JP2899329B2 - Ozone removal catalyst - Google Patents

Ozone removal catalyst

Info

Publication number
JP2899329B2
JP2899329B2 JP1287978A JP28797889A JP2899329B2 JP 2899329 B2 JP2899329 B2 JP 2899329B2 JP 1287978 A JP1287978 A JP 1287978A JP 28797889 A JP28797889 A JP 28797889A JP 2899329 B2 JP2899329 B2 JP 2899329B2
Authority
JP
Japan
Prior art keywords
mno
catalyst
performance
ozone
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1287978A
Other languages
Japanese (ja)
Other versions
JPH03151046A (en
Inventor
吉延 ▲榊▼原
真康 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARAA KK
Original Assignee
KYATARAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARAA KK filed Critical KYATARAA KK
Priority to JP1287978A priority Critical patent/JP2899329B2/en
Publication of JPH03151046A publication Critical patent/JPH03151046A/en
Application granted granted Critical
Publication of JP2899329B2 publication Critical patent/JP2899329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はオゾン排ガスを浄化するためのオゾン除去用
触媒に関する。
Description: TECHNICAL FIELD The present invention relates to an ozone removal catalyst for purifying ozone exhaust gas.

[従来の技術] オゾンの強力な酸化作用を利用した各方面での実用プ
ラントが最近広く行われている。これらのプラントより
排出されるオゾン排ガスの処理用として多くの触媒が提
案されている。例えば、特開昭63−267440号(TiO2−Si
O2担体にB・MnO2を担持させたもの)、特開昭62−1765
41号(TiO2−SiO2あるいはTiO2・ZrO2−SiO2担体に活性
炭を担持させたもの)、特開昭62−132546号(TiO2−PO
4担体にMn、Fe、Co、Ni、Ag、Pt、Pd、Rhの1つ以上を
担持させたもの)などがあり、代表的な触媒種としてTi
O2、Mn、貴金属、活性炭等があげられる。
[Prior Art] Practical plants in various fields utilizing the strong oxidizing action of ozone have recently been widely used. Many catalysts have been proposed for treating ozone exhaust gas discharged from these plants. For example, JP-A-63-267440 (TiO 2 -Si
B. MnO 2 supported on an O 2 carrier), JP-A-62-1765
No. 41 (TiO 2 —SiO 2 or TiO 2 .ZrO 2 —SiO 2 carrier having activated carbon supported thereon), JP-A-62-132546 (TiO 2 —PO 2
(4 ) one or more of Mn, Fe, Co, Ni, Ag, Pt, Pd and Rh supported on a carrier).
O 2 , Mn, noble metals, activated carbon, and the like.

[発明が解決しようとする課題] 前記触媒種の特徴及び問題点として、以下の点があげ
られる。
[Problems to be Solved by the Invention] The characteristics and problems of the catalyst species include the following.

1)TiO2 活性なTiO2としてはアナターゼ型のTiO2があるが、こ
の合成は硫酸チタニル等の結晶からスタートするため複
雑な工程が必要となる。
1) TiO 2 As an active TiO 2, there is anatase type TiO 2 , but since this synthesis is started from a crystal such as titanyl sulfate, a complicated process is required.

TiO2含有量を触媒に対して20乃至30%以上加えないと
効果が出ないが、TiO2自体高価なものであるためコスト
アップになる。
No effect is obtained unless the TiO 2 content is added to the catalyst by 20 to 30% or more, but the cost is increased because TiO 2 itself is expensive.

2)Mn MnO2等の酸化物はオゾン分解性能がすぐれるため各方
面で検討されているが 高性能なMnO2を得るためには、Mn2+塩をMnO4 -で酸化
してMnO2を得たり、Mn(OH)の沈殿を焼成するなどし
て得るが、反応コントロールが難しくバラツキを生じ易
い。従って安定して高活性MnO2が得にくい。
2) Oxides such as Mn MnO 2 have been studied in various fields because of their excellent ozonolysis performance. However, in order to obtain high-performance MnO 2 , Mn 2+ salts are oxidized with MnO 4 to form MnO 2. , Or by baking the precipitate of Mn (OH) 2 , but it is difficult to control the reaction and tends to cause variations. Therefore, it is difficult to obtain high-activity MnO 2 stably.

MnO2自体の触媒性能としては、貴金属等に比べ初期活
性が低く、触媒使用条件としては低SV(空間速度)での
使用かオゾン排ガスを50℃以上に加温して使用する場合
が多い。
As for the catalytic performance of MnO 2 itself, the initial activity is lower than that of a noble metal or the like, and the catalyst is often used at a low SV (space velocity) or by heating the ozone exhaust gas to 50 ° C. or higher.

耐久性の面では、MnO2は他の触媒種に比べ劣化度合が
低く、すぐれた一面をもっている。
In terms of durability, MnO 2 has an excellent surface with a lower degree of deterioration than other catalyst types.

3)貴金属 触媒性能としては、TiO2、Mn等に比べ極めて高いもの
をもっているが、貴金属ゆえ高価であり多量に使用する
ことはできない。
3) Noble metal Although the catalyst performance is extremely high as compared with TiO 2 , Mn, etc., it is expensive because of the noble metal and cannot be used in large quantities.

低濃度での使用では、初期性能はすぐれるが一定時間
の後に急激な劣化が起こり、触媒の使命である半永久的
な使用という面で問題がある。
When used at a low concentration, the initial performance is excellent, but abrupt deterioration occurs after a certain period of time, and there is a problem in terms of semipermanent use which is the mission of the catalyst.

4)活性炭 オゾンを確実に除去するものとして従来より広範囲に
使用されてきたがオゾンとの反応メカニズムがカーボン
との反応によるため、劣化が著しくまた高濃度オゾンと
の反応では発熱が大きく着火の可能性もあって、現状で
は使用されない方向にある。
4) Activated carbon It has been widely used as a means to reliably remove ozone. However, since the reaction mechanism with ozone is due to the reaction with carbon, the deterioration is remarkable and the reaction with high concentration ozone generates a large amount of heat and can ignite. Due to its nature, it is not used at present.

本発明は上記従来の活性触媒種の合成あるいは使用上
の問題点を解決すべくなされたものである。
The present invention has been made to solve the above-mentioned problems in the synthesis or use of active catalyst species.

[課題を解決するための手段] 上記課題を解決するため、本発明のオゾン除去用触媒
はMnO2の粒状成形品にPd又はPdとAgを担持し、Pdを0.00
01重量%乃至10重量%又はPdとAgの合計を0.0006重量%
乃至60重量%担持する事を特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the ozone removing catalyst of the present invention supports Pd or Pd and Ag on a granular molded product of MnO 2 and has a Pd content of 0.005%.
01% to 10% by weight or 0.0006% by weight of the sum of Pd and Ag
It is characterized in that it carries about 60% by weight.

ここで使用するMnO2は市販のMnO2で良い。市販のMnO2
は電解法によるものやMn2+塩のMnO4 -による酸化法で得
られるもの等があるが性状には限定されない。特にあげ
るとすればX線回折による同定で無定形又はγ−MnO2
良い。
The MnO 2 used here may be a commercially available MnO 2 . Commercial MnO 2
Are, for example, those obtained by an electrolytic method and those obtained by an oxidation method of Mn 2+ salts with MnO 4 , but the properties thereof are not limited. Particularly, amorphous or γ-MnO 2 is preferable for identification by X-ray diffraction.

これらのMnO2は粒状成形するために必要であれば粉砕
し2000ミクロン以下できれば100ミクロン以下の粉末と
する。
These MnO 2 particles are pulverized if necessary for granulation, and powdered to a size of 2000 microns or less, preferably 100 microns or less.

これに適当なバインダーを加え混練成形乾燥してMnO2
の粒状成形品を得る。バインダーの種類は無機系のもの
及び有機系のものではテフロン系のものが適当であり、
添加する量は成形可能でかつ成形品の硬度が使用に耐え
るものであれば限定されない。成形品の、形状は3〜5m
mの大きさが適当である。これは使用上の圧損等の制約
事項により適当に選択する必要がある。
Add an appropriate binder to this, knead, mold and dry to obtain MnO 2
To obtain a granular molded product. Teflon-based binders are suitable for inorganic and organic binders.
The amount to be added is not limited as long as it is moldable and the hardness of the molded article is sufficient for use. The shape of the molded product is 3-5m
The size of m is appropriate. It is necessary to select this appropriately according to restrictions such as pressure loss in use.

Pd又はPdとAgの担持方法はPdの水溶性塩又はPd及びAg
の水溶性塩の夫々を水に溶解した液を吸水で担持する方
法、あるいはMnO2の吸着性を利用して担持する方法など
が可能である。
The method of supporting Pd or Pd and Ag is a water-soluble salt of Pd or Pd and Ag.
A method in which a solution obtained by dissolving each of the water-soluble salts in water with water is supported by water absorption, or a method in which MnO 2 is adsorbed using the adsorptivity of MnO 2 .

担持量としてはPdの場合極微量でも効果が大きく表れ
るが0.0001重量%以上が耐久性も含め合わせ考えて必要
である。これ未満であると短時間での性能劣化が著し
い。また性能は10%近くまで向上傾向がありこれを越え
ると効果が薄れるので、担持量の上限としては10重量%
ということができる。
In the case of Pd, even a very small amount of Pd has a large effect, but 0.0001% by weight or more is necessary in consideration of durability. If it is less than this, performance degradation in a short time is remarkable. In addition, the performance tends to improve to nearly 10%, and if it exceeds this, the effect is diminished, so the upper limit of the supported amount is 10% by weight.
It can be said.

PdとAgを担持する場合は、PdとAgの合計量として、0.
0006重量%乃至60重量%を担持する。
When carrying Pd and Ag, the total amount of Pd and Ag is 0.
Carrying from 0006% to 60% by weight.

[作用] 本発明において、MnO2の粒状成形品にPd又はPdとAgを
担持し、Pdを0.0001重量%乃至10重量%又はPdとAgの合
計を0.0006重量%乃至60重量%担持したため、両者の特
性が十分に相乗され、MnO2の成形品で得られるオゾン分
解性能より著るしく良好な性能が得られる。
[Function] In the present invention, Pd or Pd and Ag are supported on the MnO 2 granular molded product, and Pd is supported at 0.0001% by weight to 10% by weight or the total of Pd and Ag is supported at 0.0006% by weight to 60% by weight. Are sufficiently synergistic, and a remarkably good performance is obtained compared to the ozonolysis performance obtained with the MnO 2 molded product.

[実施例] 実施例1 MnO2粉末(東洋ソーダ株式会社製:電解MnO2:フェラ
イト用FM)2000gに水200g及びテフロン系バインダー
(旭化成株式会社製:フルオン)100gを加え、混錬機に
て30分間十分混錬した。
[Example] Example 1 200 g of water and 100 g of a Teflon-based binder (Fluon, manufactured by Asahi Kasei Corporation) were added to 2000 g of MnO 2 powder (manufactured by Toyo Soda Co., Ltd .: electrolytic MnO 2 : FM for ferrite), and the mixture was kneaded. Kneaded well for 30 minutes.

ディスクペレッター(不二パウダル製)でダイス径5
φmm、長さ7mmになる様にカッターを設定し、これに混
錬物を少しづつ加えて成形した。
Die diameter 5 with disk pelleter (made by Fuji Paudal)
The cutter was set to have a diameter of 7 mm and a length of 7 mm.

成形物を100℃で乾燥しMnO2成形粒5φmm×7Lmmのペ
レット品Xを得た。
The molded product was dried at 100 ° C. to obtain a pellet product X of MnO 2 molded particles of 5 mm × 7 Lmm.

MnO2ペレット100gにつき下記のPd量に対応する量の市
販の硝酸パラジウム塩を水に溶解して20ccとした液を、
上記のMnO2ペレットにムラなく吸水させ、さらに200℃
で1時間乾燥しPd−MnO2触媒A〜Gを得た。各触媒のPd
担持量は下記のようになった。
A solution in which 20 cc of a commercially available palladium nitrate salt in an amount corresponding to the following Pd amount per 100 g of MnO 2 pellets was dissolved in water,
Absorb water evenly into the above MnO 2 pellets, and further 200 ° C
In dry 1 hour to obtain Pd-MnO 2 catalyst A-G. Pd of each catalyst
The loading amount was as follows.

実施例2 実施例1と同様のMnO2ペレット100gに下記の量のPdを
担持した後それぞれ下記の量のAgを担持してPd−Ag−Mn
O2触媒P、Q、Rを得た。
Example 2 The same amount of MnO 2 pellets as in Example 1 was loaded with 100 g of MnO 2 pellets, and then the following amounts of Ag were loaded on each of the Pd-Ag-Mn.
O 2 catalysts P, Q and R were obtained.

比較例1 γ−Al2O3担体(3φmm)100g(185cc)に、Pd量とし
て2gの実施例1と同様の硝酸パラジウムを水50ccに溶解
した液を吸水させ、さらに乾燥後500℃で焼成して触媒
Sを得た。
Comparative Example 1 100 g (185 cc) of γ-Al 2 O 3 carrier ( 3 φmm) was made to absorb 2 g of the same palladium nitrate solution as in Example 1 in 50 cc of water, and then dried and calcined at 500 ° C. As a result, a catalyst S was obtained.

比較例2 実施例1の5φmm×7LmmのMnO2ペレット品を触媒Xと
する。
Comparative Example 2 A 5 mm × 7 Lmm MnO 2 pellet product of Example 1 was used as catalyst X.

比較例3 市販の硫酸マンガン結晶5kgを水50に溶解したもの
に、KMnO4 3kgを水50に溶解したものを加えてMnO2
殿を生成させて濾過し、得られたケーキをほぐしてK成
分およびSO4成分を洗い流したのちMnO2を100℃で乾燥
し、ハンマーミルで粉砕してMnO2粉末を得た。このMnO2
粉末の平均粒径は15μ、最大粒径は55μであった。この
MnO2粉末2kgにシリカ系のバインダー(日産化学株式会
社製:スノーラックスO)200g及び水300gを加えてニー
ダーで混練し実施例1と同様にして5φmm×7Lmmのペレ
ット成形品を得た。このペレット成形品を触媒Yとす
る。
Comparative Example 3 To a solution of 5 kg of commercially available manganese sulfate crystals dissolved in water 50 was added a solution of 3 kg of KMnO 4 dissolved in water 50 to form a MnO 2 precipitate, followed by filtration. After washing away the SO 4 component and MnO 2 , the MnO 2 was dried at 100 ° C. and pulverized with a hammer mill to obtain an MnO 2 powder. This MnO 2
The powder had an average particle size of 15μ and a maximum particle size of 55μ. this
200 g of a silica-based binder (Snowlux O, manufactured by Nissan Chemical Industries, Ltd.) and 300 g of water were added to 2 kg of the MnO 2 powder and kneaded with a kneader to obtain a pellet molded product of 5 mm × 7 Lmm in the same manner as in Example 1. This pellet molded product is referred to as catalyst Y.

以上のように調製した触媒A乃至G、P乃至Sおよび
X、Yをオゾンガス2000ppm/Air、SV(空間速度)10,00
0Hr-1、温度25℃、RH(相対湿度)100%、LV(線速度)
0.1m/sec、触媒容量20ccの条件下で耐久浄化試験を行い
結果を第1表および第1図に示す。
The catalysts A to G, P to S and X, Y prepared as described above were converted to ozone gas 2000 ppm / Air, SV (space velocity) 10,000,
0Hr -1 , temperature 25 ° C, RH (relative humidity) 100%, LV (linear velocity)
A durability purification test was performed under the conditions of 0.1 m / sec and a catalyst capacity of 20 cc, and the results are shown in Table 1 and FIG.

これらの結果より、比較例1のようにMnO2を担体とし
て用いない場合は100時間後のオゾン除去性能は低い値
を示し、耐久性能が劣ることが分かる。また比較例2及
び比較例3に示すようにMnO2単体の場合は、電解法のも
のであっても、酸化法のものであっても同じように低い
性能を示している。
From these results, it can be seen that when MnO 2 is not used as a carrier as in Comparative Example 1, the ozone removal performance after 100 hours shows a low value and the durability performance is inferior. Further, as shown in Comparative Examples 2 and 3, in the case of MnO 2 alone, the performance was similarly low regardless of whether it was of the electrolytic method or of the oxidizing method.

これに対して本発明の触媒A〜G及びP〜Rに示すよ
うに、MnO2にPd又はPdとAgを担持することで、MnO2単体
よりも初期性能も耐久性能も向上していることが分か
る。
As shown in the catalyst A~G and P~R of the present invention, on the other hand, by supporting Pd or Pd and Ag in the MnO 2, the initial performance is also improved durability than MnO 2 alone I understand.

[発明の効果] 以上から明らかなように、MnO2のみでもオゾン除去性
能は示すがPd又はPdおよびAgのすぐれた触媒性能を組み
合わせる事で相乗した効果が得られ、初期性能、耐久性
能のいずれにもすぐれ、それぞれ単独では得られないす
ぐれた性能が本発明の触媒においては得られる。
[Effects of the Invention] As is clear from the above, although MnO 2 alone shows ozone removal performance, a synergistic effect can be obtained by combining excellent catalytic performance of Pd or Pd and Ag, and any of initial performance and durability performance can be obtained. In the catalyst of the present invention, excellent performances that cannot be obtained by themselves are obtained.

【図面の簡単な説明】 第1図はMnO2粉末に担持するPdの量を変化させたときの
100時間耐久後のオゾン除去率を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the results when the amount of Pd supported on MnO 2 powder was changed.
It is a figure which shows the ozone removal rate after 100 hours of durability.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】MnO2の粒状成形品にPd又はPdとAgを担持
し、Pdを0.0001重量%乃至10重量%又はPdとAgの合計を
0.0006重量%乃至60重量%担持したオゾン除去用触媒。
(1) Pd or Pd and Ag are supported on a MnO 2 granular molded product, and Pd is contained in an amount of 0.0001% by weight to 10% by weight or a total of Pd and Ag.
Ozone removal catalyst loaded with 0.0006% to 60% by weight.
JP1287978A 1989-11-07 1989-11-07 Ozone removal catalyst Expired - Lifetime JP2899329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287978A JP2899329B2 (en) 1989-11-07 1989-11-07 Ozone removal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287978A JP2899329B2 (en) 1989-11-07 1989-11-07 Ozone removal catalyst

Publications (2)

Publication Number Publication Date
JPH03151046A JPH03151046A (en) 1991-06-27
JP2899329B2 true JP2899329B2 (en) 1999-06-02

Family

ID=17724217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287978A Expired - Lifetime JP2899329B2 (en) 1989-11-07 1989-11-07 Ozone removal catalyst

Country Status (1)

Country Link
JP (1) JP2899329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473402B2 (en) * 2004-03-26 2009-01-06 Honeywell International, Inc. Ozone removal system and method for low and high temperature operation

Also Published As

Publication number Publication date
JPH03151046A (en) 1991-06-27

Similar Documents

Publication Publication Date Title
CN108290142B (en) Composite composition for harmful gas removal containing copper-manganese catalyst
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
WO2006103754A1 (en) Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
CN102008953A (en) Manganese dioxide catalyst
JPS62140642A (en) Iron-containing catalyst for reducing nitrogen oxide contentof combustion exhaust gas
CN108136326B (en) Ozone oxidation decomposition treatment method for VOC and/or gas phase inorganic reducing compound in gas
KR100490665B1 (en) Manufacturing method of oxidation catalysts for elimination of the ethylene gas
JP2899329B2 (en) Ozone removal catalyst
JP4656353B2 (en) Room temperature catalyst
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3436425B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
CN107262106A (en) A kind of catalyst and its preparation method and application
CN113680383A (en) Composite material for purifying aldehydes and benzene series in air as well as preparation method and application thereof
JP2000167406A (en) Organic halogen compound remover and treatment of waste gas using same
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JP5888150B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH09935A (en) Catalyst for treatment of water
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2862012B2 (en) Ozone removal catalyst
JPH0420663B2 (en)
JPH0838888A (en) Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same
CN114210314B (en) Double-precursor carbon-based catalyst, preparation method thereof and application of double-precursor carbon-based catalyst in removing formaldehyde and mercury
JPH02187131A (en) Method for removing nitrogen oxide
JPS60220148A (en) Honeycomb shaped deodorizing catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11