JP2897392B2 - Preliminary reduction furnace in smelting reduction facility of iron ore - Google Patents

Preliminary reduction furnace in smelting reduction facility of iron ore

Info

Publication number
JP2897392B2
JP2897392B2 JP27702990A JP27702990A JP2897392B2 JP 2897392 B2 JP2897392 B2 JP 2897392B2 JP 27702990 A JP27702990 A JP 27702990A JP 27702990 A JP27702990 A JP 27702990A JP 2897392 B2 JP2897392 B2 JP 2897392B2
Authority
JP
Japan
Prior art keywords
reduction furnace
metal
nozzle hole
nozzle holes
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27702990A
Other languages
Japanese (ja)
Other versions
JPH04154905A (en
Inventor
晴人 坪井
進市 磯崎
二郎 間瀬
良幸 北野
栄 荒川
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP27702990A priority Critical patent/JP2897392B2/en
Publication of JPH04154905A publication Critical patent/JPH04154905A/en
Application granted granted Critical
Publication of JP2897392B2 publication Critical patent/JP2897392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄鉱石の溶融還元設備における予備還元
炉の改良に関する。
Description: TECHNICAL FIELD The present invention relates to an improvement of a preliminary reduction furnace in a smelting reduction facility for iron ore.

〔従来の技術〕[Conventional technology]

鉄鉱石の溶融還元では、設備を溶融還元炉と流動層式
の予備還元炉とから構成し、溶融還元炉で発生する排ガ
スを予備還元炉流動層の流動化、還元ガスとして利用す
る方法が経済上好ましい。そして、この流動層として
は、技術的完成度が高く、しかも鉱石の予熱、還元に伴
う粉化を抑制できるという点から、バブリング流動層が
特に有利である。
In the smelting reduction of iron ore, it is economical to use a smelting reduction furnace and a fluidized bed type pre-reduction furnace, and to use the exhaust gas generated in the smelting reduction furnace as a fluidized bed of the pre-reduction furnace and as a reducing gas Above. As the fluidized bed, a bubbling fluidized bed is particularly advantageous because it has a high degree of technical perfection and can suppress powdering caused by preheating and reduction of the ore.

この予備還元炉は、その内部にガス噴出用の多数のノ
ズル孔(ガス通孔)を有する分散板を備えており、この
分散板の上方に形成される予備還元室に鉄鉱石が装入さ
れ、分散板下方のガス吹込室(風箱)に溶融還元炉から
の排ガス(還元ガス)が導入される。この還元ガスは、
分散板のノズル孔を通じて上方の予備還元室に吹き出さ
れ、これにより流動層が形成され、鉄鉱石の予備還元と
予熱がなされる。
This pre-reduction furnace is provided with a dispersion plate having a number of nozzle holes (gas through holes) for gas ejection therein, and iron ore is charged into a pre-reduction chamber formed above the dispersion plate. Then, exhaust gas (reducing gas) from the smelting reduction furnace is introduced into a gas injection chamber (wind box) below the dispersion plate. This reducing gas is
It is blown out to the upper pre-reduction chamber through the nozzle holes of the dispersing plate, whereby a fluidized bed is formed, and the pre-reduction and pre-heating of the iron ore are performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このような予備還元炉では、排ガス中に含まれるダス
トの分散板への付着が大きな問題となる。
In such a pre-reduction furnace, the adhesion of dust contained in the exhaust gas to the dispersion plate becomes a major problem.

すなわち、溶融還元炉から発生する排ガスには多量の
ダストが含まれており、このうち10μm以下の微粒ダス
トは、多くの場合サイクロン等の除塵装置では除去でき
ず、このような微粒ダストを含む排ガスがそのまま予備
還元炉に導入されてしまう。
That is, the exhaust gas generated from the smelting reduction furnace contains a large amount of dust. Of these, the fine dust of 10 μm or less cannot be removed by a dust remover such as a cyclone in many cases, and the exhaust gas containing such fine dust Is directly introduced into the preliminary reduction furnace.

上記ダストはSやNa、K等のアルカリ化合物を多く含
んでいるため、900℃を超えるような温度の排ガス中で
は粘着性を持ち、このため予備還元炉に導入されたダス
トは分散板下面やノズル孔内面に付着することになる。
特に、ガス吹込室に導入された排ガスはノズル孔を通過
する際に縮流され、ノズル孔内のガス流速は極めて高く
(流速:数十m/sec以上)なるため、ノズル孔内面では
ダストが特に強固に付着し易い。このようなダストによ
る付着物は次第に成長し、遂には還元ガスの円滑な流れ
を妨げ、適正な流動層を形成できなくなる。第4図はこ
のような状況を示すもので、1は流動層、2は分散板、
3は分散板下方のガス吹込室、4は付着、成長したダス
トである。
Since the dust contains a large amount of alkali compounds such as S, Na, and K, the dust has a sticky property in an exhaust gas having a temperature exceeding 900 ° C. It will adhere to the inner surface of the nozzle hole.
In particular, the exhaust gas introduced into the gas injection chamber is contracted when passing through the nozzle hole, and the gas flow rate in the nozzle hole becomes extremely high (flow rate: several tens m / sec or more). Particularly, it is easily adhered firmly. Such deposits due to dust gradually grow, and eventually hinder the smooth flow of the reducing gas, so that an appropriate fluidized bed cannot be formed. FIG. 4 shows such a situation, wherein 1 is a fluidized bed, 2 is a dispersion plate,
Reference numeral 3 denotes a gas blowing chamber below the dispersion plate, and reference numeral 4 denotes dust that has adhered and grown.

本発明は、このような従来の問題に鑑みなされたもの
で、分散板、特にノズル孔内面に対するダストの付着、
成長を効果的に防止できる予備還元炉の提供をその目的
とする。
The present invention has been made in view of such a conventional problem, and adheres dust to the dispersion plate, particularly to the inner surface of the nozzle hole.
It is an object of the present invention to provide a preliminary reduction furnace capable of effectively preventing growth.

〔課題を解決するための手段〕[Means for solving the problem]

このため本発明は、多数のノズル孔が貫設された分散
板を炉内部に有する流動層式の予備還元炉において、ノ
ズル孔を密閉二重管構造の金属筒により構成し、複数の
ノズル孔を1のノズル孔群として、これを構成する複数
のノズル孔の金属筒を、その二重管構造内部に連通する
連絡管で順次連結することにより、複数の金属筒と連絡
管とから構成される流路を形成し、該流路一端側の金属
筒に冷却流体の導入管を接続するとともに、流路他端側
の金属筒に冷却流体の排出管を接続したことをその特徴
とする。
Therefore, the present invention provides a fluidized bed type pre-reduction furnace having a dispersion plate having a large number of nozzle holes penetrating therein, wherein the nozzle holes are formed of a metal cylinder having a closed double tube structure, and a plurality of nozzle holes are formed. As a group of nozzle holes, the metal cylinders of the plurality of nozzle holes constituting the nozzle hole group are sequentially connected by a communication pipe communicating with the inside of the double pipe structure, thereby being constituted by a plurality of metal cylinders and a communication pipe. A flow path is formed, and a cooling fluid introduction pipe is connected to the metal pipe at one end of the flow path, and a cooling fluid discharge pipe is connected to the metal pipe at the other end of the flow path.

〔作用〕[Action]

分散板に設けられる複数のノズル孔は、1または2以
上の群に分けられ、各群について、複数の金属筒と連絡
管とからなる冷却流体の流路が形成される。各流路の一
端側の金属筒に接続された導入管を通じて供給された冷
却流体(例えば、N2ガス、水、油等)は、連絡管を介し
て群を構成する各ノズル孔の金属筒内(二重管構造内
部)に流れ、ノズル孔内面およびノズル孔入口部を冷却
した後、流路他端側の金属筒に接続された排出管を通じ
て分散板外に排出される。上記冷却流体による冷却によ
り、金属筒により構成される各ノズル孔の内面の温度が
低下し、これらの面に還元ガス中のダストが付着しても
急速に固化し、容易に剥離する。通常、予備還元炉内に
導入される還元ガスの温度は1000〜1200℃程度である
が、ノズル孔内面の表面温度を数百℃程度に冷却するこ
とにより、ダストは容易に剥離可能な状態となる。
The plurality of nozzle holes provided in the dispersion plate are divided into one or more groups, and a cooling fluid flow path including a plurality of metal cylinders and a connecting pipe is formed for each group. The cooling fluid (eg, N 2 gas, water, oil, etc.) supplied through the inlet pipe connected to the metal pipe on one end side of each flow path is supplied to the metal pipe of each nozzle hole forming a group via the connecting pipe. After flowing inside (inside the double pipe structure) and cooling the inner surface of the nozzle hole and the inlet of the nozzle hole, it is discharged to the outside of the dispersion plate through a discharge pipe connected to a metal tube at the other end of the flow path. Due to the cooling by the cooling fluid, the temperature of the inner surface of each nozzle hole formed by the metal cylinder decreases, and even if dust in the reducing gas adheres to these surfaces, it rapidly solidifies and is easily separated. Usually, the temperature of the reducing gas introduced into the preliminary reduction furnace is about 1000 to 1200 ° C, but by cooling the surface temperature of the inner surface of the nozzle hole to about several hundred degrees Celsius, the dust can be easily separated. Become.

〔実施例〕〔Example〕

第1図ないし第3図は本発明の一実施例を示すもの
で、第1図は縦断面図、第2図は分散板の水平断面を模
式的に示す図面、第3図はノズル孔の拡大縦断面図であ
る。
1 to 3 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view, FIG. 2 is a schematic view showing a horizontal section of a dispersion plate, and FIG. It is an expanded longitudinal sectional view.

図において、5は予備還元炉の内部を上下に仕切る分
散板、6はこの分散板の全面に貫設される複数のノズル
孔である。分散板5により仕切られる予備還元炉は、そ
の上方が予備還元室12を、また、下方がガス吹込室13を
それぞれ構成している。このガス吹込室13にはガス導入
口14が設けられ、これに溶融還元炉からのガス導管15が
接続されている。また、分散板の中央部には鉱石の抜出
口16が設けられ、この抜出口16にガス吹込室を貫通した
抜出管17が接続されている。
In the figure, reference numeral 5 denotes a dispersion plate which vertically partitions the inside of the preliminary reduction furnace, and reference numeral 6 denotes a plurality of nozzle holes penetrating through the entire surface of the dispersion plate. The pre-reduction furnace partitioned by the dispersion plate 5 constitutes a pre-reduction chamber 12 above and a gas injection chamber 13 below. The gas injection chamber 13 is provided with a gas inlet 14 to which a gas conduit 15 from the smelting reduction furnace is connected. An ore outlet 16 is provided at the center of the dispersion plate, and an outlet pipe 17 penetrating the gas injection chamber is connected to the outlet 16.

前記各ノズル孔6は、第3図に示すように耐火物製の
分散板本体7に埋め込まれた密閉二重管構造の金属筒8
により構成されている。
As shown in FIG. 3, each of the nozzle holes 6 is a metal tube 8 of a closed double tube structure embedded in a refractory dispersing plate main body 7.
It consists of.

このようなノズル孔は、第2図に示すように複数のノ
ズル孔6からなるノズル孔群A1〜A6に分けられ、各ノズ
ル孔群Aについて、これらを構成する複数のノズル孔の
金属筒8を、その二重管構造内部に連通する連絡管9で
順次直列的に連結している。これによりノズル孔群A1
A6毎に、複数の金属筒8と連絡管9とからなる流路B1
B6が形成されている。そして、各流路Bの一端側の金属
筒8に冷却流体の導入口10が、また、流路の他端側の金
属筒8に冷却流体の排出口11が、それぞれ設けられ、こ
れらに冷却流体の導入管18および排出管19が接続されて
いる。
Such nozzle holes are divided into the nozzle hole group A 1 to A 6 comprising a plurality of nozzle holes 6 as shown in FIG. 2, for each nozzle hole group A, a plurality of nozzle holes constituting these metal The tubes 8 are connected in series by a connecting pipe 9 communicating with the inside of the double pipe structure. As a result, the nozzle hole groups A 1 to
For each A 6 , a flow path B 1 to a plurality of metal cylinders 8 and a connecting pipe 9.
B 6 is formed. A cooling fluid inlet 10 is provided in the metal cylinder 8 at one end of each flow path B, and a cooling fluid outlet 11 is provided in the metal cylinder 8 at the other end of the flow path B. The fluid introduction pipe 18 and the discharge pipe 19 are connected.

なお、分散板5のノズル孔6は、1または2以上の任
意の数のノズル孔群Aに分けることができるが、分散板
の製作上の便宜から、例えば分散板を周方向で複数のブ
ロックから構成し、このブロック毎の複数のノズル孔を
1つのノズル孔群とすることが好ましい。
In addition, the nozzle holes 6 of the dispersion plate 5 can be divided into one or two or more arbitrary number of nozzle hole groups A. For convenience in manufacturing the dispersion plate, for example, the dispersion plate is divided into a plurality of blocks in the circumferential direction. And it is preferable that the plurality of nozzle holes for each block be one nozzle hole group.

次に、上記実施例の作用について説明する。 Next, the operation of the above embodiment will be described.

上記各ノズル孔群A1〜A6について、導入管18を通じて
流路B1〜B6内にN2ガス等の冷却流体が供給される。冷却
流体は連絡管9を通じて群を構成する各ノズル孔6の金
属筒8内(二重管構造内部)に流れ、その途中でノズル
孔内面およびノズルう孔入口部を冷却した後、流路他端
側の金属筒8に接続された排出管19を通じて分散板外に
排出される。この冷却流体による冷却作用により、金属
筒8により構成される各ノズル孔6の内面の温度が低下
し、これらの面に還元ガス中のダストが付着しても急速
に固化し、容易に剥離することになる。
For each of the nozzle hole groups A 1 to A 6 , a cooling fluid such as N 2 gas is supplied into the flow paths B 1 to B 6 through the introduction pipe 18. The cooling fluid flows through the connecting pipe 9 into the metal cylinder 8 (inside the double pipe structure) of each of the nozzle holes 6 constituting the group, and cools the inner surface of the nozzle hole and the inlet of the nozzle hole in the middle thereof. It is discharged out of the dispersion plate through a discharge pipe 19 connected to the metal tube 8 on the end side. Due to the cooling action by the cooling fluid, the temperature of the inner surface of each nozzle hole 6 formed by the metal cylinder 8 decreases, and even if dust in the reducing gas adheres to these surfaces, it quickly solidifies and easily separates. Will be.

〔発明の効果〕〔The invention's effect〕

以上述べた本発明によれば、分散板のノズル孔内面や
ノズル孔入口部でのダストの付着、成長が効果的に防止
されるため、排ガスの流動層内への吹き込みを安定して
行わせることができる。
According to the present invention described above, dust is effectively prevented from adhering and growing on the inner surface of the nozzle hole and the inlet of the nozzle hole of the dispersion plate, so that the exhaust gas can be stably blown into the fluidized bed. be able to.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明の一実施例を示すもので、
第1図は縦断面図、第2図は分散板の水平断面を模式的
に示す図面、第3図はノズル孔の拡大縦断面図である。
第4図は従来の予備還元炉におけるダストの付着状況を
示す説明図である。 図において、5は分散板、6はノズル孔、8は金属筒、
9は連絡管、18は導入管、19は排出管、A1〜A6はノズル
孔群、B1〜B6は流路である。
1 to 3 show an embodiment of the present invention.
FIG. 1 is a longitudinal sectional view, FIG. 2 is a drawing schematically showing a horizontal section of a dispersion plate, and FIG. 3 is an enlarged longitudinal sectional view of a nozzle hole.
FIG. 4 is an explanatory view showing the state of adhesion of dust in a conventional preliminary reduction furnace. In the figure, 5 is a dispersion plate, 6 is a nozzle hole, 8 is a metal cylinder,
9 connecting tube, 18 inlet tube, exhaust tube 19, A 1 to A 6 is the nozzle hole group, B 1 .about.B 6 is the flow path.

フロントページの続き (72)発明者 北野 良幸 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 荒川 栄 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 有山 達郎 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (58)調査した分野(Int.Cl.6,DB名) C21B 11/00 - 13/14 F27B 15/00 - 15/20 Continuation of the front page (72) Inventor Yoshiyuki Kitano 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Sakae Arakawa 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Tatsuro Ariyama 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) C21B 11/00-13/14 F27B 15 / 00-15/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数のノズル孔が貫設された分散板を炉内
部に有する流動層式の予備還元炉において、ノズル孔を
密閉二重管構造の金属筒により構成し、複数のノズル孔
を1のノズル孔群として、これを構成する複数のノズル
孔の金属筒を、その二重管構造内部に連通する連絡管で
順次連結することにより、複数の金属筒と連絡管とから
構成される流路を形成し、該流路一端側の金属筒に冷却
流体の導入管を接続するとともに、流路他端側の金属筒
に冷却流体の排出管を接続したことを特徴とする鉄鉱石
の溶融還元設備における予備還元炉。
1. A fluidized bed type pre-reduction furnace having a dispersion plate having a large number of nozzle holes penetrating therein, wherein the nozzle holes are constituted by a metal cylinder having a closed double tube structure, and a plurality of nozzle holes are formed. As one nozzle hole group, a metal tube of a plurality of nozzle holes constituting the nozzle hole group is sequentially connected by a communication tube communicating with the inside of the double tube structure, thereby being constituted by a plurality of metal tubes and a communication tube. A flow path is formed, and a cooling fluid introduction pipe is connected to the metal pipe at one end of the flow path, and a cooling fluid discharge pipe is connected to the metal pipe at the other end of the flow path. Preliminary reduction furnace in smelting reduction equipment.
JP27702990A 1990-10-16 1990-10-16 Preliminary reduction furnace in smelting reduction facility of iron ore Expired - Fee Related JP2897392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27702990A JP2897392B2 (en) 1990-10-16 1990-10-16 Preliminary reduction furnace in smelting reduction facility of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27702990A JP2897392B2 (en) 1990-10-16 1990-10-16 Preliminary reduction furnace in smelting reduction facility of iron ore

Publications (2)

Publication Number Publication Date
JPH04154905A JPH04154905A (en) 1992-05-27
JP2897392B2 true JP2897392B2 (en) 1999-05-31

Family

ID=17577784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27702990A Expired - Fee Related JP2897392B2 (en) 1990-10-16 1990-10-16 Preliminary reduction furnace in smelting reduction facility of iron ore

Country Status (1)

Country Link
JP (1) JP2897392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245319B1 (en) * 2010-11-10 2013-03-19 주식회사 포스코 Method for reducing dust from reducing gas

Also Published As

Publication number Publication date
JPH04154905A (en) 1992-05-27

Similar Documents

Publication Publication Date Title
AU633748B2 (en) Process of cooling hot process gases
US2638626A (en) Apparatus for the production of metal powder
JP2897392B2 (en) Preliminary reduction furnace in smelting reduction facility of iron ore
JPH0439510B2 (en)
DE69100666T2 (en) Pre-reduction furnace from a smelting plant for iron ore.
US3741286A (en) Regenerative heat exchanger and method for purging its flow passages
JP2762970B2 (en) Preliminary reduction furnace in smelting reduction facility of iron ore
JPH0459906A (en) Pre-reduction furnace in smelting reduction equipment for iron ore
JPH04110406A (en) Pre-reduction furnace in smelting-reduction equipment for iron ore
JPH04297515A (en) Pre-reduction furnace in smelting reduction equipment for iron ore
JPH0826380B2 (en) Pre-reduction furnace in smelting reduction equipment for iron ore
KR930009414B1 (en) Prereduction furnace of a smelting reduction facility of iron ore
JPH04110408A (en) Smelting-reduction method and equipment for iron ore
US4258633A (en) Cooling of tuyeres in blast furnaces
JPH07103411B2 (en) Pre-reduction furnace in smelting reduction equipment for iron ore
US1775955A (en) Blast furnace
JPH04191308A (en) Pre-reduction furnace in smelting reduction device for iron ore
US796170A (en) Converter-lining.
JPH04191310A (en) Pre-reduction furnace in smelting reduction device for iron ore
JPH0448015A (en) Pre-reduction furnace in smelting reduction device for iron ore
JPH04191309A (en) Pre-reduction furnace in smelting reduction device for iron ore
JPH01247522A (en) Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus
JPH04116113A (en) Prereducing furnace for iron ore smelting reduction equipment
JPS5558306A (en) Recovering method for potential heat of blast furnace molten slag
JPH05195029A (en) Method for preventing stickness of dust in generating gas from smelting reduction furnace to gas flow passage in smelting reduction iron-making equipment and duct for discharging generating gas from smelting reduction furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees