JPH01247522A - Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus - Google Patents

Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus

Info

Publication number
JPH01247522A
JPH01247522A JP7836488A JP7836488A JPH01247522A JP H01247522 A JPH01247522 A JP H01247522A JP 7836488 A JP7836488 A JP 7836488A JP 7836488 A JP7836488 A JP 7836488A JP H01247522 A JPH01247522 A JP H01247522A
Authority
JP
Japan
Prior art keywords
iron powder
exhaust gas
cyclone
reduced iron
filtration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7836488A
Other languages
Japanese (ja)
Inventor
Takashi Nakamura
隆 中村
Akihiko Yoshida
昭彦 吉田
Shigeyuki Yadoumaru
矢動丸 成行
Tomoo Yoshitake
智郎 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7836488A priority Critical patent/JPH01247522A/en
Publication of JPH01247522A publication Critical patent/JPH01247522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the recovery ratio of reduced iron powder and the yield of reducing ore by recovering reduced iron powder contained in exhaust gas from a fluidized bed pre-reducing furnace with a cyclone and a filtration device using ceramic filter at the rear step of the cyclone. CONSTITUTION:In smelting reduction apparatus, the cyclone 10 is set at outlet side of the exhaust gas of the fluidized bed prereducing furnace 6 to catch relatively large particle in the reduced iron powder contained in the exhaust gas. Successively, small particle in the reduced iron powder is caught and recovered with the filtration device 11 using ceramic filter and arranging at the rear step of the cyclone 10. A heat exchanger 12 is set between the filtration device 11 and a dispersing tower 13, and sensible heat in the exhaust gas from the filtration device 11 is recovered. The filtration device 11 has main constructions composing of a can body 31, ceramic porous body 32 fitted in the can body 31, introducing pipe 33 for introducing the exhaust gas from the cyclone 10 and an exhaust pipe 34 for exhausting the exhaust gas after filtrating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉粒状鉄鉱石の流動還元過程で発生する還元
鉄粉の回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for recovering reduced iron powder generated during the fluid reduction process of powdery granular iron ore.

〔従来の技術〕[Conventional technology]

近年、鉄鉱石を還元して溶銑を製造する設備として、溶
融還元設備が注目を浴びている。この溶融還元設備は、
使用する原料に制約を受けることなく、より小規模な設
備により鉄系合金の溶湯を製造することを目的として開
発されたものである。
In recent years, smelting reduction equipment has been attracting attention as equipment for reducing iron ore to produce hot metal. This melting reduction equipment is
It was developed with the aim of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used.

このような溶融還元設備の一つとして、本発明者等は、
先に第5図に示すようなフローで構成される設備を特願
昭61−71562号として提案した。
As one such melting reduction equipment, the present inventors have
Previously, we proposed a facility constructed with the flow shown in Figure 5 in Japanese Patent Application No. 71562/1983.

この設備においては、次のようにして溶銑が製造される
。すなわち、粉粒状の鉄鉱石19石灰石2等の製鉄原料
は、ホッパー1a、 2aから、流動層予熱炉5から延
びる排ガス煙道21に投入され、配管22を経てサイク
ロン23に送られる。この搬送過程で、排ガス煙道21
から送られてくる排ガスと熱交換しながら加熱された後
、サイクロン23で排ガスと分離され、流動層予熱炉5
に投入される。
In this facility, hot metal is produced in the following manner. That is, iron manufacturing raw materials such as granular iron ore 19 and limestone 2 are charged from hoppers 1a and 2a into an exhaust gas flue 21 extending from a fluidized bed preheating furnace 5, and sent to a cyclone 23 via a pipe 22. During this conveyance process, the exhaust gas flue 21
After being heated while exchanging heat with the exhaust gas sent from the cyclone 23, it is separated from the exhaust gas and sent to the fluidized bed preheating furnace 5
will be put into the

流動層予熱炉5には、石炭3がホッパー3aを介して投
入され、また、炉床から燃焼用の空気4が送りこまれて
いる。この空気4により、投入された石炭3が流動燃焼
し、流動層予熱炉5内の流動層を600〜1000℃の
範囲に維持している。このような雰囲気の下に、投入さ
れた鉄鉱石l1石灰石2等の原料は、予熱焙焼される。
Coal 3 is charged into the fluidized bed preheating furnace 5 via a hopper 3a, and combustion air 4 is fed from the hearth. This air 4 causes fluidized combustion of the introduced coal 3, and maintains the temperature of the fluidized bed in the fluidized bed preheating furnace 5 in the range of 600 to 1000°C. In such an atmosphere, the input raw materials such as iron ore 11 and limestone 2 are preheated and roasted.

流動層予熱炉5から排出された予熱された鉄鉱石1石灰
等の混合物は、流動層予備還元炉6に装入される。なお
、同図において符番24は二μmマチツタフィーダーで
ある。
The preheated mixture of iron ore, lime, etc. discharged from the fluidized bed preheating furnace 5 is charged into the fluidized bed prereduction furnace 6. In addition, in the same figure, the reference numeral 24 is a 2 μm machita feeder.

流動層予備還元炉6内には、溶融還元炉7から排出され
た約1000℃の高温の還元ガス8が、炉下部を通して
吹き込まれている。この還元ガス8により、流動層予熱
炉5から送り込まれた鉄鉱石等の原料は、流動層予備還
元炉6内で浮遊流動され、還元ガス8に含まれているC
O,H2等によって予備還元される。
A high-temperature reducing gas 8 of about 1000° C. discharged from the melting reduction furnace 7 is blown into the fluidized bed pre-reduction furnace 6 through the lower part of the furnace. By this reducing gas 8, raw materials such as iron ore sent from the fluidized bed preheating furnace 5 are floated and fluidized in the fluidized bed preheating furnace 6, and the carbon contained in the reducing gas 8 is
It is pre-reduced by O, H2, etc.

ここで、流動層予備還元炉6から外部に飛散した還元鉄
粉を回収して再び流動層予備還元炉6に戻すために、流
動層予備還元炉6の上部に粒子循環装置25が設けられ
ている。この粒子循環装置25としては、たとえば、同
図に示されているように、多段式のサイクロン25a 
とホッパー25bを組み合わせたものが用いられる。な
お、図中符番25c、 25d及び25e はニューマ
チツタフィーダーである。最終段の流動層予備還元炉6
に付設した粒子循環装置25で回収された還元鉄粉は搬
送経路26を介して溶融還元炉7に送り出される。
Here, in order to recover the reduced iron powder scattered outside from the fluidized bed preliminary reduction furnace 6 and return it to the fluidized bed preliminary reduction furnace 6, a particle circulation device 25 is provided in the upper part of the fluidized bed preliminary reduction furnace 6. There is. As this particle circulation device 25, for example, as shown in the figure, a multi-stage cyclone 25a is used.
A combination of the hopper 25b and the hopper 25b is used. Note that numerals 25c, 25d, and 25e in the figure indicate new ivy feeders. Final stage fluidized bed pre-reduction furnace 6
The reduced iron powder recovered by the particle circulation device 25 attached to the sintering device 2 is sent to the melting reduction furnace 7 via the conveyance path 26.

流動層予備還元炉6の流動層下部から切り出された還元
鉱は、搬送経路27を経て溶融還元炉7に投入される。
The reduced ore cut out from the lower part of the fluidized bed of the fluidized bed pre-reduction furnace 6 is fed into the smelting reduction furnace 7 via the conveyance path 27.

この溶融還元炉7内には、図示しない上吹きランスから
酸素9が鉄浴20に向かって吹き付けられると共に、図
示しない底吹き羽口から鉄浴20中に酸素9及び炭材が
吹き込まれている。溶融還元炉7内に投入された還元鉱
は溶融還元炉7内で溶解し、還元が進行して溶銑となる
In this melting reduction furnace 7, oxygen 9 is blown toward the iron bath 20 from a top blowing lance (not shown), and oxygen 9 and carbonaceous material are blown into the iron bath 20 from a bottom blowing tuyere (not shown). . The reduced ore charged into the smelting reduction furnace 7 is melted in the smelting reduction furnace 7, and the reduction progresses to become hot metal.

ところで、上記のような溶融還元設備において、流動層
予備還元炉6内での還元過程で発生し、流動層予備還元
炉6から排出されるガス中に含まれる還元鉄粉を回収す
るための改良された装置として、第6図あるいは第7図
に示すような回収装置が用いられている。
By the way, in the above-mentioned smelting reduction equipment, there is an improvement for recovering reduced iron powder generated during the reduction process in the fluidized bed pre-reduction furnace 6 and contained in the gas discharged from the fluidized bed pre-reduction furnace 6. A recovery device as shown in FIG. 6 or FIG. 7 is used as a recovery device.

第6図に示す装置は、流動層予備還元炉6のガス排出経
路の途中に、サイクロン51とバッグフィルター52を
設置して、サイクロン51で比較的大きな還元鉄粉を回
収し、バッグフィルター52で小さい粒子の還元鉄粉を
回収するものである。回収された還元鉄粉は溶融還元炉
7に送られ、排ガスは放散塔54から放散される。
The apparatus shown in FIG. 6 has a cyclone 51 and a bag filter 52 installed in the middle of the gas discharge path of the fluidized bed pre-reduction furnace 6, and the cyclone 51 collects relatively large reduced iron powder, and the bag filter 52 collects a relatively large amount of reduced iron powder. It collects small particles of reduced iron powder. The recovered reduced iron powder is sent to the melting reduction furnace 7, and the exhaust gas is diffused from the diffusion tower 54.

第7図に示す装置は、流動層予備還元炉6のガス排出経
路の途中に、サイクロン51と湿式集塵機55を設置し
て、サイクロン51で比較的大きな還元鉄粉を回収し、
湿式集塵機55で小さい粒子の還元鉄粉を回収するもの
である。サイクロン51で回収された還元鉄粉は溶融還
元炉7に送られ、湿式集塵機55で回収された還元鉄粉
はシックナー56で水と分離され、脱水機57で脱水さ
れた後、流動層予備還元炉6に原料として送られる。排
ガスは放散塔54から放散される。
The apparatus shown in FIG. 7 has a cyclone 51 and a wet dust collector 55 installed in the middle of the gas discharge path of the fluidized bed preliminary reduction furnace 6, and collects relatively large reduced iron powder with the cyclone 51.
The wet dust collector 55 collects small particles of reduced iron powder. The reduced iron powder recovered by the cyclone 51 is sent to the smelting reduction furnace 7, and the reduced iron powder recovered by the wet dust collector 55 is separated from water by the thickener 56, dehydrated by the dehydrator 57, and then subjected to fluidized bed preliminary reduction. It is sent to the furnace 6 as a raw material. The exhaust gas is diffused from the diffusion tower 54.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらの還元鉄粉回収装置にふいても、次のよ
うな問題点がある。すなわち、第6図の装置においては
、バッグフィルター52の許容耐熱温度が200 ℃程
度と低いために、バッグフィルター52の入側の排ガス
温度を200 ℃程度以下にする必要があり、このため
に、第6図に示すように、サイクロン51とバッグフィ
ルター52の間に熱交換器53を設置して、排ガス温度
を下げてからバッグフィルター52を通すようにしてい
る。しかし、サイクロン51とバッグフィルター52の
間に熱交換器53を設置した場合は、排ガス中にまだ還
元鉄粉を多く含んだ状態であるので、伝熱管の内壁に鉄
粉が付着して伝熱管の閉塞が生じ易く、そのうえ、熱伝
達率が低(、排ガス顕熱の回収率が低いという問題があ
る。また、熱交換器53を設置しない場合は、別途冷却
手段により排ガス温度を下げてからバッグフィルター5
2を通さなければならないが、この場合は排ガス顕熱の
回収がほとんど行われない。
However, these reduced iron powder recovery devices still have the following problems. That is, in the apparatus shown in FIG. 6, since the allowable heat-resistant temperature of the bag filter 52 is as low as about 200°C, it is necessary to keep the exhaust gas temperature at the inlet side of the bag filter 52 below about 200°C. As shown in FIG. 6, a heat exchanger 53 is installed between the cyclone 51 and the bag filter 52 to lower the temperature of the exhaust gas before passing it through the bag filter 52. However, when the heat exchanger 53 is installed between the cyclone 51 and the bag filter 52, the exhaust gas still contains a large amount of reduced iron powder, so the iron powder adheres to the inner walls of the heat exchanger tubes. In addition, there is a problem that the heat transfer coefficient is low (and the recovery rate of exhaust gas sensible heat is low.In addition, if the heat exchanger 53 is not installed, the exhaust gas temperature must be lowered by a separate cooling means. bag filter 5
2, but in this case, the sensible heat of the exhaust gas is hardly recovered.

また、第7図の装置においては、湿式集塵であるので耐
熱温度の問題はないが、還元鉄粉は水と共に回収される
ので、鉄粉は水と大気に接触して再び酸化し、鉄鉱石粉
と同じく流動層予備還元炉6の原料としてしか使用でき
ない。また、シックナー56.脱水機57.成形機(図
示省略)等を必要と子るので、これらの設備費用が高く
なり、そのうえ、排ガスの顕熱を回収できないという問
題がある。
In addition, in the device shown in Figure 7, there is no problem with the heat resistance temperature because it is a wet dust collector, but since the reduced iron powder is recovered together with water, the iron powder comes into contact with water and the atmosphere and oxidizes again, causing iron ore to be removed. Like stone powder, it can only be used as a raw material for the fluidized bed pre-reduction furnace 6. Also, thickener 56. Dehydrator57. Since a molding machine (not shown) and the like are required, the cost of these equipment increases, and there is also the problem that the sensible heat of the exhaust gas cannot be recovered.

そこで、本発明は、鉄鉱石予備還元装置において、高温
の排ガスから還元鉄粉を回収することによって、還元鉄
粉の回収率と排ガス顕熱の回収率を共に向上させること
を目的とする。
Therefore, an object of the present invention is to improve both the recovery rate of reduced iron powder and the recovery rate of exhaust gas sensible heat by recovering reduced iron powder from high-temperature exhaust gas in an iron ore preliminary reduction device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の鉄鉱石予備還元装置の還元鉄粉回収装置は、そ
の目的を達成するため、溶融還元設備における鉄鉱石予
備還元装置の、流動層予備還元炉の排出ガス出側にサイ
クロンを設け、該サイクロンの下流側にセラミックフィ
ルターを用いた濾過装置を設けたことを特徴とする。
In order to achieve the purpose of the reduced iron powder recovery device of the iron ore pre-reduction device of the present invention, a cyclone is provided on the exhaust gas outlet side of the fluidized bed pre-reduction furnace of the iron ore pre-reduction device in the smelting reduction equipment. It is characterized by a filtration device using a ceramic filter installed downstream of the cyclone.

ここで、前記セラミックフィルターとしては、セラミッ
ク粒子を管状に成形して焼成した管状多孔質体、あるい
は、セラミックフィバ−を管状に積層した管状vA椎体
を用いることができる。
Here, as the ceramic filter, a tubular porous body made by molding and firing ceramic particles into a tubular shape, or a tubular vA vertebral body made by laminating ceramic fibers in a tubular shape can be used.

〔作用〕[Effect]

本発明においては、流動層予備還元炉からの排出ガスに
含有されている還元鉄粉の、比較的大きい粒子をサイク
ロンで捕集し、小さい粒子をセラミックフィルターを用
いた濾過装置で捕集して回収する。
In the present invention, relatively large particles of reduced iron powder contained in the exhaust gas from the fluidized bed pre-reduction furnace are collected by a cyclone, and small particles are collected by a filtration device using a ceramic filter. to recover.

通常のセラミック成形体あるいはセラミックフィバ−の
耐熱温度は1000℃より高く、一方、流動層予備還元
炉からの排出ガスの温度は1000℃以下であるから、
セラミックフィルターを用いた濾過装置においては、高
温の排出ガスをそのまま通過させて、含有されている還
元鉄粉を回収することができる。そして、回収した還元
鉄粉は全量を溶融還元炉に供給できる。また、濾過装置
をでた後の排出ガスは高温を保ったままであるので、熱
交換器により顕熱を回収することによって、熱回収率を
高めることができる。
The heat resistance temperature of ordinary ceramic compacts or ceramic fibers is higher than 1000°C, while the temperature of the exhaust gas from the fluidized bed pre-reduction furnace is below 1000°C.
In a filtration device using a ceramic filter, the reduced iron powder contained therein can be recovered by allowing the high-temperature exhaust gas to pass through as it is. The entire amount of the recovered reduced iron powder can be supplied to the melting reduction furnace. Further, since the exhaust gas remains at a high temperature after leaving the filter, the heat recovery rate can be increased by recovering sensible heat using a heat exchanger.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

第1図は本発明実施例の溶融還元設備の概略構成を示す
図である。なお、同図において、第5図に示したものと
同じ装置は同じ符番で゛指示した。
FIG. 1 is a diagram showing a schematic configuration of a melting reduction facility according to an embodiment of the present invention. In this figure, the same devices as those shown in FIG. 5 are designated with the same reference numerals.

本実施例においては、流動層予備還元炉6の排出ガス出
側にサイクロン10を設置し、このサイクロン10の排
出ガス出側にセラミックフィルターを用いた濾過装置1
1を設置している。そして、濾過装置11と放散塔13
の間に熱交換器12を設置して、濾過装置11からの排
出ガスの顕熱を回収している。
In this embodiment, a cyclone 10 is installed on the exhaust gas outlet side of the fluidized bed preliminary reduction furnace 6, and a filtration device 1 using a ceramic filter is installed on the exhaust gas outlet side of the cyclone 10.
1 is installed. Then, the filtration device 11 and the stripping tower 13
A heat exchanger 12 is installed between them to recover the sensible heat of the exhaust gas from the filtration device 11.

ここで、サイクロン10は第6図で述べたサイクロン5
1と同様な装置であり、このサイクロン10で粒子径が
0.3mm程度以上の還元鉄粉を回収する。
Here, cyclone 10 is cyclone 5 described in FIG.
This cyclone 10 is a device similar to No. 1, and this cyclone 10 collects reduced iron powder having a particle size of about 0.3 mm or more.

濾過装置11はセラミックフィルターを内蔵し、サイク
ロン10で回収できなかった小さな還元鉄粉を回収する
装置である。
The filtration device 11 has a built-in ceramic filter and is a device for recovering small reduced iron powder that could not be recovered by the cyclone 10.

濾過装置11に用いるセラミックフィルターとしては、
たとえば、コージライト、ムライト、炭化けい素等のセ
ラミック粒子を管状に成形して焼成した管状多孔質体(
以下、セラミック多孔質体という)を用いることができ
る。また、たとえば、AA’i0a・5102系、炭素
系等のセラミックフィバ−を管状に積層した管状u!i
椎体(以下、セラミック繊維体という)を用いることも
できる。
As the ceramic filter used in the filtration device 11,
For example, a tubular porous body (
(hereinafter referred to as a ceramic porous body) can be used. Also, for example, a tubular u! i
A vertebral body (hereinafter referred to as a ceramic fiber body) can also be used.

第2図はセラミックフィルターとしてセラミック多孔質
体を用いた濾過装置11の構造例を示す概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing a structural example of a filter device 11 using a ceramic porous body as a ceramic filter.

濾過装置11は、缶体31と、この缶体31内に取り付
けたセラミック多孔質体32と、サイクロン10からの
排出ガスを缶体31内に導入する導入管33、及び、セ
ラミック多孔質体32で濾過後のガスを排出する排出管
34とを主要な構成とする。
The filtration device 11 includes a can body 31 , a ceramic porous body 32 attached to the can body 31 , an introduction pipe 33 for introducing exhaust gas from the cyclone 10 into the can body 31 , and the ceramic porous body 32 The main structure is a discharge pipe 34 for discharging the filtered gas.

セラミック多孔質体32は、たとえば、コージライトの
均質粒子を管状に成形し、これを高温で焼成したものを
用いる。本実施例では、外径170 mm。
The ceramic porous body 32 is made by, for example, forming homogeneous cordierite particles into a tube shape and firing the tube at a high temperature. In this example, the outer diameter is 170 mm.

内径140 mmで長さ1500mmの短管を3本、管
軸方向に接続具35で接続した多孔質体を、上部を支持
具36により支持し、下部は仕切り板37によって支持
して、缶体31内に取り付けた。なお、このセラミック
多孔質体32は缶体31の大きさにより複数本を並列し
て設けることができる。また、本実施例では、セラミッ
ク多孔質体32を基材と濾過材の2層構造とした。そし
て、セラミック多孔質体32の内面側を気孔径が数pの
濾過材とし、外面側を気孔径が100〜200u!nの
基材とした。本実施例の場合、サイクロン10からの排
出ガスは、導入管33の下部からセラミック多孔質体3
2内に導入され、同セラミック多孔質体32の濾過材及
び基材を通過して、排出管34から排出される。そして
、ガスがセラミック多孔質体32の濾過材を通過すると
きに含有する還元鉄粉が濾過される。ここで、連続的に
ガスの濾過が行われると、時間の経過と共にセラミック
多孔質体32内面への還元鉄粉の付着が多くなってくる
。そこで、適当な時間間隔で、セラミック多孔質体32
を逆洗する。この逆洗作業は、たとえば、6〜20分間
隔で、ガスヘッダ38から缶体31内に高圧の窒素ガス
を短時間(1秒以内)噴射する。
A porous body consisting of three short tubes each having an inner diameter of 140 mm and a length of 1500 mm connected in the tube axis direction with a connector 35 is supported at the upper part by a supporter 36 and at the lower part by a partition plate 37 to form a can body. Installed in 31. Note that a plurality of ceramic porous bodies 32 can be provided in parallel depending on the size of the can body 31. Furthermore, in this embodiment, the ceramic porous body 32 has a two-layer structure of a base material and a filter material. Then, the inner surface of the ceramic porous body 32 is used as a filter material with a pore diameter of several micrometers, and the outer surface has a pore diameter of 100 to 200 μ! It was used as a base material of n. In the case of this embodiment, the exhaust gas from the cyclone 10 is passed through the ceramic porous body 3 from the lower part of the introduction pipe 33.
2, passes through the filter material and base material of the ceramic porous body 32, and is discharged from the discharge pipe 34. Then, when the gas passes through the filtering material of the ceramic porous body 32, the contained reduced iron powder is filtered out. Here, if gas filtration is performed continuously, the amount of reduced iron powder attached to the inner surface of the ceramic porous body 32 increases with the passage of time. Therefore, at appropriate time intervals, the ceramic porous body 32
backwash. In this backwashing operation, high-pressure nitrogen gas is injected from the gas header 38 into the can body 31 for a short period of time (within 1 second), for example, at intervals of 6 to 20 minutes.

この逆洗ガスの噴射により、濾過面に付着した還元鉄粉
は下方に落下する。落下した還元鉄粉39は図示しない
搬送経路により溶融還元炉7に供給される。
Due to the injection of this backwashing gas, the reduced iron powder adhering to the filter surface falls downward. The fallen reduced iron powder 39 is supplied to the smelting reduction furnace 7 through a conveyance path (not shown).

なお、第2図に示した濾過装置11は、管状のセラミッ
ク多孔質体32の内部から外部にガスを通過させて濾過
する形式のものであるが、これとは逆に、セラミック多
孔質体32の外部から内部にガスを通過させて濾過する
形式としてもよい。この場合は、セラミック多孔質体3
2の外面側を濾過材とし、内面側を基材として、第2図
の導入管33から導入されたガスを同図の缶体31内を
経由してセラミック多孔質体32の外面側から内面側に
通過させ、濾過後のガスはセラミック多孔質体32の上
部に連設した排出管から排出させるようにする。そして
、逆洗は、セラミック多孔質体32の上部から同セラミ
ック多孔質体32内に窒素ガスを噴射する。
Note that the filtration device 11 shown in FIG. 2 is of a type that filters gas by passing it from the inside of the tubular ceramic porous body 32 to the outside. It is also possible to filter the gas by passing it from the outside to the inside. In this case, the ceramic porous body 3
The outer surface of the ceramic porous body 32 is used as a filter material, and the inner surface is used as a base material, and the gas introduced from the introduction pipe 33 in FIG. The filtered gas is discharged from an exhaust pipe connected to the upper part of the ceramic porous body 32. In backwashing, nitrogen gas is injected into the ceramic porous body 32 from above the ceramic porous body 32 .

第3図はセラミック繊維体を示す斜視図であり、第4図
は同セラミック磯維体の配設状態を示す斜視図である。
FIG. 3 is a perspective view showing the ceramic fiber body, and FIG. 4 is a perspective view showing the arrangement state of the ceramic fiber body.

セラミック繊維体41は、第3図に示すように、セラミ
ックフィバ−を積層したブランケット状のものを、たと
えば、ステンレス鋼の支持枠42を用いて筒状に形成し
たものである。このセラミック繊維体41の長尺体また
は短尺体を接続したものを、第4図に示すように、缶体
(第2図参照)内に適当本数を並列に、支持具43等を
用いて取り付ける。なお、図中44は逆洗用ガスの配管
である。
As shown in FIG. 3, the ceramic fiber body 41 is a blanket-like body made of laminated ceramic fibers formed into a cylindrical shape using a support frame 42 made of stainless steel, for example. As shown in FIG. 4, an appropriate number of connected long or short ceramic fiber bodies 41 are installed in parallel inside a can body (see FIG. 2) using a support 43 or the like. . Note that 44 in the figure is a backwashing gas pipe.

濾過装置11で、セラミック多孔質体32あるいはセラ
ミック繊維体41をフィルターとして使用するときは、
セラミックの耐熱温度が1000℃以上あるので、サイ
クロン10からの排出ガスを冷却することなく、高温の
ままで濾過装置11を通すことができる。このため、還
元鉄粉の回収率は従来のバッグフィルターと同様に高く
、最終的に放散塔13から放散されるガス中の粉塵を少
な(した濾過装置11が得られる。しかもセラミックフ
ィルターの寿命は従来のバッグフィルターに比較して数
倍から十数倍長く、濾過装置11のランニングコストも
低減される。また、濾過装置11で還元鉄粉を回収した
後で熱交換器12により排出ガスの顕熱を回収するので
、熱交換器12の伝熱管の閉塞がなく、熱回収率も高く
、全体として熱効率が高い鉄鉱石予備還元装置が得られ
る。
When using the ceramic porous body 32 or the ceramic fiber body 41 as a filter in the filtration device 11,
Since the ceramic has a heat resistance temperature of 1000° C. or more, the exhaust gas from the cyclone 10 can be passed through the filtration device 11 at a high temperature without being cooled. For this reason, the recovery rate of reduced iron powder is as high as that of conventional bag filters, and it is possible to obtain a filtration device 11 with less dust in the gas finally emitted from the dispersion tower 13.Moreover, the lifespan of the ceramic filter is It is several times to ten times longer than a conventional bag filter, and the running cost of the filtration device 11 is also reduced.Furthermore, after the reduced iron powder is recovered in the filtration device 11, the heat exchanger 12 is used to collect the exhaust gas. Since heat is recovered, there is no clogging of the heat exchanger tubes of the heat exchanger 12, the heat recovery rate is high, and an iron ore pre-reduction device with high overall thermal efficiency can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の鉄鉱石予備還元装置に
おいては、流動層予備還元炉からの排出ガス中に含まれ
る還元鉄粉を、サイクロン及びサイクロンの後段に設け
たセラミックフィルター使用の濾過装置により回収する
ようにした。このため、従来の乾式集塵方式と同様な高
い回収率で還元鉄粉を回収できて還元鉱の歩留りを高く
することができる。そして、濾過装置により還元鉄粉を
回収した後に熱交換器で排出ガスの顕熱回収を行う際に
、伝熱管が閉塞することもなく、高い熱回収率が得られ
、最終的に放散塔から放散されるガスの温度を低く、ガ
ス中の粉塵も少なくすることができる。また、従来の乾
式集塵方式に比較して濾過装置の寿命が長く、しかも、
排出ガスの顕熱を回収して、全体として熱効率が高い鉄
鉱石予備還元装置が得られる。また、従来の湿式集塵方
式に比較して、設備費用を大幅に低減することができる
As explained above, in the iron ore pre-reduction apparatus of the present invention, the reduced iron powder contained in the exhaust gas from the fluidized bed pre-reduction furnace is removed by a filtration device using a cyclone and a ceramic filter installed after the cyclone. It is now possible to collect it by Therefore, reduced iron powder can be recovered at a high recovery rate similar to that of the conventional dry dust collection method, and the yield of reduced ore can be increased. When the heat exchanger recovers the sensible heat of the exhaust gas after recovering the reduced iron powder using the filtration device, the heat exchanger tubes do not become clogged and a high heat recovery rate is obtained. The temperature of the emitted gas can be lowered and the amount of dust in the gas can be reduced. In addition, the life of the filtration device is longer than that of conventional dry dust collection methods, and
By recovering the sensible heat of the exhaust gas, an iron ore pre-reduction device with high overall thermal efficiency can be obtained. Additionally, equipment costs can be significantly reduced compared to conventional wet dust collection methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の溶融還元設備の概略構成を示す
図、第2図はセラミック多孔質体を用いた濾過装置の構
造例を示す概略断面図、第3図はセラミック繊維体を示
す斜視図、第4図は同セラミック繊維体の配設状態を示
す斜視図、第5図は従来の溶融還元設備の構成例を示す
図、第6図及び第7図は従来の還元鉄粉回収装置の例を
示す図である。 1:鉄鉱石       2:石灰石 3:石炭        1a、 2a、 3a:ホッ
パ−4:空気        5:流動層予熱炉6:流
動層予備還元炉  7:溶融還元炉8:還元ガス   
   9:酸素 10:サイクロン    11:濾過装置12:熱交換
器     13:放散塔20:鉄浴       2
1:排ガス煙道22:配管       23:サイク
ロン24、25c、 25d、 25e: = +L 
−7チツクフイーダー25:粒子循環装置   25a
:サイクロン25b:ホッパ−26,27:搬送経路3
1:缶体       32:セラミック多孔質体33
:導入管      34:排出管35:接続具   
   36:支持具37:仕切り板     38:ガ
スヘッダ39:還元鉄粉     41:セラミック繊
維体42:支持枠      43:支持具44:配管
       51:サイクロン52:バッグフィルタ
ー 53:熱交換器54:放散塔      55:湿
式集塵機56:シックナー    57=脱水機特許出
願人    新日本製鐵 株式會社代  理  人  
    小  堀   益 (ほか2名)第1図 第3図 −1を 第2図 ↓ 第4図 第5図 第6図 第7図
Fig. 1 is a diagram showing a schematic configuration of a melt reduction equipment according to an embodiment of the present invention, Fig. 2 is a schematic sectional view showing an example of the structure of a filtration device using a ceramic porous body, and Fig. 3 is a diagram showing a ceramic fiber body. FIG. 4 is a perspective view showing the arrangement of the ceramic fiber body, FIG. 5 is a diagram showing an example of the configuration of a conventional smelting reduction equipment, and FIGS. 6 and 7 are a diagram showing a conventional method for recovering reduced iron powder. It is a figure showing an example of a device. 1: Iron ore 2: Limestone 3: Coal 1a, 2a, 3a: Hopper 4: Air 5: Fluidized bed preheating furnace 6: Fluidized bed pre-reduction furnace 7: Melting reduction furnace 8: Reducing gas
9: Oxygen 10: Cyclone 11: Filtration device 12: Heat exchanger 13: Stripping tower 20: Iron bath 2
1: Exhaust gas flue 22: Piping 23: Cyclone 24, 25c, 25d, 25e: = +L
-7 Chick feeder 25: Particle circulation device 25a
: Cyclone 25b: Hopper 26, 27: Conveyance route 3
1: Can body 32: Ceramic porous body 33
:Inlet pipe 34:Outlet pipe 35:Connector
36: Support 37: Partition plate 38: Gas header 39: Reduced iron powder 41: Ceramic fiber body 42: Support frame 43: Support 44: Piping 51: Cyclone 52: Bag filter 53: Heat exchanger 54: Emission tower 55: Wet type dust collector 56: Thickener 57 = Dehydrator Patent applicant Nippon Steel Corporation Representative Director
Masu Kobori (and 2 others) Figure 1 Figure 3-1 to Figure 2 ↓ Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、溶融還元設備における鉄鉱石予備還元装置の、流動
層予備還元炉の排出ガス出側にサイクロンを設け、該サ
イクロンの下流側にセラミックフィルターを用いた濾過
装置を設けたことを特徴とする鉄鉱石予備還元装置の還
元鉄粉回収装置。 2、請求項1記載のセラミックフィルターが、セラミッ
ク粒子を管状に成形して焼成した管状多孔質体である鉄
鉱石予備還元装置の還元鉄粉回収装置。 3、請求項1記載のセラミックフィルターが、セラミッ
クフィバーを管状に積層した管状繊維体である鉄鉱石予
備還元装置の還元鉄粉回収装置。
[Claims] 1. A cyclone is provided on the exhaust gas outlet side of the fluidized bed pre-reduction furnace of the iron ore pre-reduction device in the smelting reduction equipment, and a filtration device using a ceramic filter is provided downstream of the cyclone. A reduced iron powder recovery device for an iron ore preliminary reduction device, which is characterized by: 2. A reduced iron powder recovery device for an iron ore preliminary reduction device, wherein the ceramic filter according to claim 1 is a tubular porous body obtained by molding ceramic particles into a tubular shape and firing them. 3. A reduced iron powder recovery device for an iron ore preliminary reduction device, wherein the ceramic filter according to claim 1 is a tubular fibrous body in which ceramic fibers are laminated in a tubular shape.
JP7836488A 1988-03-30 1988-03-30 Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus Pending JPH01247522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7836488A JPH01247522A (en) 1988-03-30 1988-03-30 Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7836488A JPH01247522A (en) 1988-03-30 1988-03-30 Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus

Publications (1)

Publication Number Publication Date
JPH01247522A true JPH01247522A (en) 1989-10-03

Family

ID=13659947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7836488A Pending JPH01247522A (en) 1988-03-30 1988-03-30 Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus

Country Status (1)

Country Link
JP (1) JPH01247522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180414A (en) * 1989-12-11 1991-08-06 Kawasaki Steel Corp Apparatus for circulating fluidized bed
JPH03183709A (en) * 1989-12-12 1991-08-09 Kawasaki Steel Corp Smelting reduction apparatus
JPH03183712A (en) * 1989-12-12 1991-08-09 Kawasaki Steel Corp Fluidized bed apparatus
JPH03229809A (en) * 1990-02-02 1991-10-11 Nkk Corp Device for preventing clogging of iron ore discharging pipe in pre-reduction furnace in smelting reduction equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180414A (en) * 1989-12-11 1991-08-06 Kawasaki Steel Corp Apparatus for circulating fluidized bed
JPH03183709A (en) * 1989-12-12 1991-08-09 Kawasaki Steel Corp Smelting reduction apparatus
JPH03183712A (en) * 1989-12-12 1991-08-09 Kawasaki Steel Corp Fluidized bed apparatus
JPH03229809A (en) * 1990-02-02 1991-10-11 Nkk Corp Device for preventing clogging of iron ore discharging pipe in pre-reduction furnace in smelting reduction equipment

Similar Documents

Publication Publication Date Title
RU2124565C1 (en) Formation of fluidized bed for reduction of iron ore particles (versions) and method of reduction of iron ore particles (versions)
RU2121003C1 (en) Fluidized-bed assembly for reducing iron ore and iron ore-reduction process utilizing this apparatus
KR19980040225A (en) Method and apparatus for producing molten pig iron and molten steel pre-products
CN104271773B (en) Method and apparatus in the fluid bed that particulate material is joined fluid bed reduction unit
US4571259A (en) Apparatus and process for reduction of metal oxides
WO1998028449A1 (en) 3-stage fluidized bed type fine iron ore reducing apparatus having x-shaped circulating tubes
CN101445850A (en) Suspended secondary fast reduction process for iron-containing materials and device therefor
JPH01247522A (en) Apparatus for recovering reduced iron powder in iron ore pre-reducing apparatus
US6224649B1 (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
CZ292497A3 (en) Apparatus of the type three-stage fluidized bed furnace for reducing fine iron ore
AU705126B2 (en) Smelting-reduction apparatus, and method for producing molten pig iron using the smelting reduction apparatus
CN108660310A (en) A kind of Iron Ore Powder efficiently preheats prereduction device and technique
CN201381333Y (en) Iron-bearing material suspension two-stage fast reducing furnace
RU2119959C1 (en) Gear to melt small particles presenting mixture of incombustible substances with solid materials containing carbon and process of melting of small particles with usage of this gear
CN101792840B (en) Ferrous material injection reduction furnace and ferrous material injection reduction process
CN208748180U (en) A kind of Iron Ore Powder efficiently preheats prereduction device
CN101445851A (en) Suspended reduction process for iron-containing materials and device therefor
AT403696B (en) MELTING CARBURETTOR AND SYSTEM FOR THE PRODUCTION OF A METAL MELT
KR20000064874A (en) Production method of molten pig iron or molten iron
RU2170266C2 (en) Method of loading metal carriers into melting-and-gasifying apparatus and plant for realization of this method
US6132489A (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
US4788917A (en) Shaft furnace bypass system
RU2165984C2 (en) Method of charging metal carriers into melting-gasifying zone and plant for method embodiment
CN201381334Y (en) Iron-bearing material suspension reducing furnace
CN201762356U (en) Iron-containing material suspension and reduction device