average blood pressure value (mmHg) over 5 weeks when the synthetic tripeptide 10 mg / kg obtained in Production Example 2 is orally administered to SHR. It is.

Claims (2)

次式;Tyr−Tyr−His
で示されるL体のアミノ酸の配列によるペプチド構造を有する新規なトリペプチド。
The following formula: Tyr-Tyr-His
A novel tripeptide having a peptide structure by the amino acid sequence of L-form represented by
次式;Tyr−Tyr−His
で示されるL体のアミノ酸の配列によるペプチド構造を有する新規なトリペプチドを有効成分として含有することを特徴とするアンジオテンシン変換酵素阻害剤。
The following formula: Tyr-Tyr-His
An angiotensin-converting enzyme inhibitor comprising a novel tripeptide having a peptide structure based on the L-amino acid sequence represented by
JP2001355368A 2001-10-16 2001-10-16 Novel tripeptide and angiotensin converting enzyme inhibitors Expired - Fee Related JP3709425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355368A JP3709425B2 (en) 2001-10-16 2001-10-16 Novel tripeptide and angiotensin converting enzyme inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355368A JP3709425B2 (en) 2001-10-16 2001-10-16 Novel tripeptide and angiotensin converting enzyme inhibitors

Publications (2)

Publication Number Publication Date
JP2003128695A JP2003128695A (en) 2003-05-08
JP3709425B2 true JP3709425B2 (en) 2005-10-26

Family

ID=19167085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355368A Expired - Fee Related JP3709425B2 (en) 2001-10-16 2001-10-16 Novel tripeptide and angiotensin converting enzyme inhibitors

Country Status (1)

Country Link
JP (1) JP3709425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505707B2 (en) * 2003-02-13 2010-07-21 株式会社白子 Pharmaceutical composition for the treatment of stiff shoulders or coldness due to vasodilation

Also Published As

Publication number Publication date
JP2003128695A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JPH07188282A (en) Novel tripeptide, its production and hypotensor containing the same as an active ingredient
JPH06256387A (en) New peptide, its production and hypotensive agent comprising the same as active ingredient
JP2007182415A (en) New wakame seaweed peptide, l-tyrosyl-l-proline and antihypertensive agent
JP3893579B2 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP2007182414A (en) New dried bonito peptide, l-valyl-l-proline and antihypertensive agent
JP2007191457A (en) New hizikia peptide, l-leucyl-l-proline and hypotensive
JP3709425B2 (en) Novel tripeptide and angiotensin converting enzyme inhibitors
JP2003267994A (en) New peptide and inhibitor of angiotensin converting enzyme
JP2990354B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors
JP3972104B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
JP2678180B2 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP3135812B2 (en) Angiotensin converting enzyme inhibiting peptide and method for producing the same
JP3885214B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
JP2006199672A (en) New tripeptide and angiotensin-converting enzyme inhibitor
JP2001106699A (en) New hexapeptide and angiotensin-converting enzyme inhibitor
JP2920829B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors
JP3108920B1 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP2007161696A (en) New heptapeptide and prolyl endopeptidase inhibitor
JPH08269087A (en) New tetrapeptide and pentapeptide, their production and antihypertensive containing the same as active ingredient
JP2003267995A (en) New heptapeptide and inhibitor of angiotensin converting enzyme
JP2003246796A (en) Novel undaria peptide, l-phenylalanyl-l-tyrosine, and antihypertensive agent
JPH07188283A (en) Novel tripeptide and angiotensin-converting enzyme inhibitor
JPH08225593A (en) Novel tetrapeptide, pentapeptide and angiotensin-transferase inhibitor
JPH1036391A (en) New peptide and angiotensin converting enzyme inhibitor
JP2003252897A (en) L-tyrosyl-l-histidine of undaria pinnatifida peptide and depressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20011016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees