JP2895684B2 - Method for producing Ni-Fe alloy core - Google Patents

Method for producing Ni-Fe alloy core

Info

Publication number
JP2895684B2
JP2895684B2 JP23147892A JP23147892A JP2895684B2 JP 2895684 B2 JP2895684 B2 JP 2895684B2 JP 23147892 A JP23147892 A JP 23147892A JP 23147892 A JP23147892 A JP 23147892A JP 2895684 B2 JP2895684 B2 JP 2895684B2
Authority
JP
Japan
Prior art keywords
alloy
core
magnetic
coating
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23147892A
Other languages
Japanese (ja)
Other versions
JPH0657439A (en
Inventor
景朗 北田
学 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16924127&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2895684(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP23147892A priority Critical patent/JP2895684B2/en
Publication of JPH0657439A publication Critical patent/JPH0657439A/en
Application granted granted Critical
Publication of JP2895684B2 publication Critical patent/JP2895684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、軟質磁性Ni−Fe
系合金の巻きコア、積層コア等のコアの製造方法の改良
に係り、合金薄帯表面に分解生成物をコーティングしゲ
ル化して層間絶縁膜を形成、機械加工後、所定昇温速度
で昇温し一定温度で保持する熱処理を行い、有機物の残
存をなくして磁気特性の劣化を防止したNi−Fe系合
金コアの製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a soft magnetic Ni--Fe
In connection with the improvement of the method of manufacturing cores such as wound cores and laminated cores of base alloys, the decomposition products are coated on the surface of the alloy ribbon and gelled to form an interlayer insulating film. After machining, the temperature is raised at a predetermined rate. The present invention also relates to a method for producing a Ni—Fe alloy core in which heat treatment is performed at a constant temperature to remove organic substances and prevent deterioration of magnetic properties.

【0002】[0002]

【従来の技術】軟質磁性Ni−Fe系合金は高透磁率を
有し、その薄帯は弱電用を中心とする鉄心材料として大
量に用いられている。Ni−Fe系合金は、従来一般に
広幅薄コイルをスリットして最終幅のコイルに分割され
た後、巻き加工あるいは打抜加工、さらに曲げ、絞り加
工等によって、最終形状にした後、1000℃〜130
0℃の温度に加熱して、内部歪を除去すると共に薄帯中
の不純物を除去する磁性焼鈍を行い、磁心材料として種
々の機器に組込まれている。
2. Description of the Related Art Soft magnetic Ni--Fe alloys have a high magnetic permeability, and thin ribbons thereof are used in large quantities as core materials mainly for weak electricity. Conventionally, a Ni-Fe-based alloy is generally cut into a coil having a final width by slitting a wide and thin coil, and then winding or punching, further bending, drawing, or the like to obtain a final shape. 130
It is heated to a temperature of 0 ° C. and subjected to magnetic annealing to remove internal strain and impurities in the ribbon, and is incorporated in various devices as a magnetic core material.

【0003】前記Ni−Fe系合金コアを製造する場
合、Ni−Fe系合金薄帯間に層間絶縁被膜を施すこと
により、交流磁気特性を向上することができるため、薄
帯表面に層間絶縁のために被膜を形成することが不可欠
である。
When the above-mentioned Ni-Fe alloy core is manufactured, an AC magnetic characteristic can be improved by providing an interlayer insulating film between the Ni-Fe alloy ribbons. Therefore, it is essential to form a coating.

【0004】従来、Ni−Fe系合金薄帯の層間絶縁及
び耐食性向上のため、Ni−Fe系合金薄帯表面にAl
23、MgO等の金属酸化物微粉を溶剤に分散させて塗
布したり、あるいは樹脂を被覆する方法が知られてい
る。
[0004] Conventionally, in order to improve the interlayer insulation and corrosion resistance of a Ni-Fe alloy ribbon, the surface of the Ni-Fe alloy ribbon is coated with Al.
There is known a method in which metal oxide fine powder such as 2 O 3 or MgO is dispersed in a solvent and applied, or a resin is coated.

【0005】[0005]

【発明が解決しようとする課題】金属酸化物微粉を溶剤
に分散させて塗布する方法では形成される被膜の密着性
が悪く、また樹脂を被覆する方法では樹脂の耐熱温度が
低いため、磁性焼鈍の際に、薄帯の焼付を生じたり、ま
た樹脂中の有機物の分解除去が困難で、Ni−Fe系合
金薄帯の磁気特性を劣下させる問題があった。
In the method in which the metal oxide fine powder is dispersed in a solvent and applied, the adhesion of the formed film is poor. In the method of coating the resin, the heat resistance temperature of the resin is low. In this case, there is a problem that the ribbon is burned, and it is difficult to decompose and remove the organic matter in the resin, thereby deteriorating the magnetic characteristics of the Ni—Fe alloy ribbon.

【0006】そこで、Ni−Fe系合金薄帯表面に絶縁
被膜として金属アルコキシド基またはアルコキシル基の
1つ以上有する有機金属化合物からなる被膜を被覆する
方法が提案(特開昭63−121670号公報)されて
いる。
In view of the above, a method has been proposed in which an Ni—Fe-based alloy ribbon surface is coated with a coating made of an organometallic compound having at least one of a metal alkoxide group or an alkoxyl group as an insulating coating (JP-A-63-121670). Have been.

【0007】しかし、有機金属化合物からなる被膜を被
覆する方法は、薄帯表面に被覆された有機金属化合物を
加水分解して、得られた分解生成物ゾルを400℃以下
にて乾燥してゲル化した後、磁性焼鈍してNi−Fe系
合金薄帯化するため、乾燥処理後、被膜中には有機物が
残存し、磁性焼鈍時に前記有機物がコア中に滲炭化し
て、磁気特性の劣下を招来する問題があった。
[0007] However, the method of coating a coating made of an organometallic compound is to hydrolyze the organometallic compound coated on the surface of the ribbon, and to dry the obtained decomposition product sol at 400 ° C or lower to form a gel. after ized, order to Ni-Fe-based alloy ribbon by being magnetic annealing, after drying process during the coating remains organic matter, and syntan of the organic material in the core during magnetic annealing, magnetic properties There was a problem of inferiority.

【0008】この発明は、薄帯表面に絶縁被膜として有
機金属化合物からなる被膜を被覆する方法において、被
膜中に有機物を残存させず、磁気特性の劣下を防止でき
るNi−Fe系合金コアの製造方法の提供を目的として
いる。
According to the present invention, there is provided a method for coating a thin-film surface with a coating made of an organometallic compound as an insulating coating, wherein an organic substance does not remain in the coating and a magnetic property of the Ni-Fe alloy core can be prevented from deteriorating. The purpose is to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】発明者は、絶縁被膜中に
有機物を残存させない方法について種々検討した結果、
Ni−Fe系合金コアの製造工程の乾燥工程と磁性焼鈍
工程の間において、特定温度での特定の昇温速度にて加
熱して、特定温度にて熱処理することにより、得られる
Ni−Fe系合金コアの磁性焼鈍後の磁気特性は一段
上改善することを知見した。
Means for Solving the Problems The present inventors have conducted various studies on methods for preventing organic substances from remaining in an insulating film, and as a result,
Between the drying step and the magnetic annealing step in the manufacturing process of the Ni—Fe alloy core, the Ni—Fe alloy obtained by heating at a specific temperature rising rate at a specific temperature and performing heat treatment at a specific temperature. magnetic properties after magnetic annealing of the alloy core is a single stage
Was found that the improvement on the improvement.

【0010】この発明は、最終幅に切断された清浄表面
を有するNi−Fe系合金薄帯の少なくとも1主面に被
着された金属アルコキシル基あるいはアルコキシド基を
少なくとも1つ以上含む有機金属化合物を加水分解し
て、分解生成物をコーティングした後、乾燥によりゲル
化した膜厚0.3μm〜30μmの層間絶縁膜を形成
後、所定形状、寸法に巻き加工、あるいは打抜加工を行
い、その後、200℃〜600℃の間を昇温速度1℃/
分〜5℃/分で昇温して、600℃で少なくとも1時間
以上保持の熱処理を行い、さらに磁性焼鈍を行うことを
特徴とするNi−Fe系合金コアの製造方法である。
According to the present invention, there is provided an organometallic compound having at least one metal alkoxyl group or alkoxide group adhered to at least one principal surface of a Ni-Fe alloy ribbon having a clean surface cut to a final width. After being hydrolyzed and coated with the decomposition product, after forming an interlayer insulating film having a film thickness of 0.3 μm to 30 μm gelled by drying, winding or punching into a predetermined shape and dimensions is performed. Heating rate 1 ° C / 200 ° C to 600 ° C
This is a method for producing a Ni—Fe-based alloy core, characterized in that the temperature is raised at a rate of 5 to 5 ° C./min, heat treatment is performed at 600 ° C. for at least one hour, and magnetic annealing is performed.

【0011】この発明において、Ni−Fe系合金は公
知のいずれの組成でもよいが、高透磁率のコア材を製造
するためには40%〜90%Ni含有のNi−Fe合金
が好ましく、添加元素として、Mo、Cu、Co、S
i、Cr、Mn、B、V、Nb、Ti等の1種または2
種以上を含有してもよい。また、Ni−Fe系合金薄帯
の寸法は厚さ0.01mm〜5mmでよく、また、板幅
については最終製品によって適宜、選定すれば良い。
In the present invention, the Ni-Fe alloy may have any known composition. However, in order to produce a core material having a high magnetic permeability, a Ni-Fe alloy containing 40% to 90% Ni is preferable. Mo, Cu, Co, S as elements
one or two of i, Cr, Mn, B, V, Nb, Ti, etc.
It may contain more than one species. The dimensions of the Ni-Fe alloy ribbon may be 0.01 mm to 5 mm in thickness, and the width of the sheet may be appropriately selected depending on the final product.

【0012】この発明において、最終幅にスリット加工
した清浄表面を有する薄帯の少なくとも1主面に被覆す
る層間絶縁被膜に用いられる有機金属化合物としては、
下記一般化学式1式、2式にて表される金属アルコキシ
ル基、若しくはアルキシド基の1つ以上有する有機金属
化合物の群から選ばれる少なくとも1種がある。また、
前記有機金属化合物を加水分解して、アルコキシド基か
水酸基に置換して分解生成物ゾルに変化し、その後の乾
燥、すなわち脱水縮合によりゲル化した反応式を3式、
4式に表す。
In the present invention, the organometallic compound used for the interlayer insulating film covering at least one principal surface of the ribbon having a clean surface slit to the final width includes:
There is at least one selected from the group of organometallic compounds having one or more metal alkoxyl groups or alkoxide groups represented by the following general chemical formulas 1 and 2. Also,
The reaction formula in which the organometallic compound is hydrolyzed, substituted with an alkoxide group or a hydroxyl group to change into a decomposition product sol, and then dried, that is, gelled by dehydration condensation, is expressed by the following three formulas.
It is expressed by Equation 4.

【0013】[0013]

【化1】 Embedded image

【0014】上記式において、Mは放射性元素を除く金
属原子、または半金属原子を表す。またRは炭素数1〜
5のアルキル基、好ましくはアルコキシル基、フェニル
基を表す、アルキシル基としてはメトキシ基、エトキシ
基、プロポキシ基、ブトキシ基、ペントキシ基等が好ま
しい。
In the above formula, M represents a metal atom excluding a radioactive element or a metalloid atom. R has 1 to 1 carbon atoms.
The alkyl group preferably represents an alkyl group, preferably an alkoxyl group or a phenyl group, and the alkyl group is preferably a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group or the like.

【0015】金属アルコキシル基の有機化合物として
は、以下のものがある。 アルミニウムエチレート Al(OC253 アルミニウムイソプロピレート Al(OCH(CH
32〕 モノSecーブトキシアルミニウムプロピレート Al〔OCH(CH322〔OCH(CH3)〕(CH
2CH3) アルミニウムイプトキシ Al(OC493 マグネシウムソチラート Mg(OCH2) マグネシウムエチラート Mg(OC252
The following are examples of the organic compound of the metal alkoxyl group. Aluminum ethylate Al (OC 2 H 5 ) 3 aluminum isopropylate Al (OCH (CH
3 ) 2 ] mono Sec butoxy aluminum propylate Al [OCH (CH 3 ) 2 ] 2 [OCH (CH 3 )] (CH
2 CH 3 ) Aluminum Iptoxy Al (OC 4 H 9 ) 3 Magnesium Sotylate Mg (OCH 2 ) Magnesium Ethylate Mg (OC 2 H 5 ) 2

【0016】アルコキシド基の有機化合物としては、以
下のものがある。 アルミキレート化合物
The organic compounds of the alkoxide group include the following. Aluminum chelate compound

【0017】[0017]

【化2】 Embedded image

【0018】[0018]

【化3】 Embedded image

【0019】[0019]

【化4】 Embedded image

【0020】[0020]

【化5】 Embedded image

【0021】[0021]

【化6】 Embedded image

【0022】[0022]

【化7】 Embedded image

【0023】この発明において、前記有機金属化合物を
単独で用いてもよいが、複合して用いてもよい。前記有
機金属化合物は、N−ヘキサン、ベンゼン、トリクレ
ン、イソプロパノール等溶剤に濃度5wt%〜10wt
%溶解させるが、濃度5wt%未満では被膜厚が薄く
て、絶縁抵抗値が小さく、また濃度10wt%を超える
と被膜が厚すぎて、絶縁抵抗値は飽和して、コスト的に
好ましくない。
In the present invention, the organometallic compounds may be used alone or in combination. The organometallic compound is dissolved in a solvent such as N-hexane, benzene, trichlene, or isopropanol at a concentration of 5 wt% to 10 wt%.
However, if the concentration is less than 5 wt%, the coating thickness is small and the insulation resistance value is small, and if the concentration exceeds 10 wt%, the coating is too thick and the insulation resistance value is saturated, which is not preferable in terms of cost.

【0024】この発明において、前記有機金属化合物を
Ni−Fe系合金薄帯表面に被覆する方法としては、前
記の如く、有機金属化合物を有機溶媒中に濃度5wt%
〜10wt%溶解後、加水分解発生を防止するためN2
ガス等で空気を遮断して、薄帯を有機溶媒に浸漬した
後、有機金属化合物を加水分解させて、アルコキシド基
が水酸基に置換して得られた分解生成物ゾル中の溶剤を
蒸発させるため400℃以下で乾燥(脱水縮合)させ
て、膜厚0.3μm〜30μmの被膜を形成する。ま
た、この発明において、薄帯表面に有機金属化合物を被
覆する方法としては前記浸漬法の外にロールコーター、
デイブコーター、カーテンフローコーター等の方法にて
薄帯表面に被膜を均一に被覆することができる。また、
膜厚0.3μm未満では磁性焼鈍分離剤としての効果を
果たせなくなり、30μmを超えると占積率を損なう問
題がある。
In the present invention, as a method of coating the surface of the Ni—Fe alloy ribbon with the organic metal compound, as described above, the concentration of the organic metal compound in the organic solvent is 5 wt%.
After dissolution of 10 wt% to 10 wt%, N 2
After shielding the air with a gas or the like and immersing the ribbon in an organic solvent, the organometallic compound is hydrolyzed, and the alkoxide group is replaced with a hydroxyl group. The film is dried (dehydrated and condensed) at 400 ° C. or lower to form a film having a thickness of 0.3 μm to 30 μm. Further, in the present invention, as a method of coating the surface of the ribbon with the organometallic compound, in addition to the dipping method, a roll coater,
A thin film surface can be uniformly coated with a film by a method such as a dave coater or a curtain flow coater. Also,
If the thickness is less than 0.3 μm, the effect as a magnetic annealing separator cannot be achieved, and if it exceeds 30 μm, there is a problem that the space factor is impaired.

【0025】この発明において、乾燥により加水分解に
て得られた分解生成物ゾルのゲル化と共に有機溶剤は蒸
発するが、乾燥温度は400℃以下の短時間加熱で連続
的に行うことが好ましく、前記の分解生成物のゲル化に
より形成された被膜は大部分、酸化物であるが、その外
に水酸化物、水和物、1部有機溶剤が残存し、この有機
溶剤中の有機物が後続の磁性焼鈍によりNi−Fe系合
金薄帯の磁気特性上、著しく劣化するので、乾燥処理
後、200℃〜600℃間の昇温速度1℃/分〜5℃/
分で昇温し、600℃で少なくとも1時間以上保持の熱
処理を行うことが重要である。
In the present invention, the organic solvent evaporates with the gelation of the decomposition product sol obtained by hydrolysis by drying, but the drying is preferably carried out continuously by short-time heating at 400 ° C. or less, The film formed by the gelation of the above decomposition products is mostly oxides, but hydroxides, hydrates, and one part of organic solvent remain, and the organic matter in this organic solvent is The magnetic annealing significantly deteriorates the magnetic properties of the Ni—Fe alloy ribbon, so that after the drying treatment, the rate of temperature rise between 200 ° C. and 600 ° C. is 1 ° C./min.
It is important to raise the temperature in minutes and perform heat treatment at 600 ° C. for at least one hour.

【0026】熱処理条件を限定した理由は下記の通りで
ある。昇温温度が200℃未満では有機物は分解(燃
焼)されないので、有機物の除去は困難であり、600
℃を超えると有機物は分解(燃焼)除去されるが、反応
が激しく有機物の残留の問題がある。また、昇温速度が
1℃/分未満では分解除去には効果があるが、昇温時間
が長く不経済であり、5℃/分を超えると有機物の分解
(燃焼)が激しく完全除去が困難となるので好ましくな
い。熱処理時間が1時間未満では有機物の除去が困難で
あり、好ましい熱処理時間は1時間5時間である。
The reasons for limiting the heat treatment conditions are as follows. If the heating temperature is lower than 200 ° C., the organic matter is not decomposed (combusted), so it is difficult to remove the organic matter.
When the temperature exceeds ℃, organic matter is decomposed (burned) and removed, but there is a problem that the reaction is violent and the organic matter remains. If the rate of temperature rise is less than 1 ° C./min, it is effective for decomposition removal, but the temperature rise time is long and uneconomical, and if it exceeds 5 ° C./min, the decomposition (combustion) of organic matter is severe and complete removal is difficult. Is not preferred. If the heat treatment time is less than 1 hour, it is difficult to remove organic substances, and the preferable heat treatment time is 1 hour 5 hours.

【0027】[0027]

【作用】この発明は、Ni−Fe系合金コア薄帯表面に
絶縁被膜として有機金属酸化物からなる被膜を被覆する
に際して乾燥工程と磁性焼鈍工程の間において、特定温
度域で特定の昇温速度にて加熱して、特定温度にて熱処
理することにより、絶縁被膜中に有機物を残存させるこ
とがなく、極めて薄い被膜が均一に形成され、十分なる
層間絶縁性を有し、密着性、耐食性、耐熱性にすぐれ、
鉄心材料として、成形された場合においても、すぐれた
磁気特性を有し、安定したNi−Fe系合金コアを提供
できる。
The present invention relates to a method for coating a thin film of an organic metal oxide as an insulating film on a surface of a thin ribbon of a Ni--Fe alloy core, wherein a specific temperature range is specified between a drying step and a magnetic annealing step in a specific temperature range. By heating at a specific temperature, an organic material is not left in the insulating film, an extremely thin film is uniformly formed, and has a sufficient interlayer insulating property, adhesion, corrosion resistance, Excellent heat resistance,
As a core material, a stable Ni—Fe alloy core having excellent magnetic properties even when molded can be provided.

【0028】[0028]

【実施例】【Example】

実施例1 Ni77.9%、Mo4.6%、Cu3.3%含有のF
e合金からなる板厚0.05mmのNi−Fe系合金薄
帯を最終幅50mmにスリットし、プレス打抜加工によ
り外径45mm×内径33mm×厚み0.05mm寸法
のリング状に抜き加工し、トリクレンで脱脂、洗浄処理
した。得られたリングコアを10%Mg(OCH)2
−ヘキサン溶液中に浸漬後、溶剤を蒸発させて、加水分
解生成物のMg水酸化物、Mg水和物、Mg酸化物から
なる混合ゾルを350℃で乾燥させて、脱水縮合したゲ
ル被膜厚0.5μm/枚の被膜形成リングコアを得た。
その後、200℃〜600℃の間を昇温速度2℃/分で
昇温し、600℃で1時間保持して残有有機物を分解除
去した後、乾燥H2気流中で1100℃に3時間の磁性
焼鈍を施し20枚重ねた磁性焼鈍済のリングコア5個を
得た。各リングコアの磁気特性を測定してその結果を表
1に表す。なお、初比透磁率はH=5mOeでの値であ
る。
Example 1 F containing 77.9% of Ni, 4.6% of Mo, and 3.3% of Cu
A 0.05 mm thick Ni-Fe-based alloy ribbon made of e-alloy is slit to a final width of 50 mm, and is punched out into a ring shape having an outer diameter of 45 mm x an inner diameter of 33 mm x a thickness of 0.05 mm by press punching. It was degreased and washed with Triclean. The obtained ring core was made of 10% Mg (OCH) 2 N
-After immersion in a hexane solution, the solvent is evaporated, and a mixed sol composed of a hydrolysis product of Mg hydroxide, Mg hydrate, and Mg oxide is dried at 350 ° C., and the gel coating is dehydrated and condensed. A 0.5 μm / sheet film-formed ring core was obtained.
Thereafter, 200 ° C. to 600 was heated at a heating rate of 2 ° C. / min during ° C., after 1 hour hold to decompose the residual organic organics removal at 600 ° C., 3 hours 1100 ° C. in a dry of H 2 stream The magnetic annealing was performed to obtain five magnetically annealed ring cores of 20 sheets stacked. The magnetic properties of each ring core were measured and the results are shown in Table 1. The initial relative magnetic permeability is a value at H = 5 mOe.

【0029】実施例2 実施例1と同一のリングコアをトリクレンで脱脂、洗浄
処理後、リングコアを20%アルミニウムジイソプロポ
キシドエチルアセトアセテートキレートブタノール溶液
に浸漬し、その後、溶剤を蒸発させて、加水分解生成物
のAl水酸化物、Al水和物、Al酸化物からなる混合
ゾルを350℃で乾燥させて、脱水縮合した厚み0.7
μmの被膜を得た。その後、実施例1と同一条件にて熱
処理及び磁気焼鈍を行い、20枚重ねてリングコア5個
を得た。その後、磁気特性を実施例と同様に測定し、そ
の結果を表1に示す。
Example 2 The same ring core as in Example 1 was degreased with trichlene and washed, and then the ring core was immersed in a 20% aluminum diisopropoxide ethyl acetoacetate chelate butanol solution. A mixed sol composed of decomposition product Al hydroxide, Al hydrate, and Al oxide was dried at 350 ° C. and dehydrated and condensed to a thickness of 0.7.
A μm coating was obtained. Thereafter, heat treatment and magnetic annealing were performed under the same conditions as in Example 1, and twenty ring cores were stacked to obtain five ring cores. Thereafter, the magnetic properties were measured in the same manner as in the examples, and the results are shown in Table 1.

【0030】比較例3 実施例1と同一のリングコアをトリクレンで脱脂、清浄
処理後、リングコアを平均粒径0.2μmのアルミナ粉
メタノールスラリー溶液中に浸漬後、180℃で乾燥し
て、膜厚3μm/枚の被膜を有するリングコアを得た。
さらに、乾燥H2気流中で1100℃3時間の磁性焼鈍
を施し、20枚重ねのリングコア5個を得た。その後、
磁気特性を実施例1と同一条件にて測定し、その結果を
表1に示す。
Comparative Example 3 The same ring core as in Example 1 was degreased with trichlene and cleaned, then the ring core was immersed in an alumina powder methanol slurry having an average particle size of 0.2 μm, dried at 180 ° C. A ring core having a coating of 3 μm / sheet was obtained.
Further, magnetic annealing was performed at 1100 ° C. for 3 hours in a stream of dry H 2 to obtain five ring cores of 20 layers. afterwards,
The magnetic properties were measured under the same conditions as in Example 1, and the results are shown in Table 1.

【0031】比較例4 実施例1と同一のトリクレン脱脂剤リングコアを10%
Mg(OCH32N−ヘキサン溶液中に浸漬後、溶剤を
蒸発させて、加水分解生成物のMg水酸化物、Mg水和
物、Mg酸化物からなる混合ゾルを350℃で乾燥し
て、脱水縮合したゲル被膜厚は0.5μm/枚を得た、
さらに、直接、実施例1と同一条件の磁性焼鈍を行い、
20枚重ねたリングコア5個を得た。その後、磁気特性
を実施例1と同一条件にて測定し、その結果を表1に示
す。
Comparative Example 4 The same triclinic degreasing agent ring core as in Example 1 was used in an amount of 10%.
After immersion in a Mg (OCH 3 ) 2 N-hexane solution, the solvent is evaporated, and a mixed sol composed of a hydrolysis product of Mg hydroxide, Mg hydrate and Mg oxide is dried at 350 ° C. The thickness of the dehydrated and condensed gel coating was 0.5 μm / sheet.
Furthermore, magnetic annealing was performed directly under the same conditions as in Example 1,
Five ring cores obtained by stacking 20 pieces were obtained. Thereafter, the magnetic properties were measured under the same conditions as in Example 1, and the results are shown in Table 1.

【0032】実施例5 Ni77.8%、Mo4.6%含有のFe合金からなる
板厚0.05mm×板幅20mmのNi−Fe系合金の
冷延箔帯をトリクレン脱脂清浄後、層間絶縁被膜溶液と
してMg(OCH32の10ml%N−ヘキサン溶液中
に浸漬後、溶剤を蒸発させて、加水分解生成物のMg水
酸化物、Mg水和物、Mg酸化物からなる混合ゾルを3
50℃で乾燥させて、脱水縮合したゲル被膜厚0.5μ
mの被膜形成の外径21mm×内径14mm×幅20m
m寸法の巻きコアを得た。さらに、200℃〜600℃
の間を昇温速度2℃/分でN2雰囲気中で加熱し、60
0℃に3時間保持の熱処理を行い、その後、乾燥H2
流中で1100℃で3時間の磁性焼鈍を行い、巻きコア
100個を得た。その後、磁気特性を測定して、その結
果を表2に示す。
Example 5 A cold-rolled foil strip of a Ni-Fe alloy having a thickness of 0.05 mm and a width of 20 mm made of a Fe alloy containing 77.8% of Ni and 4.6% of Mo was subjected to tricren degreasing and cleaning, and then to an interlayer insulating film. After immersing in a 10 ml% N-hexane solution of Mg (OCH 3 ) 2 as a solution, the solvent was evaporated, and a mixed sol composed of a hydrolysis product of Mg hydroxide, Mg hydrate and Mg oxide was added to the solution.
Dry at 50 ° C and dehydrated condensed gel coating thickness 0.5μ
Outer diameter 21 mm x inner diameter 14 mm x width 20 m
An m-sized wound core was obtained. Further, 200 ° C to 600 ° C
Is heated in a N 2 atmosphere at a heating rate of 2 ° C./min.
Heat treatment was performed at 0 ° C. for 3 hours, and then magnetic annealing was performed at 1100 ° C. for 3 hours in a stream of dry H 2 to obtain 100 wound cores. Thereafter, the magnetic characteristics were measured, and the results are shown in Table 2.

【0033】実施例6 実施例5と同一材質、形状、寸法の被膜形成の巻きコア
を真空炉中で200℃〜600℃の間で昇温速度3℃/
分で加熱して、600℃に3時間保持の熱処理後、乾燥
2気流中で1100℃で3時間の磁性焼鈍を行い、巻
きコア100個を得た。磁気特性の測定結果を表2に示
す。
Example 6 A wound core having the same material, shape and dimensions as in Example 5 was formed in a vacuum furnace at a temperature rising rate of 3 ° C./200° C. to 600 ° C.
After heating at 600 ° C. for 3 hours and performing heat treatment at 600 ° C. for 3 hours, magnetic annealing was performed at 1100 ° C. for 3 hours in a dry H 2 stream to obtain 100 wound cores. Table 2 shows the measurement results of the magnetic characteristics.

【0034】比較例7 実施例5と同一材質、寸法のNi−Fe系合金冷延箔帯
をトリクレン脱脂洗浄後、平均粒径0.2μmのAl2
3粉をメチールアルコール中に分散させたスラリー中
に前記箔帯を浸漬後、180℃で乾燥させて、膜厚3μ
m〜5μmの層間絶縁被膜を形成した箔帯を連続的に巻
き加工して、実施例5と同一寸法の巻きコアを得た。得
られた巻きコアを乾燥H2気流中で1000℃で3時間
の磁性焼鈍を行い、その後、磁気特性を測定して、その
結果を表2に示す。
Comparative Example 7 A Ni-Fe alloy cold rolled foil strip having the same material and dimensions as in Example 5 was subjected to trichlene degreasing and washing, and then Al 2 having an average particle diameter of 0.2 μm.
After immersing the foil strip in a slurry in which O 3 powder is dispersed in methyl alcohol, the foil strip is dried at 180 ° C.
A foil strip on which an interlayer insulating film of m to 5 μm was formed was continuously wound to obtain a wound core having the same dimensions as in Example 5. The obtained wound core was subjected to magnetic annealing at 1000 ° C. for 3 hours in a stream of dry H 2 , and then the magnetic properties were measured. The results are shown in Table 2.

【0035】比較例8 実施例5と同一材質、寸法のNi−Fe系合金冷延箔帯
をトリクレン脱脂洗浄後、層間絶縁被膜溶液として、M
g(OCH32の10wt%N−ヘキサン溶液に浸漬
後、溶剤を蒸発させて、加水分解生成物のMg水酸化
物、Mg水和物、Mg酸化物からなる混合ゾルを350
℃で乾燥させて、脱水縮合したゲル被膜厚0.5μmの
被膜形成の実施例5と同一寸法の巻きコアを得た。その
後、直接乾燥した気流中で1100℃で3時間の磁性焼
鈍を行い、得られた巻きコアの磁気特性を表2に示す。
実施例より明らかな如く、この発明により直流磁気特
性、交流磁気特性が一段と改善向上すること明らかであ
る。
Comparative Example 8 A Ni-Fe alloy cold rolled foil strip having the same material and dimensions as in Example 5 was degreased and washed with trichlene, and then used as an interlayer insulating coating solution.
g (OCH 3 ) 2 in a 10 wt% N-hexane solution, and then evaporate the solvent to obtain a mixed sol composed of a hydrolysis product of Mg hydroxide, Mg hydrate and Mg oxide.
C. to obtain a wound core having the same dimensions as in Example 5 in which a dehydrated and condensed gel coating having a film thickness of 0.5 .mu.m was formed. Thereafter, magnetic annealing was performed at 1100 ° C. for 3 hours in a directly dried airflow, and the magnetic properties of the obtained wound core are shown in Table 2.
As is clear from the examples, it is clear that the present invention further improves and improves the DC magnetic characteristics and AC magnetic characteristics.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】この発明は、合金薄帯表面に分解生成物
をコーティングしゲル化して層間絶縁膜を形成、機械加
工後、200℃〜600℃の間を昇温速度1℃/分〜5
℃/分で昇温して、600℃で少なくとも1時間以上保
持の熱処理を行い、さらに磁性焼鈍を行うことにより、
極めて薄い被膜が均一に形成され、十分なる層間絶縁性
を有し、密着性、耐食性、耐熱性にすぐれ、鉄心材料と
して、成形された場合においても、直流磁気特性、交流
磁気特性が一段と改善向上し、安定したNi−Fe系合
金コアを提供できる。
According to the present invention, the decomposition product is coated on the surface of the alloy ribbon and gelled to form an interlayer insulating film. After machining, the temperature is raised between 200 ° C. and 600 ° C. at a rate of 1 ° C./min.
The temperature was raised at a rate of 600 ° C./min, a heat treatment of holding at 600 ° C. for at least one hour or more was performed, and a magnetic annealing was further performed.
Extremely thin film is formed uniformly, has sufficient interlayer insulation, has excellent adhesion, corrosion resistance, and heat resistance. Even when molded as an iron core material, DC magnetic properties and AC magnetic properties are further improved. In addition, a stable Ni—Fe alloy core can be provided.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 最終幅に切断された清浄表面を有するN
i−Fe系合金薄帯の少なくとも1主面に被着された金
属アルコキシル基あるいはアルコキシド基を少なくとも
1つ以上含む有機金属化合物を加水分解して、分解生成
物をコーティングした後、乾燥によりゲル化した膜厚
0.3μm〜30μmの層間絶縁膜を形成後、所定形
状、寸法に巻き加工、あるいは打抜加工を行い、その
後、200℃〜600℃の間を昇温速度1℃/分〜5℃
/分で昇温して、600℃で少なくとも1時間以上保持
の熱処理を行い、さらに磁性焼鈍を行うことを特徴とす
るNi−Fe系合金コアの製造方法。
1. An N having a clean surface cut to a final width.
After hydrolyzing the organometallic compound containing at least one metal alkoxyl group or alkoxide group attached to at least one main surface of the i-Fe alloy ribbon, coating the decomposition product, and then gelling by drying After forming an interlayer insulating film having a thickness of 0.3 μm to 30 μm, winding or punching into a predetermined shape and dimensions is performed, and then the temperature is raised between 200 ° C. and 600 ° C. at a rate of 1 ° C./min. ° C
A method for producing a Ni—Fe alloy core, comprising: performing heat treatment at 600 ° C. for at least one hour or more, and performing magnetic annealing.
JP23147892A 1992-08-05 1992-08-05 Method for producing Ni-Fe alloy core Expired - Fee Related JP2895684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23147892A JP2895684B2 (en) 1992-08-05 1992-08-05 Method for producing Ni-Fe alloy core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23147892A JP2895684B2 (en) 1992-08-05 1992-08-05 Method for producing Ni-Fe alloy core

Publications (2)

Publication Number Publication Date
JPH0657439A JPH0657439A (en) 1994-03-01
JP2895684B2 true JP2895684B2 (en) 1999-05-24

Family

ID=16924127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23147892A Expired - Fee Related JP2895684B2 (en) 1992-08-05 1992-08-05 Method for producing Ni-Fe alloy core

Country Status (1)

Country Link
JP (1) JP2895684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876497B1 (en) * 2004-10-13 2007-03-23 Commissariat Energie Atomique MGO-BASED COATING FOR THE ELECTRICAL INSULATION OF SEMICONDUCTOR SUBSTRATES AND METHOD OF MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JPH0657439A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
JP6346691B2 (en) Ferromagnetic amorphous alloy ribbons with reduced surface protrusions, their casting methods and applications
JPH0845723A (en) Nano-crystalline alloy thin band of excellent insulating property and nano-crystalline alloy magnetic core as well as insulating film forming method of nano-crystalline alloy thin band
DE102008039326A1 (en) Preparing electrically insulated electric sheet, to prepare laminated magnetic core, comprises coating one side of sheet using liquid mixture comprising hydrolyzed and condensed metal organic monomer, and heat treating coated sheet
JP2895684B2 (en) Method for producing Ni-Fe alloy core
US4759949A (en) Method of insulating ferromagnetic amorphous metal continuous strip
JP2509586B2 (en) Permalloy ribbon and its manufacturing method
US4096000A (en) Annealing separator for silicon steel sheets
JP7291203B2 (en) Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
JP2005264280A (en) Grain-oriented electromagnetic steel sheet having superior stamping property and peeling resistance of coating, and manufacturing method therefor
JPS5834162A (en) Manufacture of amorphous alloy having high magnetic aging resistance and its thin strip
JP7465380B2 (en) Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
JPS61154111A (en) Iron core and manufacture thereof
JPS60258477A (en) Formation of insulating film on silicon steel sheet
US4808464A (en) Insulating ferromagnetic amorphous metal strips
JP2504429B2 (en) Amorphous magnetic alloy ribbon coating method
JP4569281B2 (en) Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP3279450B2 (en) Grain-oriented electrical steel sheet with insulating coating formed on the surface
KR102177040B1 (en) Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
EP0480265B1 (en) Method of producing permalloy cores
JPH0151043B2 (en)
JPH09194948A (en) Production of grain-oriented silicon steel sheet good in insulated coating adhesion
JPS5822357A (en) High silicon steel thin strip having (100)<011> aggregated structure
KR20230095270A (en) Insulation coating composition for electrical steel sheet, electrical steel sheet, and method for manufacturing the same
JPH0344406B2 (en)
JPS636809A (en) Manufacture of core

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees