JP2899908B2 - Low loss oxide magnetic material - Google Patents
Low loss oxide magnetic materialInfo
- Publication number
- JP2899908B2 JP2899908B2 JP2111817A JP11181790A JP2899908B2 JP 2899908 B2 JP2899908 B2 JP 2899908B2 JP 2111817 A JP2111817 A JP 2111817A JP 11181790 A JP11181790 A JP 11181790A JP 2899908 B2 JP2899908 B2 JP 2899908B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- equivalent
- magnetic material
- loss
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は,スイッチング電源用等に使用可能な低損失
酸化物磁性材料に関する。Description: TECHNICAL FIELD The present invention relates to a low-loss oxide magnetic material that can be used for a switching power supply or the like.
[従来の技術] 従来,Mn−Zn系フェライトを搭載したスイッチング電
源は,その駆動周波数が,〜200kHz程度である。さら
に,ここ数年の小型,軽量化に伴い,その駆動周波数は
300〜500kHzと上昇しており,1MHz帯での検討すら行われ
ている。[Prior Art] Conventionally, a switching power supply equipped with an Mn-Zn ferrite has a driving frequency of about 200 kHz. In addition, with the miniaturization and weight reduction in recent years, the driving frequency
The frequency has increased to 300-500kHz, and even the study in the 1MHz band has been conducted.
[発明が解決しようとする課題] しかしながら,五酸化二燐(P2O5)が含有されている
原料より作成したMn−Znフェライトを使用した場合,フ
ェライトのパワーロスの増大による発熱が極めて大き
く,100kHzにおいても,その機能を充分にはたすことが
できないという欠点を有していた。[Problems to be Solved] However, five if oxidation diphosphorus (P 2 O 5) was used Mn-Zn ferrite created from the raw material that is contained, very large heat generation due to the increase of the ferrite power loss, Even at 100 kHz, it had the drawback that its function could not be fully achieved.
そこで,本発明の技術的課題は上記欠点に鑑み,五酸
化二燐(P2O5)が含有されている原料を用いて作成した
Mn−Znフェライトを使用してもパワーロスが小さい,低
損失酸化物磁性材料を提供することにある。In view of the above drawbacks, the technical problem of the present invention was made using a raw material containing diphosphorus pentoxide (P 2 O 5 ).
An object of the present invention is to provide a low-loss oxide magnetic material which has a small power loss even when using Mn-Zn ferrite.
[課題を解決するための手段] 本発明によれば主成分として,30〜40モル%の一酸化
マンガン(MnO)と,5〜15モル%の酸化亜鉛(ZnO)と,
残部酸化第二鉄(Fe2O3)とを含み,副成分として0.04
%〜0.15重量%の酸化カルシウム(CaO)と,0.01〜0.10
重量%の二酸化ケイ素(SiO2)とを含む低損失酸化物磁
性材料において, 不純物の五酸化二燐(P2O5)に対して1.0〜3.0倍当量
の酸化ナトリウム(Na2O)または酸化リチウム(Li
2O),酸化カリウム(K2O)の何れか1種以上を添加し
て成ることを特徴とする低損失酸化物磁性材料が得られ
る。According to the present invention, 30 to 40 mol% of manganese monoxide (MnO) and 5 to 15 mol% of zinc oxide (ZnO) are used as main components.
The balance contains ferric oxide (Fe 2 O 3 ) and 0.04
% To 0.15% by weight of calcium oxide (CaO), 0.01 to 0.10%
In the low-loss oxide magnetic material containing silicon dioxide (SiO 2 ) by weight, 1.0 to 3.0 times equivalent of sodium oxide (Na 2 O) or oxidized with respect to the impurity diphosphorus pentoxide (P 2 O 5 ). Lithium (Li
2 O) and potassium oxide (K 2 O) are added to obtain a low-loss oxide magnetic material.
即ち,本発明者は,前述の問題点に対し種々の検討を
行った結果,以下のような知見を得て本発明に至ったも
のである。一般に,Mn−Znフェライトは主成分である酸
化第二鉄(Fe2O3),酸化マンガン(MnO),酸化亜鉛
(ZnO)の他に副成分として二酸化ケイ素(SiO2),酸
化カルシウム(CaO)を添加することにより焼結体組織
において高抵抗相である粒界相を形成し,焼結体の電気
抵抗を向上させ,うず電流損失を低下せしめている。ま
たさらに他の酸化物を副成分として添加することによ
り,いっそうの高抵抗化を図ることができる。That is, the present inventor has conducted various studies on the above-mentioned problems, and as a result, has obtained the following findings, and reached the present invention. In general, Mn-Zn ferrite is composed mainly of ferric oxide (Fe 2 O 3 ), manganese oxide (MnO), zinc oxide (ZnO) and silicon dioxide (SiO 2 ) and calcium oxide (CaO 2 ) as secondary components. The formation of a grain boundary phase, which is a high resistance phase, in the structure of the sintered body by adding (2), improves the electric resistance of the sintered body and reduces the eddy current loss. Further, by adding another oxide as a subcomponent, it is possible to further increase the resistance.
しかしながら,TEM(透過電子顕微鏡)観察によると,
五酸化二燐(P2O5)が含有されている原料を用いたMn−
Znフェライトにおいては,酸化カルシウム(CaO)がP2O
5と結びつき第三相を形成し,粒界相に対するCaの固溶
量が低下することを見出した。このことから粒界相に対
するCaの固溶量の低下による粒界相の電気抵抗の低下,
すなわち,うず電流損失の増大が生じることが,あらゆ
る周波数帯域においてパワーロスの増大を招き,使用を
困難にしているものと考えた。However, according to TEM (transmission electron microscope) observation,
Diphosphorus pentoxide (P 2 O 5) is used a raw material is contained Mn-
In Zn ferrite, calcium oxide (CaO) is P 2 O
It was found that the amount of Ca dissolved in the grain boundary phase decreased with the formation of the third phase in combination with the fifth phase. From this, the electrical resistance of the grain boundary phase decreased due to the decrease in the amount of Ca dissolved in the grain boundary phase,
That is, it was considered that the increase in the eddy current loss caused an increase in the power loss in all frequency bands, making the use difficult.
そこで,この欠点を克服するために種々の検討を行っ
た結果,五酸化二燐(P2O5)によるCaの粒界相への濃縮
度低下を防ぐ手段として,不純物の五酸化二燐(P2O5)
に対して,1.0〜3.0倍当量の酸化ナトリウム(Na2O)ま
たは酸化リチウム(Li2O),酸化カリウム(K2O)の何
れかを添加することにより,著しくパワーロスが低減で
き,スイッチング電源等において使用することのできる
低損失酸化物磁性材料を得ることができることを見い出
したものである。Therefore, as a result of various investigations to overcome this drawback, as a means of preventing the concentration of Ca from decreasing in the grain boundary phase due to diphosphorus pentoxide (P 2 O 5 ), the impurity diphosphorus pentoxide (P P 2 O 5)
By adding 1.0 to 3.0 equivalents of sodium oxide (Na 2 O), lithium oxide (Li 2 O), or potassium oxide (K 2 O), power loss can be significantly reduced, and the switching power supply It has been found that it is possible to obtain a low-loss oxide magnetic material that can be used in such applications.
これは,酸化ナトリウム(Na2O)または酸化リチウム
(Li2O),酸化カリウム(K2O)の何れかを添加するこ
とにより,これらの添加物が五酸化二燐(P2O5)を固定
し,Caが粒界相へ分散した結果と思われる。This is because either sodium oxide (Na 2 O), lithium oxide (Li 2 O), or potassium oxide (K 2 O) is added, and these additives become diphosphorus pentoxide (P 2 O 5 ). It seems that Ca was dispersed in the grain boundary phase.
また,本発明において酸化ナトリウム(Na2O)および
酸化リチウム(Li2O),酸化カリウム(K2O)の添加
は,酸化物−(Na2O,Li2O,K2O),水酸化物−(NaOH,Li
OH,KOH),炭酸塩−(Na2CO3,Li2CO3,K2CO3)等のいず
れの形でも,不純物のP2O5に対しNa2OH,Li2O,K2Oとして
1〜3倍当量であれば良く,添加工程の焼成前であれば
どの時点でも効果は認められるが,添加物の分散を良く
するため原料の混合工程が望ましい。In the present invention, addition of sodium oxide (Na 2 O), lithium oxide (Li 2 O), and potassium oxide (K 2 O) is performed by adding oxide (-Na 2 O, Li 2 O, K 2 O), water Oxide-(NaOH, Li
OH, KOH) and carbonates-(Na 2 CO 3 , Li 2 CO 3 , K 2 CO 3 ) in any form, Na 2 OH, Li 2 O, K 2 O with respect to the impurity P 2 O 5 The effect can be recognized at any point in time before firing in the addition step, but a mixing step of raw materials is desirable in order to improve the dispersion of the additive.
[実施例] 次に,本発明の実施例を図面を参照して説明する。Example Next, an example of the present invention will be described with reference to the drawings.
<実施例−1> Fe2O3,MnO,ZnOの粉末をそれぞれ53.0mol%,35.0mol
%,12.0mol%となるよう秤量後,ボールミルで混合し,
その後1000℃で仮焼した。この仮焼粉末のP2O5の含有量
は0.023重量%であった。この仮焼粉末に,0.10重量%の
CaOと0.01重量%のSiO2を添加し,さらに,不純物のP2O
5に対して0倍当量(添加ナシ),0.5倍当量,1.0倍当量,
2.0倍当量,3.0倍当量,4.0倍当量のNa2Oとなるように水
酸化ナトリウム(NaOH)をおのおの添加して6種類の粉
末を準備した。Example 1 Fe 2 O 3 , MnO, and ZnO powders were 53.0 mol% and 35.0 mol, respectively.
% And 12.0 mol%, and then mixed with a ball mill.
Thereafter, it was calcined at 1000 ° C. The P 2 O 5 content of the calcined powder was 0.023% by weight. 0.10% by weight of this calcined powder
Was added SiO 2 of CaO and 0.01% by weight, further, the impurities P 2 O
0 times equivalent to 5 (added pear), 0.5 times equivalent, 1.0 times equivalent,
Sodium hydroxide (NaOH) was added to obtain 2.0 times equivalent, 3.0 times equivalent, and 4.0 times equivalent of Na 2 O, respectively, to prepare six kinds of powders.
また,Li2O,K2Oにおいても上記のNa2Oと同様に水酸化
物として添加してそれぞれ6種類ずつの粉末を準備し
た。Also, Li 2 O and K 2 O were added as hydroxides in the same manner as the above Na 2 O to prepare six kinds of powders.
さらに,これら粉末をボールミルで混合,粉砕を行な
い,次に2ton/cm2で成形後1000〜1300℃で本焼成した。Further, these powders were mixed and pulverized by a ball mill, then molded at 2 ton / cm 2 and then calcined at 1000 to 1300 ° C.
第一表にNa2O添加,第二表にLi2O添加,第三表にK2O
添加を行った上記試料6種類ずつのパワーロス(100kHz
−2000G at 60℃)を比較して示す。Table 1 shows the addition of Na 2 O, Table 2 shows the addition of Li 2 O, and Table 3 shows the addition of K 2 O.
The power loss (100 kHz) for each of the 6 samples
-2000G at 60 ° C) for comparison.
また,第1図にNa2Oを添加した場合のパワーロス(10
0kHz−2000G)の温度特性を比較して示す。Fig. 1 shows the power loss (10%) when Na 2 O was added.
0kHz-2000G) is shown in comparison.
第一表は,実施例−1においてNa2Oを不純物P2O5に対
して0倍当量(添加ナシ),0.5倍当量,1.0倍当量,2.0倍
当量,3.0倍当量,4.0倍当量を添加した場合の6試料の10
0kHz−2000G,at60℃におけるパワーロスを比較したもの
である。Table 1 shows that, in Example 1, Na 2 O was 0 equivalent (added pear), 0.5 equivalent, 1.0 equivalent, 2.0 equivalent, 3.0 equivalent, and 4.0 equivalent of the impurity P 2 O 5 . 10 of 6 samples when added
It is a comparison of power loss at 0 kHz-2000G, at 60 ° C.
第二表は,実施例−1においてLi2を不純物P2O5に対
して0倍当量(添加ナシ),0.5倍当量,1.0倍当量,2.0倍
当量,3.0倍当量,4.0倍当量を添加した場合の0試料の10
0kHz−2000G,at60℃におけるパワーロスを比較したもの
である。Table 2 shows that in Example-1, Li 2 was added with 0 equivalent (added pear), 0.5 equivalent, 1.0 equivalent, 2.0 equivalent, 3.0 equivalent, and 4.0 equivalent equivalent to the impurity P 2 O 5 . 10 of 0 samples
It is a comparison of power loss at 0 kHz-2000G, at 60 ° C.
第三表は,実施例−1においてK2Oを不純物P2O2に対
して0倍当量(添加ナシ),0.5倍当量,1.0倍当量,2.0倍
当量,3.0倍当量,4.0倍当量を添加した場合の6試料の10
0kHz−2000G,at60℃におけるパワーロスを比較したもの
である。Table 3 shows that in Example 1, K 2 O was converted to 0 equivalents (added pear), 0.5 equivalents, 1.0 equivalents, 2.0 equivalents, 3.0 equivalents, and 4.0 equivalents to the impurity P 2 O 2 . 10 of 6 samples when added
It is a comparison of power loss at 0 kHz-2000G, at 60 ° C.
本発明によるNa2OまたはLi2O,K2Oの何れかを不純物の
P2O5に対して1.0〜3.0倍当量添加した方が,パワーロス
が小さくなることがわかる。P2O4の4倍当量および0.5
倍当量添加したものはパワーロスが大きい。これは,3倍
当量以上添加すると余剰のNa2O,Li2O,K2Oが非常粒成長
を惹き起こす等の悪影響を及ぼし,また,1倍当量以下で
はP2O5の固定効果が充分でないためと推察される。従っ
てNa2O,Li2O,K2Oの添加量はP2O5の1〜3倍当量を添
加,望ましくは3倍当量を添加することが効果的であ
る。 Either Na 2 O or Li 2 O, K 2 O according to the present invention
It can be seen that adding 1.0 to 3.0 equivalents of P 2 O 5 reduces the power loss. 4 equivalents of P 2 O 4 and 0.5
Those with double equivalents have large power loss. This is because adding more than 3 equivalents has an adverse effect such as excessive Na 2 O, Li 2 O, K 2 O causing emergency grain growth, and less than 1 equivalent makes the P 2 O 5 fixation effect less effective. It is presumed that it is not enough. Therefore, it is effective to add Na 2 O, Li 2 O, and K 2 O in an amount of 1 to 3 equivalents, preferably 3 equivalents of P 2 O 5 .
<実施例−2> 実施例−1と同じ原料を用いてNa2O,Li2O,K2Oを複合
添加として同様の工程でMn−Znフェライトコアを作成し
た。Creating the Mn-Zn ferrite core by the same steps Na 2 O using the same raw materials as <Example -2> Example -1, Li 2 O, the K 2 O as the combined addition.
Na2OとLi2Oを1:2,Na2OとK2Oを1:2,Na2OとLi2OそしてK
2Oを1:1:1の比率の炭酸塩(Na2CO3,Li2CO3,K2CO3)の3
種類を全体で不純物のP2O5の3倍当量となるように複合
添加した。1: 2 Na 2 O and Li 2 O, 1: 2 Na 2 O and K 2 O, Na 2 O and Li 2 O and K
2 O is converted to carbonate (Na 2 CO 3 , Li 2 CO 3 , K 2 CO 3 ) in the ratio of 1: 1: 1
The types were combined and added so that the total amount was equivalent to three times the impurity P 2 O 5 .
第四表に上記3試料のパワーロスを比較して示す。 Table 4 shows the power loss of the three samples in comparison.
第四表は実施例−2においてNa2OとLi2Oを1:2,Na2Oと
K2Oを1:2,Na2OとLi2OそしてK2Oを1:1:1の比率でそれぞ
れ不純物P2O5の3倍当量となるように複合添加した場合
のこれら3試料の100kHz−2000G,at60℃におけるパワー
ロスを比較したものである。The fourth table is a Na 2 O and Li 2 O in Example -2 1: 2, Na 2 O and
K 2 O 1: 2, Na 2 O and Li 2 O and K 2 O of 1: 1: These 3 samples in the case of each added in combination so that the 3 equivalents of impurities P 2 O 5 in a ratio The power loss at 100 kHz-2000 G at 60 ° C. is compared.
本発明のようにNa2O,K2O,Li2Oを複合添加することに
よりワーロスが小さくなることがわかる。 It can be seen that the combined loss of Na 2 O, K 2 O, and Li 2 O as in the present invention reduces the loss.
[発明の効果] 以上述べた如く,本発明によれば,不純物としてP2O5
を含む原料を用いて,スイッチング電源用等に使用可能
な低損失の酸化物磁性材料を製造することができる。従
って,P2O5を含むことが多いが生産量が多く比較的安価
な,鉄鋼酸洗の副酸物として得られる酸化鉄等を原料と
して利用できるため工業的に大量に安価で高品質の低損
失磁性材料を提供することが可能となる。[Effects of the Invention] As described above, according to the present invention, P 2 O 5
By using a raw material containing, a low-loss oxide magnetic material that can be used for a switching power supply or the like can be manufactured. Therefore, P 2 O 5 are often relatively inexpensive many production comprising, in industrial mass inexpensive since available as a raw material of iron oxide and the like obtained as a by-acid of steel pickling high-quality It is possible to provide a low-loss magnetic material.
第1図は実施例−1において,Na2Oを不純物P2O5に対し
て0倍当量(添加ナシ),0.5倍当量,1.0倍当量,2.0倍当
量,3.0倍当量,4.0倍当量を添加した場合の6試料のパワ
ーロス(100kHz−2000G)の温度特性を比較したもので
ある。図中の数字は第1表の試料No.に対応する。FIG. 1 shows that in Example 1, 0 equivalent (added pear), 0.5 equivalent, 1.0 equivalent, 2.0 equivalent, 3.0 equivalent, and 4.0 equivalent of Na 2 O were added to the impurity P 2 O 5 . It is a comparison of temperature characteristics of power loss (100 kHz-2000 G) of six samples when added. The numbers in the figure correspond to the sample numbers in Table 1.
Claims (1)
ガン(MnO)と,5〜15モル%の酸化亜鉛(ZnO)と,残部
酸化第二鉄(Fe2O3)とを含み,副成分として0.04%〜
0.15重量%の酸化カルシウム(CaO)と,0.01〜0.10重量
%の二酸化ケイ素(SiO2)とを含む低損失酸化物磁性材
料において, 不純物の五酸化二燐(P2O5)に対して1.0〜3.0倍当量の
酸化ナトリウム(Na2O)または酸化リチウム(Li2O),
酸化カリウム(K2O)の何れか1種以上を添加して成る
ことを特徴とする低損失酸化物磁性材料。(1) As main components, it contains 30 to 40 mol% of manganese monoxide (MnO), 5 to 15 mol% of zinc oxide (ZnO), and the balance ferric oxide (Fe 2 O 3 ). , 0.04% ~
0.15 wt% of calcium oxide (CaO), in the low-loss oxide magnetic material containing 0.01 to 0.10 wt% of silicon dioxide (SiO 2), with respect to impurities of phosphorus pentoxide (P 2 O 5) 1.0 ~ 3.0 times equivalent of sodium oxide (Na 2 O) or lithium oxide (Li 2 O),
A low-loss oxide magnetic material characterized by adding at least one of potassium oxide (K 2 O).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2111817A JP2899908B2 (en) | 1990-05-01 | 1990-05-01 | Low loss oxide magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2111817A JP2899908B2 (en) | 1990-05-01 | 1990-05-01 | Low loss oxide magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0412503A JPH0412503A (en) | 1992-01-17 |
JP2899908B2 true JP2899908B2 (en) | 1999-06-02 |
Family
ID=14570906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2111817A Expired - Fee Related JP2899908B2 (en) | 1990-05-01 | 1990-05-01 | Low loss oxide magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2899908B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008290907A (en) * | 2007-05-24 | 2008-12-04 | Tdk Corp | METHOD OF MANUFACTURING MnZn-BASED FERRITE |
-
1990
- 1990-05-01 JP JP2111817A patent/JP2899908B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0412503A (en) | 1992-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109553408A (en) | A kind of preparation method of rear-earth-doped MnZn ferrite material | |
CN111470857A (en) | High-frequency manganese-zinc ferrite material and preparation method thereof | |
JP2899908B2 (en) | Low loss oxide magnetic material | |
JP4404408B2 (en) | High saturation magnetic flux density ferrite material and ferrite core using the same | |
JPH0744098B2 (en) | Low loss Mn-Zn ferrite | |
JPH07142222A (en) | Low-loss mn-zn soft ferrite | |
JP2000323317A (en) | Ferrite magnet and manufacture of powder thereof | |
JP3739849B2 (en) | Low-loss oxide magnetic material | |
JP2004247371A (en) | MnZn FERRITE | |
KR950000788B1 (en) | Manufacture of raw material for ferrite magnet | |
JP3464100B2 (en) | High saturation magnetic flux density ferrite material and ferrite core using the same | |
CN110511012A (en) | A kind of preparation method of the ferrite permanent-magnet materials with ultra-fine grained structure | |
JP2562061B2 (en) | Low loss oxide magnetic material | |
JPH11307331A (en) | Ferrite magnet | |
JPH0661033A (en) | Low-loss oxide magnetic material | |
JPH08153615A (en) | Oxide magnetic material | |
JPH05198419A (en) | Oxide magnetic material | |
JP3366707B2 (en) | Mn-Zn ferrite | |
JP2510788B2 (en) | Low power loss oxide magnetic material | |
JP3245206B2 (en) | Manganese-zinc ferrite | |
JPH06267724A (en) | Oxide magnetic material | |
JPH05275221A (en) | Ferrite magnet and its manufacture | |
JP3552794B2 (en) | Method for producing low-loss oxide magnetic material | |
JPH03123004A (en) | Manufacture of highly efficient sr ferrite magnet | |
JP2004296514A (en) | Ferrite magnet and its producing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |