JP2902651B2 - Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same - Google Patents

Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same

Info

Publication number
JP2902651B2
JP2902651B2 JP63235432A JP23543288A JP2902651B2 JP 2902651 B2 JP2902651 B2 JP 2902651B2 JP 63235432 A JP63235432 A JP 63235432A JP 23543288 A JP23543288 A JP 23543288A JP 2902651 B2 JP2902651 B2 JP 2902651B2
Authority
JP
Japan
Prior art keywords
electrode
reaction
oxygen
oxygen electrode
ads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63235432A
Other languages
Japanese (ja)
Other versions
JPH0294364A (en
Inventor
玲子 能登谷
真幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUPUSU DENKI KK
Original Assignee
ARUPUSU DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUPUSU DENKI KK filed Critical ARUPUSU DENKI KK
Priority to JP63235432A priority Critical patent/JP2902651B2/en
Publication of JPH0294364A publication Critical patent/JPH0294364A/en
Application granted granted Critical
Publication of JP2902651B2 publication Critical patent/JP2902651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、酸素−水素電池などの燃料電池の陰極、一
酸化炭素や窒素酸化物等の水素酸化反応のための酸素電
極などに好適に利用できる酸素電極反応用電極に関する
ものである。
The present invention is suitable for a cathode of a fuel cell such as an oxygen-hydrogen battery, an oxygen electrode for a hydrogen oxidation reaction such as carbon monoxide and nitrogen oxide, and the like. It relates to an oxygen electrode reaction electrode that can be used.

「従来の技術」 先に本発明者は、単純な金属・酸化物混合物からなる
酸素電極反応用電極としては世界で初めて、平衡酸素電
極電位1.23VvsRHEを1年間以上安定に保持できる酸素電
極反応用電極、IrO2被覆白金電極およびIrO2白金被覆グ
ラファイト電極を開発した(特願昭62−249170号{特許
番号第2520266号}参照)。
[Prior art] First, the present inventor is the world's first oxygen electrode reaction electrode consisting of a simple metal-oxide mixture that can stably maintain an equilibrium oxygen electrode potential of 1.23 V vs. RHE for more than one year. A reaction electrode, an IrO 2 -coated platinum electrode, and an IrO 2 platinum-coated graphite electrode were developed (see Japanese Patent Application No. 62-249170 {Patent No. 2520266}).

これらの電極は、白金または白金グラファイトからな
る電極基体表面に、IrO2からなる電極活性化物質層が設
けられてなるものである。
These electrodes are obtained by providing an electrode activator layer made of IrO 2 on the surface of an electrode substrate made of platinum or platinum graphite.

ここで、酸素−水素電池とは、特願昭62−249170号
(特許番号第2520266号)に記載の如く、電解質溶液中
に、黒鉛、白金、ニッケルなどからなる中空の多孔質電
極を挿入し、一方の極(正極)に水素、他方の極(負
極)に酸素を圧入し、この両電極間を導電体で結んだと
き、下記のような反応によって電流が、流れることを応
用した電池として従来から広く知られているものであ
る。
Here, an oxygen-hydrogen battery is a device in which a hollow porous electrode made of graphite, platinum, nickel, or the like is inserted into an electrolyte solution as described in Japanese Patent Application No. 62-249170 (Patent No. 2520266). When hydrogen is injected into one electrode (positive electrode) and oxygen is injected into the other electrode (negative electrode), and the two electrodes are connected by a conductor, a current flows by the following reaction. It is widely known from the past.

正極反応:H2→2H++2e (陰極:水素電極) 負極反応:O2+4H++4e→H2O (陽極:酸素電極) この場合、電池として見れば、電子が放出される側
(上記における正極)は陰極となり、電子が流れ込む側
(上記における負極)は陽極となる。
Positive electrode reaction: H 2 → 2H + + 2e (cathode: hydrogen electrode) Negative electrode reaction: O 2 + 4H + + 4e → H 2 O (anode: oxygen electrode) The positive electrode serves as a cathode, and the side into which electrons flow (negative electrode in the above) serves as an anode.

ところで、前記酸素−水素電池における起電力は、水
素平衡電位として求められる。この酸素平衡電位は、陽
極における平衡状態の電位から陰極における標準水素電
極電位を差し引いたものであり、熱力学的な見地から理
論的に求めた値は、1.23VvsRHEとされている。
Incidentally, the electromotive force in the oxygen-hydrogen battery is obtained as a hydrogen equilibrium potential. The oxygen equilibrium potential is obtained by subtracting the standard hydrogen electrode potential at the cathode from the equilibrium potential at the anode, and the value theoretically obtained from a thermodynamic viewpoint is 1.23 V vs. RHE.

しかし、理論値に近い酸素平衡電位を安定して得られ
る陽極材料は、現在まで殆ど得られていない。例えば、
Pt/PtO2電極では、平衡電位は得られず、静止電位は最
も貴で1.15V、io10-9A/cm2であり、しかも、安定してい
るのは数日間だけである。また、Ru2O3あるいはPbO2
素電極では、静止電位≦0.9V、io=10-6A/cm2であり、
しかも安定しているのは数日間である。
However, an anode material that can stably obtain an oxygen equilibrium potential close to the theoretical value has hardly been obtained until now. For example,
With a Pt / PtO 2 electrode, no equilibrium potential is obtained, the resting potential is the most noble at 1.15 V, i o 10 -9 A / cm 2 , and it is stable for only a few days. In the case of a Ru 2 O 3 or PbO 2 carbon electrode, the resting potential ≦ 0.9 V, i o = 10 −6 A / cm 2 ,
And it is stable for a few days.

このように理論値に近い酸素平衡電位を安定して得ら
れない理由は、陽極において酸素が電極に取り入れられ
る際に電極表面において酸素の解離吸着が阻害されるこ
と、電極表面において複雑な反応が進行し、電位が変化
することによるものと考えられる。
The reason why an oxygen equilibrium potential close to the theoretical value cannot be stably obtained in this way is that dissociative adsorption of oxygen is inhibited on the electrode surface when oxygen is introduced into the electrode at the anode, and complicated reactions occur on the electrode surface. It is considered that the potential changes due to progress.

「発明が解決しようとする課題」 ところで、これらの電極の実用化を図るにあたり、前
者のIrO2被覆白金電極においては、白金板(箔)が高価
なので、高価格となる不満があった。
"Problems to be Solved by the Invention" By the way, in order to put these electrodes into practical use, the former IrO 2 -coated platinum electrode was unsatisfactory because the platinum plate (foil) was expensive, resulting in a high price.

また後者のIrO2白金被覆グラファイト電極において
は、構造的にぜい弱であるうえ、激しい酸化によって分
散してしまう欠点があった。本発明は前記事情に鑑みて
なされたもので、単純な金属・酸化物混合物からなる酸
素電極反応用電極として世界で始めて1.23VvsRHEの選れ
た平衡酸素電極電位を示し、その平衡酸素電極電位を少
なくとも1ケ月以上の長期間常温で維持することができ
る酸素電極反応用電極とその製造方法の提供を目的とす
る。
Further, the latter IrO 2 platinum-coated graphite electrode has the disadvantages that it is structurally vulnerable and is dispersed by vigorous oxidation. The present invention has been made in view of the above circumstances, showing the world's first 1.23V vs. RHE selected equilibrium oxygen electrode potential as an oxygen electrode reaction electrode consisting of a simple metal-oxide mixture, the equilibrium oxygen electrode An object of the present invention is to provide an electrode for an oxygen electrode reaction capable of maintaining a potential at room temperature for a long period of at least one month or more, and a method for producing the same.

「発明の目的」 本発明は前記事情に鑑みてなされたもので、先に本発
明者らが特許出願している優れた酸素電極反応用電極と
同様に平衡酸素電極電位を安定に実現できるうえに、構
造的にも強固で、耐食性にも優れ、かつ安価である酸素
電極反応用電極とその製造方法を提供することを目的と
する。
"Object of the Invention" The present invention has been made in view of the above circumstances, and can stably realize an equilibrium oxygen electrode potential similarly to the excellent oxygen electrode reaction electrode to which the present inventors have previously applied for a patent. Another object of the present invention is to provide an oxygen electrode reaction electrode which is structurally strong, has excellent corrosion resistance, and is inexpensive, and a method for producing the same.

「課題を解決するための手段」 本発明に係る高い平衡酸素電極電位を発揮する酸素電
極反応用電極の基本構成は、ステンレス鋼、チタンある
いはニッケルからなる電極基体の表面に、白金層と酸化
イリジウム層が、相互に接触された状態で積層されてな
る活性層を有する酸素電極反応用電極であり、電解液中
における平衡酸素電極電位として1.23VvsRHEが得られる
ことを特徴とするものである。
"Means for Solving the Problems" The basic configuration of the electrode for oxygen electrode reaction exhibiting a high equilibrium oxygen electrode potential according to the present invention consists of a platinum layer and iridium oxide on the surface of an electrode substrate made of stainless steel, titanium or nickel. The layer is an oxygen electrode reaction electrode having an active layer laminated in a state of being in contact with each other, characterized in that an equilibrium oxygen electrode potential of 1.23 V vs. RHE is obtained in the electrolytic solution. .

前記の基本構成において、前記酸化イリジウム層中に
強い電子受容性を有するIr4+が発現自在であり、前記平
衡酸素電極電位の1.23VvsRHEが、常温で1ケ月以上保持
される。
In the above basic configuration, Ir 4+ having a strong electron accepting property can be freely expressed in the iridium oxide layer, and the equilibrium oxygen electrode potential of 1.23 V vs. RHE is maintained at room temperature for one month or more.

次に、前記構成において電解液が、H3BO3水溶液ある
いは、H3PO4水溶液であることが好ましい。
Next, in the above configuration, it is preferable that the electrolytic solution is an aqueous solution of H 3 BO 3 or an aqueous solution of H 3 PO 4 .

更に本発明は、電解液中に一方の電極である酸素電極
反応用電極と他方の電極とが挿入され、両電極が導電体
により接続された構成の酸素−水素電池に用いられる前
記基本構成の酸素電極反応用電極であって、電解液中の
一方の電極である酸素電極反応用電極側において、O24H
++4e→H2Oなる式で示される反応がなされ、電解液中の
他方の電極側において、H2→2H++2eなる式で示される
反応がなされるものであっても良い。
Further, the present invention provides an oxygen-hydrogen battery having a configuration in which an oxygen electrode reaction electrode, which is one electrode, and the other electrode are inserted into an electrolyte, and both electrodes are connected by a conductor. On the oxygen electrode reaction electrode, the oxygen electrode reaction electrode side, which is one electrode in the electrolytic solution, O 2 4H
The reaction represented by the formula +++ 4e → H 2 O may be performed, and the reaction represented by the formula H 2 → 2H + + 2e may be performed on the other electrode side in the electrolytic solution.

更に、前記電解液中に一方の電極である酸素電極反応
用電極と他方の電極とが挿入され、両電極が導電体によ
り接続された構成の酸素−水素電池に用いられる酸素電
極反応用電極であって、電解液中の一方の電極である酸
素電極反応用電極側において、O2+4H++4e→H2Oなる式
で示される反応がなされ、電解液中の他方の電極側にお
いて、H2→2H++2eなる式で示される反応がなされ、前
記電解液中において酸素電極反応用電極側における素反
応が、(H2O)ads→(OH)ads+H++eなる式で示され
る電子移動段階と、(OH)adsからOads、O2adsを経てO2
となって発生する反応を具備してなることを特徴とする
ものでも良い。
Further, an oxygen electrode reaction electrode, which is used in an oxygen-hydrogen battery having a configuration in which an oxygen electrode reaction electrode and one electrode, which are one electrode, are inserted into the electrolytic solution, and both electrodes are connected by a conductor. Then, on the oxygen electrode reaction electrode side which is one electrode in the electrolytic solution, a reaction represented by the formula of O 2 + 4H + + 4e → H 2 O is performed, and on the other electrode side in the electrolytic solution, H 2 → The reaction represented by the formula of 2H + + 2e is performed, and the elementary reaction on the oxygen electrode reaction electrode side in the electrolytic solution is performed by the electron transfer step represented by the formula of (H 2 O) ads → (OH) ads + H + + e. And (OH) ads through Oads, O 2 ads and O 2
It may be characterized by having a reaction that occurs as follows.

前記電解液中に一方の電極である酸素電極反応用電極
と他方の電極とが挿入され、両電極が導電体により接続
された構成の酸素−水素電池に用いられる酸素電極反応
用電極であって、電解液中の一方の電極である酸素電極
反応用電極側において、O2+4H++4e→H2Oなる式で占め
される反応がなされ、電解液中の他方の電極側におい
て、H2→2H++2eなる式で示される反応がなされ、前記
電解液中において酸素電極反応用電極側における素反応
が、(H2O)ads→(OH)ads+H++eなる式で示される
電子移動段階と、(OH)adsからOads、O2adsを経てO2
なって発生する反応を具備してなり、前記(OH)adsか
らOads、O2adsを経てO2となって発生する反応が平衡と
され、前記(H2O)ads→(OH)ads+H++eなる式で示
される電子移動段階により前記酸素電極反応用電極側に
おける反応全体が律速され、この電子移動段階が前記活
性層により活性化されてなるものでも良い。
An oxygen electrode reaction electrode used for an oxygen-hydrogen battery having a configuration in which an oxygen electrode reaction electrode and the other electrode, which are one electrode, are inserted into the electrolyte, and both electrodes are connected by a conductor. On the oxygen electrode reaction electrode side, which is one electrode in the electrolyte, a reaction occupied by the formula O 2 + 4H + + 4e → H 2 O takes place. On the other electrode side in the electrolyte, H 2 → The reaction represented by the formula 2H + + 2e is performed, and the elementary reaction on the oxygen electrode reaction electrode side in the electrolytic solution is performed by an electron transfer step represented by the formula (H 2 O) ads → (OH) ads + H + + e. , (OH) OADS from ads, it comprises a O 2 through the ads generated a O 2 reaction, the (OH) OADS from ads, O 2 through the ads generated a O 2 reaction equilibrium is a, the (H 2 O) ads → ( OH) ads + H + + e becomes the oxygen conductive by electron transfer step represented by the formula The overall reaction in the reaction electrode side is rate-limiting, it may be understood that the electron transfer stage is activated by the active layer.

前記の各構成における電極基体が、板状あるいは多孔
質状とされてなるものでも良い。
The electrode substrate in each of the above structures may be formed in a plate shape or a porous shape.

一方、ステンレス鋼、チタンあるいはニッケルからな
る電極基体の表面に白金層を電析させ、次いで酸化イリ
ジウム層を電析させることで電解液中における平衡酸素
電極電位として1.23VvsRHEを発揮する電極を得ることが
できる。
On the other hand, by depositing a platinum layer on the surface of an electrode substrate made of stainless steel, titanium or nickel, and then depositing an iridium oxide layer, an electrode exhibiting an equilibrium oxygen electrode potential of 1.23 V vs. RHE in the electrolyte is obtained. Obtainable.

次に、ステンレス鋼、チタンあるいはニッケルからな
る電極基体の表面に白金層を電析させ、次いでイリジウ
ム元素を含むスラリーを塗布し、次いで加熱処理を施す
ことで電解液中における平衡酸素電極電位として1.23V
vsRHEが得られる電極を得ることができる。
Next, a platinum layer is electrodeposited on the surface of an electrode substrate made of stainless steel, titanium or nickel, and then a slurry containing an iridium element is applied, and then a heat treatment is performed to obtain an equilibrium oxygen electrode potential in the electrolyte of 1.23. V
vs RHE can be obtained.

前記の電極基体として、板状のもの、あるいは、多孔
質体からなるものを用いることもできる。
As the above-mentioned electrode substrate, a plate-like one or a porous body can be used.

前記活性層は、白金と酸化イリジウムとが接した状態
で存在している層で、白金の層と酸化イリジウムの層の
2層が重ねて設けられた層であっても良い。2層構造の
場合、いずれの層が下層であっても良い。
The active layer is a layer in which platinum and iridium oxide are present in contact with each other, and may be a layer in which two layers of a platinum layer and an iridium oxide layer are provided. In the case of a two-layer structure, any layer may be a lower layer.

前記電極基体は、板状あるいは多孔性のものであるこ
とが望ましい。
The electrode substrate is desirably plate-shaped or porous.

この酸素電極反応用電極の製造方法としては、電極基
体が板状である場合には、電極基体の表面に白金を電析
させた後に酸化イリジウムを電析させる方法や、前記白
金を電析させた後にイリジウム元素を含むスラリーを塗
布し、ついで加熱処理を施す方法が好適である。
As a method for producing this electrode for oxygen electrode reaction, when the electrode substrate is plate-like, a method of depositing platinum on the surface of the electrode substrate and then depositing iridium oxide or depositing the platinum. After that, a method of applying a slurry containing an iridium element and then performing a heat treatment is preferable.

ここでイリジウム元素を含むスラリーとしては、イリ
ジウムイオンを含むスラリーや、IrO2の配合されたスラ
リーが好適である。
Here, as the slurry containing the iridium element, a slurry containing iridium ions and a slurry containing IrO 2 are preferable.

またスラリー塗布後に行なわれる加熱処理は、白金の
電析された電析基体にスラリー中のイリジウムが十分固
着する程度の温度で行なわれる。
The heat treatment performed after the application of the slurry is performed at a temperature at which iridium in the slurry is sufficiently fixed on the electrodeposited substrate on which platinum has been deposited.

また多孔性の電極基体からなる酸素電極反応用電極を
製造する場合には、多孔性の電極基体の表面に白金を蒸
着させた後に、酸化イリジウムを電析させる方法や、イ
リジウム元素を含むスラリーを塗布して加熱処理する方
法が好適である。
In the case of producing an electrode for oxygen electrode reaction comprising a porous electrode substrate, a method of depositing platinum on the surface of the porous electrode substrate and then depositing iridium oxide or a slurry containing an iridium element is used. A method of applying and heat-treating is preferred.

白金を蒸着させるには、高周波炉を用いて真空下で行
うことが望ましい。
In order to deposit platinum, it is desirable to use a high-frequency furnace and perform it under vacuum.

「作用」 本発明の酸素反応用電極では、白金および酸化イリジ
ウムからなる活性層が、ステンレス鋼、チタンあるいは
ニッケルからなる電極基体によって支持されている。ま
た、電極基体の表面に、白金層と酸化イリジウム層が、
相互に接触された状態で積層されてなる活性層を有する
ので、電解液中における電極側での電子移動段階が活性
化され、平衡酸素電極電位として1.23VvsRHEの貴い値が
得られる。
[Operation] In the oxygen reaction electrode of the present invention, the active layer composed of platinum and iridium oxide is supported by an electrode substrate composed of stainless steel, titanium or nickel. Also, on the surface of the electrode substrate, a platinum layer and an iridium oxide layer are provided.
Since the active layers are stacked in a state where they are in contact with each other, the electron transfer stage on the electrode side in the electrolytic solution is activated, and a noble value of 1.23 V vs. RHE is obtained as the equilibrium oxygen electrode potential.

「実施例」 (実施例1) ステンレス鋼からなる板体、チタンからなる板体およ
びニッケルからなる板体を電極基体とし、これら電極基
体に白金を50mg/cm2電着し、ついでイリジウム錯体(Na
2IrO4)の水溶液中に浸漬してIrO2を電着した。
"Example" (Example 1) A plate made of stainless steel, a plate made of titanium, and a plate made of nickel were used as electrode substrates, and 50 mg / cm 2 of platinum was electrodeposited on these electrode substrates, and then an iridium complex ( Na
2 was immersed in an aqueous solution of IrO 4 ) to electrodeposit IrO 2 .

このようにして得られた電極を、25℃、1NのH3BO3
溶液およびH3PO4に浸して1気圧の酸素雰囲気中で静止
電位をそれぞれ測定したところ、これらの電極にあって
も平衡酸素電極電位1.23VvsRHEを実現できることが確認
された。またこの電位を2箇月間保持している。
The electrodes thus obtained were immersed in a 1N aqueous solution of H 3 BO 3 and H 3 PO 4 at 25 ° C., and the resting potential was measured in an oxygen atmosphere at 1 atm. It was confirmed that an equilibrium oxygen electrode potential of 1.23 V vs RHE could be realized. This potential is maintained for two months.

またこれらの電極は、少量のPtを用いるのみで作成で
き、安価であることが確認された。またこれらの電極は
構造的に強固で、しかも長期の使用にも十分耐える耐食
性を有していることが確認された。
In addition, it was confirmed that these electrodes could be prepared only by using a small amount of Pt, and were inexpensive. It was also confirmed that these electrodes were structurally strong and had corrosion resistance enough to withstand long-term use.

(実施例2) スポンジ状のステンレス鋼、スポンジ状のチタンおよ
びスポンジ状のニッケルに、高周波炉中で白金を真空蒸
着した。白金の被覆厚は数10〜数100ミクロンであっ
た。ついでこれらのものに、IrO2を含むスラリーを塗布
したあと加熱処理した。
Example 2 Platinum was vacuum-deposited on sponge-like stainless steel, sponge-like titanium and sponge-like nickel in a high-frequency furnace. The coating thickness of the platinum was several tens to several hundreds of microns. Next, a slurry containing IrO 2 was applied to these, followed by heat treatment.

これらの電極を、実施例1と同様にして静止電位を測
定したところ、10〜20分後に1.23VvsRHEを得た。これら
の挙動も策に特願昭62−249170号で提案した酸素電極反
応用電極と同様であった。
The static potential of these electrodes was measured in the same manner as in Example 1. As a result, 1.23 V vs. RHE was obtained after 10 to 20 minutes. These behaviors were similar to the oxygen electrode reaction electrode proposed in Japanese Patent Application No. 62-249170.

またこれらの電極にあっても、実用上十分な強度と耐
食性を有していることが確認された。
Also, it was confirmed that these electrodes also had practically sufficient strength and corrosion resistance.

(実施例3) 表面状態の異なる電極〜を作成した。(Example 3) Electrodes having different surface conditions were prepared.

ステンレス鋼板にIrを電析し、ついで酸化処理した
電極。
Electrode on which Ir is deposited on a stainless steel plate and then oxidized.

ステンレス鋼板にIr4+を含む溶液を塗布し、ついで
700℃で加熱処理した電極。
Apply a solution containing Ir 4+ to a stainless steel plate, and then
Electrode heated at 700 ° C.

ステンレス鋼板にIrO2を電析させたあと、Ptを電析
し、ついで陰・陽分極処理した電極。
Electrode after depositing IrO 2 on stainless steel plate, depositing Pt, and then anodizing and anodic polarization.

ステンレス鋼板にPtを電析させたあと、IrO2を電析
し、ついで陰・陽分極処理した電極。
Electrode after depositing Pt on stainless steel plate, depositing IrO 2 , and then subjecting to negative and positive polarization treatment.

これらの電極を、Po2=1atm、T=25℃の1.0N H3BO3
水溶液中に浸して静止電位を測定した結果、強い電子受
容性をもつIr4+と電子移動反応に活性な白金とからなる
活性層がステンレス鋼板に設けらたおよびの電極は
選れた酸素電極反応用電極となることが確認された。
These electrodes were placed on 1.0 NH 3 BO 3 at Po 2 = 1 atm and T = 25 ° C.
As a result of measuring the resting potential by immersion in an aqueous solution, a stainless steel plate was provided with an active layer composed of Ir4 +, which has strong electron-accepting properties, and platinum, which is active in an electron transfer reaction. It was confirmed that it would be a reaction electrode.

(実施例4) 実施例3のの電極と比較して、電極基体がニッケ
ル製である点のみが異なる酸素電極反応用電極と、電極
基体がチタン製である点のみが異なる酸素電極反応用電
極を製作して、同様の試験に供した。
(Example 4) An oxygen electrode reaction electrode which differs from the electrode of Example 3 only in that the electrode substrate is made of nickel, and an oxygen electrode reaction electrode which differs only in that the electrode substrate is made of titanium Was manufactured and subjected to the same test.

その結果、いずれの電極もステンレス鋼板からなる前
記の電極と同様の作用効果を有することが確認され
た。
As a result, it was confirmed that each of the electrodes had the same function and effect as those of the above-mentioned electrodes made of a stainless steel plate.

またチタン製の電極基体からなる電極は、初期にステ
ンレス製のものよりも高い静止電位を示した。またその
後静止電位はゆっくりと降下したが30日経過した後に
も、平衡酸素電極電位1.23VvsRHE以上の電位を示してい
る。これは、チタンが吸収した酸素種を良く保つためで
あると考えられる。この結果から、電極基体がチタン製
である電極は、高起電力電池に好適であると思われる。
Further, the electrode composed of the electrode substrate made of titanium initially showed a higher static potential than that made of stainless steel. After that, the resting potential gradually decreased, but after 30 days, the equilibrium oxygen electrode potential was 1.23 V vs. RHE or more. This is presumably because the oxygen species absorbed by titanium is kept well. From this result, it is considered that an electrode in which the electrode base is made of titanium is suitable for a high electromotive force battery.

(実施例5) ステンレス鋼製の板体およびチタン製の板体を電極基
体とし、これら基体にまずPtを電着した後、ついでIrO2
を電着して、2種類の酸素電極反応用電極を作成した。
Example 5 A plate made of stainless steel and a plate made of titanium were used as electrode bases, and Pt was first electrodeposited on these bases, and then IrO 2
Was electrodeposited to produce two types of oxygen electrode reaction electrodes.

これらの電極について、定電流過渡法により、半定量
的に素反応の時定数を決定した。
For these electrodes, the time constant of the elementary reaction was determined semi-quantitatively by the constant current transient method.

その結果、いずれも下記電子移動段階(1)が律速
で、時定数τ10≒1secであることが判明した。
As a result, it was found that the electron transfer stage (1) described below was rate-determining and had a time constant τ 10 ≒ 1 sec.

(H2O)ads→(OH)ads+H++e ……(1) (OH)adsがOads、O2adsを経てO2として発生するまで
の接触段階はほぼ平衡である。ただし、数時間を越えて
分極を継続すると、電極内部の吸収酸素種の活量が変化
し、電極表面の過電圧に影響を与えている。すなわち、
分極終了後、電位が平衡に戻るのに長時間かかる。ステ
ンレス鋼またはチタン製の電極基体からなる電極では、
この時間は1日〜数日または数10日である。
(H 2 O) ads → ( OH) ads + contact stage until H + is + e ...... (1) (OH ) ads generated OADS, as O 2 through the O 2 Ads is substantially balanced. However, when the polarization is continued for more than several hours, the activity of the absorbed oxygen species inside the electrode changes, which affects the overvoltage on the electrode surface. That is,
After the polarization, it takes a long time for the potential to return to equilibrium. For electrodes consisting of stainless steel or titanium electrode substrates,
This time is from one day to several days or tens of days.

つぎに、ステンレス鋼製の電極をPo2=1atm、T=25
℃の1.0NH3BO3水溶液中に浸漬して、分極曲線を調べ
た。結果を、第1図に示す。陽分極領域の傾斜はb=12
0mVで、前記電子移動段階(1)が律速段階であること
を示している。
Next, a stainless steel electrode was connected to Po 2 = 1atm and T = 25.
It was immersed in a 1.0 NH 3 BO 3 aqueous solution at ℃, and the polarization curve was examined. The results are shown in FIG. The slope of the positive polarization region is b = 12
At 0 mV, this indicates that the electron transfer step (1) is a rate-limiting step.

また交流電流密度i0=2.3×10-7amp/cm2は、先に提案
したIrO2被覆白金電極の場合よりもやや活性であるが、
これは表面の粗度の影響であり、実質的にはほぼ同等で
あると思われる。このi0から概算される時定数τ10は1.
2secである。
The AC current density i 0 = 2.3 × 10 −7 amp / cm 2 is slightly more active than that of the previously proposed IrO 2 coated platinum electrode,
This is an effect of the surface roughness and seems to be substantially equivalent. The time constant τ 10 estimated from this i 0 is 1.
2 seconds.

これらの結果から、この酸素電極反応用電極は、先に
特願昭62−249170号で提案したIrO2被覆白金電極と同等
の高活性極であることが判る。
From these results, it can be seen that this oxygen electrode reaction electrode is a highly active electrode equivalent to the IrO 2 -coated platinum electrode previously proposed in Japanese Patent Application No. 62-249170.

つぎにチタン製の電極についても、同様に分極曲線を
求めたところ、吸収酸素種の電位変化を取り除くと、第
1図に示したステンレス鋼製の電極の結果とほぼ同様の
結果が得られた。
Next, a polarization curve was similarly obtained for the titanium electrode, and when the potential change of the absorbed oxygen species was removed, almost the same result as that of the stainless steel electrode shown in FIG. 1 was obtained. .

「発明の効果」 以上説明したように本発明の電極は、白金層と酸化イ
リジウム層に相互に接触させた活性層を有する酸素電極
反応用電極であり、電解液中における平衡酸素電極電位
として、単純な金属・酸化物混合物からなる電極として
は、先に本発明者らが特許出願している電極と同様に、
世界で始めての1.23VvsRHEが得られ、平衡酸素電極電位
の理論値を安定に実現できるうえ、白金の使用量が少な
く安価に製造できる利点がある。
"Effects of the Invention" As described above, the electrode of the present invention is an electrode for oxygen electrode reaction having an active layer mutually contacted with a platinum layer and an iridium oxide layer, and as an equilibrium oxygen electrode potential in an electrolytic solution, As an electrode made of a simple metal / oxide mixture, like the electrode to which the present inventors previously applied for a patent,
The world's first 1.23 V vs. RHE is obtained, and the theoretical value of the equilibrium oxygen electrode potential can be stably realized, and there is an advantage that the amount of platinum used is small and the production can be performed at low cost.

またステンレス鋼、チタンあるいはニッケルからなる
電極基体は、耐食性に富みかつ高強度なので、本発明の
酸素電極反応用電極は、優れた耐食性を有しかつ構造的
にも強固で、実用的な電極となる。
In addition, since the electrode substrate made of stainless steel, titanium or nickel is rich in corrosion resistance and high in strength, the electrode for oxygen electrode reaction of the present invention has excellent corrosion resistance and is structurally strong, and is a practical electrode. Become.

よって本発明の酸素電極反応用電極によれば、従来よ
りも数100mV起電力が大きく、しかも約100倍の電流を得
ることができる実用燃料電池の他、約100倍の活性を有
する酸化反応のための酸素電極等を製作することができ
る。
Therefore, according to the oxygen electrode reaction electrode of the present invention, several hundred mV electromotive force is larger than before, and in addition to a practical fuel cell that can obtain about 100 times the current, an oxidation reaction having about 100 times the activity is performed. Electrode and the like can be manufactured.

また、前記の構造であり、前記酸化イリジウム層中に
強い電子受容性を有するIr4+が発現自在であり、平衡酸
素電極電位としての1.23VvsRHEの値を常温で1ケ月以上
容易に維持することができる。
Further, with the above structure, Ir 4+ having a strong electron accepting property can be freely expressed in the iridium oxide layer, and the value of 1.23 V vs. RHE as the equilibrium oxygen electrode potential is easily maintained at room temperature for one month or more. can do.

次に、前記電解液が、H3BO3水溶液、あるいは、H3PO4
水溶液であることが好ましい。
Next, the electrolytic solution is an H 3 BO 3 aqueous solution or H 3 PO 4
It is preferably an aqueous solution.

更に、前記構造の酸素電極反応用電極が、電解液中に
一方の電極である酸素電極反応用電極と他方の電極とが
挿入され、両電極が導電体により接続された構成の酸素
−水素電池に用いられる酸素電極反応用電極であるなら
ば、電解液中の一方の電極である酸素電極反応用電極側
において、O2+4H++4e→H2Oなる式で示される反応がな
され、電解液中の他方の電極側において、H2→2H++2e
なる式で示される反応がなされる。そして、前記酸素電
極反応用電極側での素反応が、(H2O)ads→(OH)ads
+H++eなる式で示される電子移動段階と、(OH)ads
からOads、O2adsを経てO2となって発生する反応を具備
してなる。
Further, the oxygen-hydrogen battery in which the oxygen electrode reaction electrode having the above structure is configured such that the oxygen electrode reaction electrode and the other electrode, which are one electrode, is inserted into the electrolytic solution, and both electrodes are connected by a conductor. In the case of the oxygen electrode reaction electrode used in the above, the reaction represented by the formula of O 2 + 4H + + 4e → H 2 O is performed on the oxygen electrode reaction electrode side which is one of the electrodes in the electrolytic solution, On the other electrode side, H 2 → 2H + + 2e
The reaction represented by the following formula is performed. The elementary reaction on the oxygen electrode reaction electrode side is (H 2 O) ads → (OH) ads
+ H + + e, an electron transfer stage represented by the formula: (OH) ads
From OADS, consisting comprises a reaction that occurs in a O 2 through the O 2 Ads.

また、前記の素反応において、(OH)adsからOads、O
2adsを経てO2となって発生する反応が平衡となり、前記
(H2O)ads→(OH)ads+H++eなる式で示される電子
移動段階により前記酸素電極反応用電極側における反応
全体が律速され、この電子移動段階が前記活性層により
活性化されてなるので、単純な金属・酸化物混合物から
なる電極としては、先に本発明者らが特許出願している
電極と同様に、世界で始めての電位1.23VvsRHEが得ら
れ、その電位が1ケ月以上安定保持されるといった熱力
学的見地から理論的に求められる最高の電位が長期間安
定して得られる。
In the elementary reaction, (OH) ads is converted to Oads, Oads,
The reaction generated as O 2 through 2 ads becomes equilibrium, and the entire reaction on the oxygen electrode reaction electrode side is performed by the electron transfer step represented by the formula (H 2 O) ads → (OH) ads + H + + e. Since the rate is controlled and this electron transfer step is activated by the active layer, as an electrode made of a simple metal / oxide mixture, the same as the electrode to which the present inventors previously applied for a patent, , The first potential 1.23V vs. RHE is obtained, and the highest potential theoretically obtained from a thermodynamic point of view, such that the potential is stably maintained for one month or more, is stably obtained for a long period of time.

また、本発明の製造方法によれば、電解液中における
平衡酸素電極電位として1.23VvsRHEが得られ、その電位
を1ケ月以上容易に保持できる優れた酸素電極反応用電
極を得ることができる。また、本発明の製造方法によ
り、耐食性に富み構造的にも強固な酸素電極反応用電極
を得ることができる。
Further, according to the production method of the present invention, an equilibrium oxygen electrode potential in the electrolytic solution of 1.23 V vs. RHE is obtained, and an excellent oxygen electrode reaction electrode that can easily maintain the potential for one month or more can be obtained. . Further, by the production method of the present invention, it is possible to obtain an oxygen electrode reaction electrode which is rich in corrosion resistance and structurally strong.

更に、本発明の製造方法によれば、基体上に被覆した
イリジウム元素を還元させることがないので、酸素電極
反応用電極を効率よく製造することができる。
Furthermore, according to the production method of the present invention, the iridium element coated on the substrate is not reduced, so that the oxygen electrode reaction electrode can be produced efficiently.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例5で測定された分極曲線を示すグラフ
である。
FIG. 1 is a graph showing a polarization curve measured in Example 5.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/92 H01M 4/92 (72)発明者 小林 真幸 東京都大田区雪谷大塚町1番7号 アル プス電気株式会社内 (56)参考文献 特開 昭59−225740(JP,A) 特開 昭58−171589(JP,A) 特開 昭58−165252(JP,A) 特開 昭62−174394(JP,A) 特開 昭59−154765(JP,A) 特開 昭60−23962(JP,A)Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 4/92 H01M 4/92 (72) Inventor Masayuki Kobayashi 1-7 Yukitani Otsukacho, Ota-ku, Tokyo Alps Electric Co., Ltd. (56) References JP-A-59-225740 (JP, A) JP-A-58-171589 (JP, A) JP-A-58-165252 (JP, A) JP-A-62-174394 (JP, A) 154765 (JP, A) JP-A-60-23962 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステンレス鋼、チタンあるいはニッケルか
らなる電極基体の表面に、白金層と酸化イリジウム層
が、相互に接触された状態で積層されてなる活性層を有
する酸素電極反応用電極であり、電解液中における平衡
酸素電極電位として1.23VvsRHEが得られることを特徴と
する高い平衡酸素電極電位を発揮する酸素電極反応用電
極。
1. An oxygen electrode reaction electrode having an active layer in which a platinum layer and an iridium oxide layer are laminated on a surface of an electrode substrate made of stainless steel, titanium or nickel in a state of being in contact with each other, An electrode for oxygen electrode reaction exhibiting a high equilibrium oxygen electrode potential, characterized in that an equilibrium oxygen electrode potential of 1.23 V vs. RHE is obtained in an electrolytic solution.
【請求項2】前記酸化イリジウム層中に強い電子受容性
を有するIr4+が発現自在であり、前記平衡酸素電極電位
の1.23VvsRHEが、常温で1ケ月以上保持されることを特
徴とする請求項1に記載の高い平衡酸素電極電位を発揮
する酸素電極反応用電極。
2. The method according to claim 1, wherein Ir 4+ having a strong electron accepting property can be freely expressed in the iridium oxide layer, and the equilibrium oxygen electrode potential of 1.23 V vs. RHE is maintained at room temperature for one month or more. The oxygen electrode reaction electrode exhibiting a high equilibrium oxygen electrode potential according to claim 1.
【請求項3】前記電解液が、H3BO3水溶液、あるいは、H
3PO4水溶液であることを特徴とする請求項1または請求
項2に記載の高い平衡酸素電極電位を発揮する酸素電極
反応用電極。
3. The method according to claim 1, wherein the electrolytic solution is an aqueous solution of H 3 BO 3 ,
The electrode for oxygen electrode reaction exhibiting a high equilibrium oxygen electrode potential according to claim 1 or 2, wherein the electrode is a 3 PO 4 aqueous solution.
【請求項4】電解液中に一方の電極である酸素電極反応
用電極と他方の電極とが挿入され、両電極が導電体によ
り接続された構成の酸素−水素電池に用いられる酸素電
極反応用電極であって、電解液中の一方の電極である酸
素電極反応用電極側において、 O24H++4e→H2O なる式で示される反応がなされ、電解液中の他方の電極
側において、 H2→2H++2e なる式で示される反応がなされることを特徴とする請求
項1または2に記載の高い平衡酸素電極電位を発揮する
酸素電極反応用電極。
4. An oxygen electrode reaction device for use in an oxygen-hydrogen battery in which one electrode, an oxygen electrode reaction electrode, and the other electrode are inserted into an electrolyte and both electrodes are connected by a conductor. an electrode, in the oxygen electrode reaction electrode side, which is one of the electrodes in the electrolytic solution, the reaction represented by O 2 4H + + 4e → H 2 O becomes expression is made, at the other electrode side of the electrolytic solution, The oxygen electrode reaction electrode exhibiting a high equilibrium oxygen electrode potential according to claim 1 or 2, wherein a reaction represented by a formula of H 2 → 2H + + 2e is performed.
【請求項5】電解液中に一方の電極である酸素電極反応
用電極と他方の電極とが挿入され、両電極が導電体によ
り接続された構成の酸素−水素電池に用いられる酸素電
極反応用電極であって、電解液中の一方の電極である酸
素電極反応用電極側において、 O2+4H++4e→H2O なる式で示される反応がなされ、電解液中の他方の電極
側において、 H2→2H++2e なる式で示される反応がなされ、前記電解液中において
酸素電極反応用電極側における素反応が、 (H2O)ads→(OH)ads+H++e なる式で示される電子移動段階と、(OH)adsからOad
s、O2adsを経てO2となって発生する反応を具備してなる
ことを特徴とする請求項1または2に記載の高い平衡酸
素電極電位を発揮する酸素電極反応用電極。
5. An oxygen electrode reaction device for use in an oxygen-hydrogen battery in which one electrode, an oxygen electrode reaction electrode, and the other electrode are inserted into an electrolyte and both electrodes are connected by a conductor. On the oxygen electrode reaction electrode side, which is one electrode in the electrolytic solution, a reaction represented by the formula O 2 + 4H + + 4e → H 2 O is performed, and on the other electrode side in the electrolytic solution, The reaction represented by the formula of H 2 → 2H + + 2e is performed, and the elementary reaction on the oxygen electrode reaction electrode side in the electrolytic solution is represented by the following formula: (H 2 O) ads → (OH) ads + H + + e Movement phase and (OH) ads to Oad
The oxygen electrode reaction electrode exhibiting a high equilibrium oxygen electrode potential according to claim 1 or 2, characterized by comprising a reaction generated as O 2 through s and O 2 ads.
【請求項6】電解液中に一方の電極である酸素電極反応
用電極と他方の電極とが挿入され、両電極が導電体によ
り接続された構成の酸素−水素電池に用いられる酸素電
極反応用電極であって、電解液中の一方の電極である酸
素電極反応用電極側において、 O2+4H++4e→H2O なる式で示される反応がなされ、電解液中の他方の電極
側において、 H2→2H++2e なる式で示される反応がなされ、 前記電解液中において酸素電極反応用電極側における素
反応が、 (H2O)ads→(OH)ads+H++e なる式で示される電子移動段階と、(OH)adsからOad
s、O2adsを経てO2となって発生する反応を具備してな
り、 前記(OH)adsからOads、O2adsを経てO2となって発生す
る反応が平衡とされ、 前記(H2O)ads→(OH)ads+H++eなる式で示される
電子移動段階により前記酸素電極反応用電極側における
反応全体が律速され、この電子移動段階が前記活性層に
より活性化されてなることを特徴とする請求項1または
2に記載の高い平衡酸素電極電位を発揮する酸素電極用
電極。
6. An oxygen electrode reaction electrode for use in an oxygen-hydrogen battery in which one electrode, an oxygen electrode reaction electrode, and the other electrode are inserted into an electrolytic solution and both electrodes are connected by a conductor. On the oxygen electrode reaction electrode side, which is one electrode in the electrolyte solution, a reaction represented by the formula O 2 + 4H + + 4e → H 2 O is performed, and on the other electrode side in the electrolyte solution, The reaction represented by the formula H 2 → 2H + + 2e is performed, and the elementary reaction on the oxygen electrode reaction electrode side in the electrolytic solution is represented by the following formula: (H 2 O) ads → (OH) ads + H + + e Movement phase and (OH) ads to Oad
s, O 2 through the ads will comprises a reaction that occurs in a O 2, wherein (OH) OADS from ads, O 2 through the ads generated a O 2 reaction is an equilibrium, the (H 2 O) ads → (OH) ads + H + + e The electron transfer step represented by the formula determines the overall reaction on the oxygen electrode reaction electrode side, and determines that this electron transfer step is activated by the active layer. The oxygen electrode according to claim 1, wherein the electrode has a high equilibrium oxygen electrode potential.
【請求項7】前記電極基体が、板状あるいは多孔質状と
されてなることを特徴とする請求項1〜6のいずれかに
記載の高い平衡酸素電極電位を発揮する酸素電極反応用
電極。
7. The electrode for oxygen electrode reaction exhibiting a high equilibrium oxygen electrode potential according to claim 1, wherein the electrode substrate is formed in a plate shape or a porous shape.
【請求項8】ステンレス鋼、チタンあるいはニッケルか
らなる電極基体の表面に白金層を電析させ、次いで酸化
イリジウム層を電析させることで電解液中における平衡
酸素電極電位として1.23VvsRHEが得られる電極を得るこ
とを特徴とする高い平衡酸素電極電位を発揮する酸素電
極用電極の製造方法。
8. An electrode substrate made of stainless steel, titanium or nickel, on which a platinum layer is electrodeposited and then an iridium oxide layer is electrodeposited to obtain an equilibrium oxygen electrode potential of 1.23 V vs. RHE in the electrolytic solution. A method for producing an electrode for an oxygen electrode exhibiting a high equilibrium oxygen electrode potential, characterized by obtaining an electrode to be used.
【請求項9】ステンレス鋼、チタンあるいはニッケルか
らなる電極基体の表面に白金層を電析させ、次いでイリ
ジウム元素を含むスラリーを塗布し、次いで加熱処理を
施すことで電解液中における平衡酸素電極電位として1.
23VvsRHEが得られる電極を得ることを特徴とする高い平
衡酸素電極電位を発揮する酸素電極反応用電極の製造方
法。
9. An equilibrium oxygen electrode potential in an electrolytic solution by depositing a platinum layer on the surface of an electrode substrate made of stainless steel, titanium or nickel, applying a slurry containing an iridium element, and then subjecting the slurry to heat treatment. As 1.
A method for producing an electrode for oxygen electrode reaction exhibiting a high equilibrium oxygen electrode potential, characterized by obtaining an electrode capable of obtaining 23V vs. RHE.
【請求項10】前記電極基体として、板状のもの、ある
いは、多孔質体からなるものを用いることを特徴とする
請求項8または9記載の高い平衡酸素電極電位を発揮す
る酸素電極反応用電極の製造方法。
10. The electrode for oxygen electrode reaction exhibiting a high equilibrium oxygen electrode potential according to claim 8, wherein the electrode base is made of a plate or a porous body. Manufacturing method.
JP63235432A 1988-09-20 1988-09-20 Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same Expired - Lifetime JP2902651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235432A JP2902651B2 (en) 1988-09-20 1988-09-20 Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235432A JP2902651B2 (en) 1988-09-20 1988-09-20 Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0294364A JPH0294364A (en) 1990-04-05
JP2902651B2 true JP2902651B2 (en) 1999-06-07

Family

ID=16986021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235432A Expired - Lifetime JP2902651B2 (en) 1988-09-20 1988-09-20 Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same

Country Status (1)

Country Link
JP (1) JP2902651B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142405B4 (en) * 2000-09-04 2011-09-15 Schott Ag Device, its use and method for introducing aggressive gases into a molten glass
JP4590533B2 (en) * 2000-11-17 2010-12-01 国立大学法人九州工業大学 Air electrode, manufacturing method thereof, and air secondary battery using the air electrode
JP4154315B2 (en) * 2003-11-21 2008-09-24 本田技研工業株式会社 Fuel cell
JP5224674B2 (en) * 2006-09-29 2013-07-03 三洋電機株式会社 Fuel cell and fuel cell power generation system
JP5135548B2 (en) * 2008-09-02 2013-02-06 日本電気株式会社 Electrodes for electrochemical measuring devices and electrodes for biosensors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225740A (en) * 1983-06-04 1984-12-18 Tdk Corp Electrode catalyst and preparation thereof

Also Published As

Publication number Publication date
JPH0294364A (en) 1990-04-05

Similar Documents

Publication Publication Date Title
Damjanovic et al. Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt‐Rh alloy electrodes
US4767518A (en) Cermet electrode
Wen et al. Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides
Slavcheva et al. Sputtered iridium oxide films as charge injection material for functional electrostimulation
Tiwari et al. Preparation of Perovskite‐Type Oxides of Cobalt by the Malic Acid Aided Process and Their Electrocatalytic Surface Properties in Relation to Oxygen Evolution
US6423193B1 (en) Nitrogen doped carbon electrodes
EP0243302B1 (en) An electrode with a platinum metal catalyst in surface film and its use
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
US4126934A (en) Method for the manufacture of an electrode for electrochemical cells
GB2239260A (en) Oxygen-generating electrolysis electrode and method for the preparation thereof
JPS6218636B2 (en)
JPH03502982A (en) Catalyzed metal or metal oxide electrode for electrochemical cells and method for making the same
CA1270896A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
Bolzán et al. Fast faradaic processes observed during the potentiodynamic polarization of polycrystalline palladium in acid electrolyte
JP2902651B2 (en) Electrode for oxygen electrode exhibiting high equilibrium oxygen electrode potential and method for producing the same
US4748091A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
Gagnon The Triangular Voltage Sweep Method for Determining Double‐Layer Capacity of Porous Electrodes: IV. Porous Carbon in Potassium Hydroxide
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
US4115322A (en) Method for obtaining high activity electrocatalysts on pyrolytic graphite
JP2596807B2 (en) Anode for oxygen generation and its production method
JPH0575840B2 (en)
JPS6017086A (en) Cathode for aqueous solution electrolysis and manufacture
US4257856A (en) Electrolytic process useful for the electrolysis of water
Burke et al. Enhanced oxygen evolution at an activated rhodium anode in base
US4670122A (en) Low over-voltage electrodes for alkaline electrolytes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10