JP2892964B2 - Biodegradable fiber - Google Patents

Biodegradable fiber

Info

Publication number
JP2892964B2
JP2892964B2 JP7080511A JP8051195A JP2892964B2 JP 2892964 B2 JP2892964 B2 JP 2892964B2 JP 7080511 A JP7080511 A JP 7080511A JP 8051195 A JP8051195 A JP 8051195A JP 2892964 B2 JP2892964 B2 JP 2892964B2
Authority
JP
Japan
Prior art keywords
fiber
heat treatment
orientation
temperature
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7080511A
Other languages
Japanese (ja)
Other versions
JPH08284016A (en
Inventor
孝 山本
貢 木水
義博 前川
武雄 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAKEN
Chukoh Chemical Industries Ltd
Original Assignee
ISHIKAWAKEN
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAKEN, Chukoh Chemical Industries Ltd filed Critical ISHIKAWAKEN
Priority to JP7080511A priority Critical patent/JP2892964B2/en
Publication of JPH08284016A publication Critical patent/JPH08284016A/en
Application granted granted Critical
Publication of JP2892964B2 publication Critical patent/JP2892964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は生分解性繊維に関し、特
に釣糸や漁網等の漁業資材、植壌土用ネット等の土木資
材、播種テープ等の農業資材等の自然環境中で使用され
る生分解性を有する繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to biodegradable fibers, and more particularly to biodegradable fibers used in natural environments such as fishing materials such as fishing lines and fishing nets, civil engineering materials such as nets for buried soil, agricultural materials such as seeding tapes, and the like. It relates to degradable fibers.

【0002】[0002]

【従来の技術】釣糸、漁網、植壌土用ネット等は結束に
よって、連結,編網されるために結節時の強度が引張強
度以上に重要である。このような目的を達成するため
に、ナイロンでは内層部が高配合で表層部が弾性を有す
るハードエラスチックファイバー構造を実現する方法が
提案されている。具体的には、スチーム処理法(特公昭
47−43768号公報,特公昭60−7721号公
報)、表面処理法(特開昭51−38597号公報)が
知られている。
2. Description of the Related Art Fishing lines, fishing nets, nets for soils, and the like are connected and knitted by bundling, so that the knot strength is more important than the tensile strength. In order to achieve such an object, there has been proposed a method of realizing a hard elastic fiber structure in which the inner layer portion of the nylon is highly blended and the surface layer portion has elasticity. Specifically, a steam treatment method (JP-B-47-43768, JP-B-60-7721) and a surface treatment method (JP-A-51-38597) are known.

【0003】同様に、ポリふっ化ビニリデンでは、弛緩
熱処理法(特開昭60−181314号公報)、高温緊
張熱処理法(特開昭60−231815号公報)が知ら
れている。
Similarly, for polyvinylidene fluoride, a relaxation heat treatment method (JP-A-60-181314) and a high-temperature strain heat treatment method (JP-A-60-231815) are known.

【0004】これらの方法は、基本的に、多段延伸の途
中ないし終了後に熱的弛緩処理を行うか表面を化学的物
理的に変化させる方法であり、繊維断面の内層が高配向
で、表層が低配向で弾性を持った構造の繊維が得られ
る。
[0004] These methods are basically a method in which a thermal relaxation treatment is performed or a surface is chemically and physically changed during or after multi-stage drawing. The inner layer of the fiber cross section is highly oriented, and the surface layer is formed. Fibers having a low orientation and elastic structure can be obtained.

【0005】ヒドロキシアルカノエート類繊維の製造方
法としては、特公平2−63055号公報、特公平2−
63056号公報が知られている。図1は、特公平2−
63055号公報における装置を示す。
As a method for producing hydroxyalkanoate fibers, Japanese Patent Publication No. 2-63055 and Japanese Patent Publication No.
63056 is known. Figure 1
63055 discloses an apparatus.

【0006】図中の符番1は、押出物2を水槽3の水の
中に送給するダイである。押出物2はガイド4,5に沿
って水中を移動しつつ水冷された後、モノフィラメント
6になって第一引取ロ−ラ7を経てピン8,ヒータプレ
ート9側に搬送される。モノフィラメント6は、ヒータ
プレート9上の領域で延伸された後、第二引取ロ−ラ10
を経て巻取ロ−ラ11で巻き取られる。この様な方法で成
形すると、c軸方向が繊維軸と平行に配向した結晶を多
く含む繊維が得られる。
Reference numeral 1 in the figure denotes a die for feeding the extrudate 2 into water in a water tank 3. The extrudate 2 is water-cooled while moving in water along the guides 4 and 5, and is conveyed to the pins 8 and the heater plate 9 side via the first take-off roller 7 as monofilaments 6. After the monofilament 6 is drawn in the area on the heater plate 9, the second take-up roller 10 is drawn.
Is wound up by the take-up roller 11. By molding in such a manner, a fiber containing a lot of crystals whose c-axis direction is oriented parallel to the fiber axis is obtained.

【0007】[0007]

【発明が解決しようとする課題】高引張強度で高結節強
度の繊維を得るには、内層に比較して表層の配向が低
く、結晶部に加えて非晶部の分子鎖配向が高い構造が適
している。
In order to obtain a fiber having a high tensile strength and a high knot strength, a structure in which the orientation of the surface layer is lower than that of the inner layer and the molecular chain orientation of the amorphous portion in addition to the crystalline portion is high. Are suitable.

【0008】特開昭58−82723号公報や特公平2
−63055号公報にも示されるように、ヒドロキシア
ルカノエート類の予備形成物は昇温しても脆く、通常の
方法で延伸しようとしても塑性変形及び配向する前に破
壊する。予備形成物の結晶化度が低い場合、ゴム状で粘
着性を示すうえ、非晶状態からの結晶化速度が遅いた
め、配向の達成や取扱が困難である。従って、弛緩熱処
理や表層のみを融点以上に加熱するといった従来の方法
では、繊維の内層と表層で別々に構造を制御することは
難しい。
Japanese Patent Application Laid-Open No. 58-82723 and Japanese Patent Publication No.
As shown in Japanese Patent No. 63055, the preformed product of hydroxyalkanoates is brittle even when the temperature is raised, and breaks before being plastically deformed and oriented even when it is stretched by an ordinary method. When the crystallinity of the preform is low, the preform is rubbery and sticky, and the crystallization speed from the amorphous state is low, so that it is difficult to achieve the orientation and to handle. Therefore, it is difficult to separately control the structure of the inner layer and the surface of the fiber by the conventional heat treatment such as relaxation heat treatment or heating only the surface layer to the melting point or higher.

【0009】また、表層を有機溶剤や他の樹脂で処理す
ることは、溶剤残留による環境破壊や異種材被覆による
分解性の低下等、自然環境で使用する繊維材料として好
ましからざる影響を及ぼす。
Further, treating the surface layer with an organic solvent or another resin has an undesired effect as a fiber material used in a natural environment, such as environmental destruction due to residual solvent and degradation of degradability due to coating of different materials.

【0010】本発明は上記事情に鑑みてなされたもの
で、ヒドロキシアルカノエート類の樹脂において繊維構
造を制御することにより、内層より表層の方が柔軟性に
富み非晶部の分子鎖が高度に配向した高引張強度,高結
節強度で、野外で使用する漁網等が流失,放置されても
微生物により分解されて環境中に堆積することなく、自
然界への負荷を低減できる生分解性繊維を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and by controlling the fiber structure of a hydroxyalkanoate resin, the surface layer is more flexible than the inner layer and the molecular chain of the amorphous portion is highly enhanced. Provide biodegradable fiber with high oriented tensile strength and high knot strength, which can reduce the load on nature without being decomposed by microorganisms and accumulated in the environment even if fishing nets used in the field are washed away or left The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明は、延伸工程での
予備加熱条件(温度,時間)、延伸条件(温度,時間)
及び熱処理条件(温度,時間)を変えることで、異なる
結晶様式をもつ結晶の割合や結晶化度,非晶質を含めた
配向度等を、繊維断面の内層と表層で異なるように制御
することにより得られる、高引張強度で高結節強度の生
分解性繊維である。
According to the present invention, there are provided preheating conditions (temperature, time) and stretching conditions (temperature, time) in a stretching step.
By changing the heat treatment conditions (temperature, time) and controlling the proportion of crystals having different crystal styles, the degree of crystallinity, the degree of orientation including amorphous, etc. between the inner layer and the surface layer of the fiber cross section Is a biodegradable fiber having high tensile strength and high knot strength.

【0012】なお、以下では主に延伸温度を60℃に固
定して熱処理温度を変化させた場合を用いて説明する。
The following description will be made mainly on the case where the stretching temperature is fixed at 60 ° C. and the heat treatment temperature is changed.

【0013】微生物が生産する熱可塑性樹脂であるヒド
ロキシアルカノエ−ト類には、異なる分子構造を持つ多
くのモノマーからなる単独又は共重合体である。代表的
なモノマーとしては、3−ヒドロキシプロピオネート,
3−ヒドロキシブチレート,4−ヒドロキシブチレー
ト,3−ヒドロキシバリレート,5−ヒドロキシバリレ
ート,3−ヒドロキシカプロレート,3−ヒドロキシヘ
プタノエート,3−ヒドロキシオクタノエートが挙げら
れる。但し、ここに挙げた成分に限定されるものではな
く、他の成分をも含むものである。
Hydroxyalkanoates, which are thermoplastic resins produced by microorganisms, are homo- or copolymers composed of many monomers having different molecular structures. Representative monomers include 3-hydroxypropionate,
3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, 5-hydroxyvalerate, 3-hydroxycaprolate, 3-hydroxyheptanoate, 3-hydroxyoctanoate. However, it is not limited to the components listed here, but includes other components.

【0014】本発明では、主に3−ヒドロキシブチレー
トと3−ヒドロキシバリレートの共重合体を用いて以下
に説明する。ヒドロキシアルカノエ−ト類の内、3−ヒ
ドロキシブチレート重合体の結晶構造を図4に示す。結
晶の各軸の内c軸は分子鎖に平行な方向になり、分子鎖
はらせん形態をとっている。
The present invention will be described below mainly using a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate. FIG. 4 shows the crystal structure of the 3-hydroxybutyrate polymer among the hydroxyalkanoates. The c-axis of each axis of the crystal is parallel to the molecular chain, and the molecular chain has a helical form.

【0015】本発明で熱処理温度を変化させた場合の、
偏光顕微鏡より求めた繊維全体の複屈折を図5に示す。
結晶中の原子座標を用いて計算した3−ヒドロキシブチ
レートの固有複屈折は、−0.0755でマイナスの値
となる。従って、マイナスの絶対値が大きい程繊維軸方
向に分子鎖が配向していることになる。
When the heat treatment temperature is changed in the present invention,
FIG. 5 shows the birefringence of the entire fiber determined by a polarizing microscope.
The intrinsic birefringence of 3-hydroxybutyrate calculated using the atomic coordinates in the crystal is a negative value at −0.0755. Therefore, the larger the negative absolute value is, the more oriented the molecular chain is in the fiber axis direction.

【0016】繊維断面の偏光顕微鏡の模式図を図6に示
す。図6により、繊維内部に花弁状の特異な分布がみら
れ、表層にも内層と異なる配向模式の領域が観察され
た。
FIG. 6 shows a schematic diagram of a polarizing microscope of a cross section of the fiber. According to FIG. 6, a unique distribution of petals was observed inside the fiber, and a region of an orientation pattern different from that of the inner layer was observed on the surface layer.

【0017】繊維側面の干渉顕微鏡の模式図を図7に示
す。均一な内部構造をもつ繊維は、干渉縞が右側に凸の
滑らかな弧を描くが、図7では中央部が左側に凸の浅い
弧を描いている。従って、繊維断面で構造分布があるこ
とが確認できる。
FIG. 7 shows a schematic diagram of an interference microscope on the side surface of the fiber. In the fiber having a uniform internal structure, the interference fringes draw a smooth arc that is convex to the right, but in FIG. 7, a shallow arc that is convex at the center is drawn to the left. Therefore, it can be confirmed that there is a structural distribution in the fiber cross section.

【0018】干渉顕微鏡観察から求めた、断面での複屈
折分布を図8に示す。繊維全体では、熱処理温度が高く
なるほど複屈折は低下し繊維軸方向の配向が高くなる。
繊維断面での分布を見ると、熱処理温度が100℃以下
では繊維内層の方が表層よりも配向が高く、120℃で
略均一であり、120℃を越えると繊維表層の方が内層
よりも配向が高くなる。
FIG. 8 shows a birefringence distribution in a cross section obtained from observation with an interference microscope. In the entire fiber, the birefringence decreases and the orientation in the fiber axis direction increases as the heat treatment temperature increases.
Looking at the distribution in the cross section of the fiber, when the heat treatment temperature is 100 ° C or lower, the orientation of the fiber inner layer is higher than that of the surface layer, and is substantially uniform at 120 ° C, and when it exceeds 120 ° C, the fiber surface layer is more oriented than the inner layer. Will be higher.

【0019】本発明で熱処理温度を変化させた場合の、
広角X線回折パターンより求めた繊維全体の結晶化度と
2種類の結晶の割合を図9に示す。図9において、Xc,
c はc軸が繊維方向に配向した結晶を示し、Xc,n はc
軸が繊維軸に対して垂直方向に配向した結晶を示す。
When the heat treatment temperature is changed in the present invention,
FIG. 9 shows the crystallinity of the entire fiber and the ratio of the two types of crystals determined from the wide-angle X-ray diffraction pattern. In FIG. 9, Xc,
c indicates a crystal in which the c axis is oriented in the fiber direction, and Xc, n indicates c
The crystal has an axis oriented perpendicular to the fiber axis.

【0020】熱処理温度が高くなるほど結晶化度が増
え、特に結晶のc軸が繊維軸方向に配向した結晶の割合
が増加する。
As the heat treatment temperature increases, the degree of crystallinity increases, and in particular, the proportion of crystals whose c-axis is oriented in the fiber axis direction increases.

【0021】カルボニル基の赤外分光分析より求めた、
繊維の赤外二色比配向係数を図10に示す。図5の複屈
折と同様に、熱処理温度の上昇に伴って配向が高くな
る。
The carbonyl group was determined by infrared spectroscopy.
FIG. 10 shows the infrared dichroic ratio orientation coefficient of the fiber. Similar to the birefringence of FIG. 5, the orientation increases as the heat treatment temperature increases.

【0022】カルボニル基の赤外分光分析より求めた、
繊維の表層および内層の赤外二色比配向係数を図11に
示す。熱処理温度が低温の場合は内層が高配向である
が、高温の場合は表層の配向が高くなり複屈折の結果と
同様である。
The carbonyl group was determined by infrared spectroscopy.
FIG. 11 shows the infrared dichroic ratio orientation coefficient of the surface layer and the inner layer of the fiber. When the heat treatment temperature is low, the inner layer is highly oriented, but when the heat treatment temperature is high, the orientation of the surface layer is increased, which is the same as the result of birefringence.

【0023】結晶の分子鎖が繊維軸方向に配列した場合
と垂直な場合および非晶の分子鎖が無配向な場合におけ
る、原子座標から求めた赤外二色比配向係数はそれぞれ
−0.5、0.25、0である。また、固有複屈折はそ
れぞれ−0.0755、0.0383、0になる。無配
向の場合は0であるから、無視すると、結晶での2種類
の配向におけるそれぞれの値はほぼ同じ比率なので赤外
二色比配向係数と複屈折は同じ傾向を示すはずである。
ところが、図5の複屈折の結果において低温で熱処理さ
れた繊維が正の値を示すにもかかわらず、図10の赤外
二色比配向係数は負の値を示している。
In the case where the crystal molecular chains are arranged in the fiber axis direction, the case where the crystal molecular chains are perpendicular, and the case where the amorphous molecular chains are not oriented, the infrared dichroic ratio orientation coefficient obtained from the atomic coordinates is -0.5. , 0.25, 0. In addition, the intrinsic birefringence becomes -0.0755, 0.0383, and 0, respectively. Since it is 0 in the case of non-orientation, ignoring it, the values of the two types of orientation in the crystal are almost the same, so that the infrared dichroic orientation coefficient and birefringence should show the same tendency.
However, in spite of the birefringence results in FIG. 5, the fiber subjected to the heat treatment at a low temperature shows a positive value, but the infrared dichroic ratio orientation coefficient in FIG. 10 shows a negative value.

【0024】3−ヒドロキシブチレート重合体の分子鎖
は、通常らせん形態をとっているが、分子鎖方向に高い
応力が加わることによって引き伸ばされ、平面ジグザク
構造をとると考えた場合、赤外二色比配向係数と固有複
屈折はそれぞれ−0.5、−0.01となる。従って、
この平面ジグザク構造を考えると赤外二色比配向係数で
は負に寄与し、複屈折では正に寄与するので、前述の傾
向の違いを説明することができる。このことから、非晶
部には分子鎖が無配向の部分と繊維軸方向に高度に配向
した部分(パラクリスタル:準結晶)とが存在してお
り、高度に配向した分子鎖構造の1案として高い応力が
加わることによって引き伸ばされた平面ジグザク構造を
考えることができる。
The molecular chain of the 3-hydroxybutyrate polymer usually takes a helical form. However, when it is considered that the molecular chain is stretched by applying a high stress in the molecular chain direction and takes a planar zigzag structure, it is considered to have a infrared zigzag structure. The color ratio orientation coefficient and the intrinsic birefringence are -0.5 and -0.01, respectively. Therefore,
Considering this planar zigzag structure, the infrared dichroic ratio orientation coefficient contributes negatively and the birefringence contributes positively, so that the above-described difference in the tendency can be explained. Therefore, portions in the amorphous portion molecular chains are highly oriented in the part and the fiber axis direction of the non-oriented (paracrystalline: quasicrystals) and are present, 1 draft highly oriented molecular chain structure It is possible to consider a planar zigzag structure that is stretched by applying a high stress.

【0025】本発明では熱処理温度を変化させて作製し
た延伸糸の赤道方向の、広角X線回折パターンを図12
に示す13.5°、17°、20°付近に3つのピーク
がある。この内前2つは結晶の(020)面と(11
0)面に起因し、3つ目は非晶部において高度に配向し
た分子鎖に起因するピークである。
In the present invention, a wide-angle X-ray diffraction pattern in the equator direction of the drawn yarn produced by changing the heat treatment temperature is shown in FIG.
There are three peaks around 13.5 °, 17 ° and 20 ° shown in FIG. The first two of them are the (020) plane of the crystal and the (11) plane.
The third is a peak caused by a highly oriented molecular chain in the amorphous part.

【0026】熱処理温度が80℃〜120℃では、非晶
部で高度に配向した分子鎖に起因するピーク強度が相対
的に強く、それよりも低温側や高温側では弱い。
When the heat treatment temperature is in the range of 80 ° C. to 120 ° C., the peak intensity due to the highly oriented molecular chains in the amorphous part is relatively strong, and the peak strength is lower on the lower and higher temperature sides.

【0027】従来法による繊維の、広角X線回折パター
ンを図13に示す。結晶に起因する2つのピークが大き
いのに対して、20°の非晶部で高度に配向した分子鎖
に起因するピークはかなり小さい。結晶化度は55%
で、その内結晶のc軸が繊維軸方向に配向した結晶が7
5%を占めており結晶の配向は非常に高い。このように
結晶の配向により繊維全体の配向が高いにも関わらず、
非晶部で分子鎖の配向が低いために低引張強度の繊維に
なる。
FIG. 13 shows a wide-angle X-ray diffraction pattern of the fiber according to the conventional method. While the two peaks due to the crystals are large, the peaks due to the highly oriented molecular chains in the amorphous part at 20 ° are quite small. 55% crystallinity
The crystal in which the c-axis of the crystals is oriented in the fiber axis direction is 7
5%, and the crystal orientation is very high. Although the orientation of the whole fiber is high due to the orientation of the crystal in this way,
Since the orientation of the molecular chain is low in the amorphous part, the fiber has low tensile strength.

【0028】非晶での分子鎖の配向に関しては、引張強
伸度からも推定できる。本発明による繊維は従来法によ
る繊維に比較して、低弾性率,高引張強度,低伸度,低
結晶化度である。結晶化度が低く結晶の配向も低いの
に、伸度が半分以下になるのは非晶での分子鎖の配向が
高いためである。
The orientation of the amorphous molecular chain can be estimated from the tensile strength and elongation. The fiber according to the present invention has a low modulus, a high tensile strength, a low elongation and a low crystallinity as compared with the fiber according to the conventional method. Although the crystallinity is low and the crystal orientation is low, the elongation is less than half because the orientation of the amorphous molecular chains is high.

【0029】本発明において低温の熱処理条件では、高
引張強度でかつ同等の結節強度を有する繊維が得られ
る。これは結晶部のみではなく、非晶部にも繊維軸方向
に高度に配向した分子鎖からなる部分が多く含まれるの
で引張強度が高くなり、表層の分子配向が内層より低い
ために結節強度も高くなる。
In the present invention, a fiber having high tensile strength and equivalent knot strength can be obtained under low-temperature heat treatment conditions. This is because not only the crystal part, but also the amorphous part contains many parts consisting of molecular chains highly oriented in the fiber axis direction, so the tensile strength is high, and the knot strength is low because the molecular orientation of the surface layer is lower than that of the inner layer. Get higher.

【0030】高温で熱処理を行った場合には、全体とし
て高配向になり高弾性率の繊維が得られる。しかし、高
度に配向した分子鎖からなる部分が少ないために非晶部
が弱く、全体として引張強度が低くなる。また、表層の
分子配向が内層より高いために、引張強度に比較して結
節強度が低下する。
When the heat treatment is performed at a high temperature, the fibers are highly oriented as a whole, and fibers having a high elastic modulus can be obtained. However, since there are few portions composed of highly oriented molecular chains, the amorphous portion is weak, and the tensile strength is low as a whole. Further, since the molecular orientation of the surface layer is higher than that of the inner layer, the knot strength is lower than the tensile strength.

【0031】本発明において、紡糸と延伸は連続的に行
わず不連続な別々の工程で行うのが望ましい。
In the present invention, it is preferable that spinning and drawing are not performed continuously but performed in discrete steps.

【0032】なお、上記各温度範囲は、ヒドロキシアル
カノエート類の種類や共重合体組成の違いにより変化す
る。従って、各樹脂の融解開始温度,融解ピーク温度
(融点),融解終了温度,結晶化開始温度,結晶化ピー
ク温度(結晶化点),結晶化終了温度を測定した上で決
定する必要がある。
The above temperature ranges vary depending on the types of hydroxyalkanoates and the copolymer composition. Accordingly, it is necessary to determine the melting start temperature, melting peak temperature (melting point), melting end temperature, crystallization start temperature, crystallization peak temperature (crystallization point), and crystallization end temperature of each resin after measurement.

【0033】[0033]

【作用】この発明において、繊維軸方向に分子鎖が高配
向した非晶部分及び内層の配向よりも表層の配向が低い
構造をもつことにより、柔軟性があり高引張強度で高結
節強度の繊維が得られる。
According to the present invention, a fiber having flexibility, high tensile strength and high knot strength is obtained by having a structure in which the orientation of the surface layer is lower than that of the amorphous portion and the inner layer in which the molecular chains are highly oriented in the fiber axis direction. Is obtained.

【0034】[0034]

【実施例】以下、この発明の実施例について比較例とと
もに説明する。
Hereinafter, embodiments of the present invention will be described together with comparative examples.

【0035】図2は、本願発明の生分解性繊維の製造方
法に用いられる装置の一部を示す概略説明図である。図
中の符番21は、押出物22を水槽23の温水の中に供給する
押出機である。また、符番24,25,26は、押出物22を案
内するガイド、符番27は引取ロ−ラ、符番28は巻取ロ−
ラを示す。
FIG. 2 is a schematic explanatory view showing a part of an apparatus used in the method for producing a biodegradable fiber of the present invention. Reference numeral 21 in the figure denotes an extruder that supplies the extrudate 22 into warm water in a water tank 23. Reference numerals 24, 25, and 26 are guides for guiding the extruded product 22, reference numeral 27 is a take-up roller, and reference numeral 28 is a take-up roller.
La

【0036】図3は、図2の装置の巻取ロ−ルで巻き取
った繊維を延伸する装置の概略説明図を示す。図中の符
番31は、溶融紡糸した繊維32を加熱炉33に送給する送出
ロ−ラである。また、図中の符番34,35は加熱ロ−ラ、
符番36,37は加熱板、符番38は引取ロ−ラ、符番39は巻
取ロ−ラを示す。
FIG. 3 is a schematic explanatory view of an apparatus for drawing a fiber wound by a winding roll of the apparatus of FIG. Reference numeral 31 in the figure denotes a delivery roller for feeding the melt spun fiber 32 to the heating furnace 33. Reference numerals 34 and 35 in the figure are heating rollers,
Reference numerals 36 and 37 indicate a heating plate, reference numeral 38 indicates a take-up roller, and reference numeral 39 indicates a take-up roller.

【0037】この実施例では、こうした装置を用いて次
のようにして繊維を製造する。
In this embodiment, a fiber is manufactured using such an apparatus as follows.

【0038】まず、ヒドロキシブチレ−トとヒドロキシ
バリレ−トの共重合体(PHB/HV=92/8)を、
押出機21により160℃で水槽23の温水中に押し出し、
溶融紡糸する。ここで、水槽23中の温水の温度は50℃
に保持しておく。温水中に送られた繊維は冷却固化さ
れ、ガイド26,引取ロ−ラ27を経て巻取ロ−ラ28で巻取
る(図2参照)。
First, a copolymer of hydroxybutyrate and hydroxyvalerate (PHB / HV = 92/8) was
Extruded into hot water in a water tank 23 at 160 ° C. by an extruder 21,
Melt spin. Here, the temperature of the hot water in the water tank 23 is 50 ° C.
To be kept. The fiber sent into the warm water is cooled and solidified, and is wound up by a winding roller 28 via a guide 26 and a take-up roller 27 (see FIG. 2).

【0039】次に、図3に示すように、紡糸とは別工程
で本繊維を150℃で予備加熱し、60℃で7倍に延伸
し、更に100℃で1.1倍に熱処理して繊維を製造す
る。
Next, as shown in FIG. 3, in a process separate from spinning, the present fiber is preheated at 150 ° C., stretched 7 times at 60 ° C., and further heat-treated at 1.1 ° C. at 100 ° C. Manufacture fiber.

【0040】(比較例1)上記実施例と同様の方法で紡
糸した繊維を、延伸条件150℃、60℃、60℃で延
伸熱処理を行い繊維を製造した。
Comparative Example 1 A fiber spun by the same method as in the above example was subjected to a drawing heat treatment at 150 ° C., 60 ° C., and 60 ° C. under drawing conditions to produce a fiber.

【0041】(比較例2)上記実施例と同様の方法で紡
糸した繊維を、延伸条件150℃、60℃、140℃で
延伸熱処理を行い繊維を製造した。
(Comparative Example 2) A fiber spun in the same manner as in the above example was subjected to a drawing heat treatment at drawing conditions of 150 ° C, 60 ° C, and 140 ° C to produce a fiber.

【0042】(比較例3)比較例3では、図1における
装置を用いて、上記実施例と同様の樹脂を押出機1によ
り160℃で水槽3(浴温60℃)の温水中に押出す。
次に、そのまま連続して120℃のホットピン8を経て
60℃のヒータプレート9で8倍に延伸して巻取ローラ
11で巻き取る。
Comparative Example 3 In Comparative Example 3, the same resin as in the above example was extruded at 160 ° C. into hot water in a water tank 3 (bath temperature 60 ° C.) by the extruder 1 using the apparatus shown in FIG. .
Next, it is continuously stretched 8 times by a heater plate 9 at 60 ° C. through a hot pin 8 at 120 ° C.
Wind up at 11.

【0043】下記表1は、上記実施例,比較例1,2,
3における繊維の延伸倍率(倍),熱処理倍率(倍),
破断強度(MPa),破断伸度(%),結節強度(MP
a)及び結節/破断の比率を示す。ここで、破断強伸
度,結節強度は引張試験より求めた。
Table 1 below shows the above-mentioned Examples, Comparative Examples 1, 2 and
The fiber draw ratio (times), heat treatment ratio (times),
Breaking strength (MPa), breaking elongation (%), knot strength (MP
a) and the knot / break ratio. Here, the breaking strength and elongation and the knot strength were obtained from a tensile test.

【0044】[0044]

【表1】 [Table 1]

【0045】しかして、上記実施例によれば、ヒドロキ
シブチレ−トとヒドロキシバリレ−トの共重合体(PH
B/HV=92/8)からなる熱可塑性樹脂を原料と
し、繊維断面内に結晶化度や結晶構造の分布を持ち、か
つ繊維軸方向に分子鎖が高配向した非晶部分を有する構
成となっているため、内層より表層の方が柔軟性に富み
高引張強度で高結節強度の生分解性繊維が得られる。こ
れにより、屋外で使用する漁網等が流失,放置されても
微生物により分解されて環境中に堆積することなく、自
然界への負荷を低減できる。
Thus, according to the above embodiment, the copolymer of hydroxybutyrate and hydroxyvalerate (PH
B / HV = 92/8) as a raw material, having a crystallinity and a distribution of crystal structure in a fiber cross-section, and having an amorphous portion in which molecular chains are highly oriented in the fiber axis direction. Therefore, the surface layer is more flexible than the inner layer, and a biodegradable fiber having high tensile strength and high knot strength can be obtained. Thus, even if a fishing net or the like used outdoors is washed away or left, the load on the natural world can be reduced without being decomposed by microorganisms and deposited in the environment.

【0046】[0046]

【発明の効果】以上詳述した如くこの発明によれば、ヒ
ドロキシアルカノエート類の樹脂において繊維構造を制
御することにより、内層より表層の方が柔軟性に富み非
晶部の分子鎖が高度に配向した高引張強度,高結節強度
で、例えば野外で使用する漁網等が流失,放置されても
微生物により分解されて環境中に堆積することなく、自
然界への負荷を低減できる生分解性繊維を提供できる。
As described above in detail, according to the present invention, by controlling the fiber structure of the hydroxyalkanoate resin, the surface layer is more flexible than the inner layer, and the molecular chain of the amorphous portion is highly enhanced. A biodegradable fiber that is oriented with high tensile strength and high knot strength, and can reduce the load on the natural world without being decomposed by microorganisms and deposited in the environment even if fishing nets used outdoors are washed away or left. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術に係る繊維の紡糸延伸装置の概略説明
図。
FIG. 1 is a schematic explanatory view of a fiber spinning and stretching apparatus according to a conventional technique.

【図2】本発明の実施例に係る繊維の紡糸装置の概略説
明図。
FIG. 2 is a schematic explanatory view of a fiber spinning apparatus according to an embodiment of the present invention.

【図3】図2で紡糸した繊維の延伸装置の概略説明図。FIG. 3 is a schematic explanatory view of an apparatus for drawing the fiber spun in FIG. 2;

【図4】ヒドロキシアルカノエート類の結晶軸と分子鎖
の並びの概念図。
FIG. 4 is a conceptual diagram showing the arrangement of crystal axes and molecular chains of hydroxyalkanoates.

【図5】本発明による繊維の複屈折の熱処理温度依存牲
を示す特性図。
FIG. 5 is a characteristic diagram showing heat treatment temperature dependence of birefringence of a fiber according to the present invention.

【図6】本発明による繊維の断面偏光顕微鏡像の模式
図。
FIG. 6 is a schematic diagram of a cross-sectional polarization microscope image of the fiber according to the present invention.

【図7】本発明による繊維の干渉顕微鏡写真の模式図。FIG. 7 is a schematic diagram of an interference micrograph of a fiber according to the present invention.

【図8】本発明による繊維の複屈折断面分布パターン
図。
FIG. 8 is a birefringent cross-sectional distribution pattern diagram of the fiber according to the present invention.

【図9】本発明による繊維の結晶化度の熱処理温度依存
牲を示す特性図。
FIG. 9 is a characteristic diagram showing the heat treatment temperature dependence of the crystallinity of the fiber according to the present invention.

【図10】本発明による繊維の各熱処理温度における赤
外二色比配向係数を示す特性図。
FIG. 10 is a characteristic diagram showing an infrared dichroic ratio orientation coefficient at each heat treatment temperature of the fiber according to the present invention.

【図11】本発明による繊維の各熱処理温度における内
表層の赤外二色比配向係数を示す特性図。
FIG. 11 is a characteristic diagram showing the infrared dichroic ratio orientation coefficient of the inner surface layer at each heat treatment temperature of the fiber according to the present invention.

【図12】本発明による繊維の各熱処理温度における広
角X線回折強度を示す特性図。
FIG. 12 is a characteristic diagram showing the wide-angle X-ray diffraction intensity at each heat treatment temperature of the fiber according to the present invention.

【図13】従来法による繊維の広角X線回折強度を示す
特性図。
FIG. 13 is a characteristic diagram showing a wide-angle X-ray diffraction intensity of a fiber according to a conventional method.

【符号の説明】[Explanation of symbols]

21…押出機、 22…押出物、
23…水槽、27,38…引取ロ−ラ、 28,39…巻取ロ−
ラ、 32…繊維、33…加熱炉。
21 ... Extruder, 22 ... Extrudate,
23 ... water tank, 27, 38 ... take-up roller, 28, 39 ... take-up roller
La, 32 ... fiber, 33 ... heating furnace.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 義博 福岡県福岡市中央区渡辺通3丁目1番36 号 中興化成工業株式会社内 (72)発明者 新川 武雄 神奈川県横浜市泉区上飯田町1010番地 中興化成工業株式会社内 (56)参考文献 特開 平5−321025(JP,A) 特公 平2−63055(JP,B2) (58)調査した分野(Int.Cl.6,DB名) D01F 6/62 305 D01F 6/00 D01F 6/84 303 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiro Maekawa 3-136 Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka Prefecture Inside Chuko Kasei Kogyo Co., Ltd. Address Chukoh Kasei Kogyo Co., Ltd. (56) References JP-A-5-321025 (JP, A) JP 2-63055 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) D01F 6/62 305 D01F 6/00 D01F 6/84 303

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ヒドロキシアルカノエート類の単独重合
体又は共重合体からなる熱可塑性樹脂を原料として、
維断面内の内層が高配向で表層が低配向である結晶部分
からなる結晶構造の分布を持ち、かつ繊維軸方向に分子
鎖が高配向した非晶部分を有することを特徴とする生分
解性繊維。
1. A fiber made from a thermoplastic resin comprising a homopolymer or a copolymer of hydroxyalkanoates as a raw material.
Crystal part where the inner layer in the fiber cross section is highly oriented and the surface layer is low oriented
A biodegradable fiber having a crystal structure distribution of: and having an amorphous portion in which molecular chains are highly oriented in a fiber axis direction.
【請求項2】 前記ヒドロキシアルカノエ−ト類が3−
ヒドロキシブチレートと3−ヒドロキシバリレートの共
重合体である請求項1記載の生分解性繊維。
2. The method according to claim 2, wherein the hydroxyalkanoates are 3-
The biodegradable fiber according to claim 1, which is a copolymer of hydroxybutyrate and 3-hydroxyvalerate.
JP7080511A 1995-04-05 1995-04-05 Biodegradable fiber Expired - Fee Related JP2892964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080511A JP2892964B2 (en) 1995-04-05 1995-04-05 Biodegradable fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080511A JP2892964B2 (en) 1995-04-05 1995-04-05 Biodegradable fiber

Publications (2)

Publication Number Publication Date
JPH08284016A JPH08284016A (en) 1996-10-29
JP2892964B2 true JP2892964B2 (en) 1999-05-17

Family

ID=13720348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080511A Expired - Fee Related JP2892964B2 (en) 1995-04-05 1995-04-05 Biodegradable fiber

Country Status (1)

Country Link
JP (1) JP2892964B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289475B2 (en) * 2019-02-15 2023-06-12 国立大学法人東京工業大学 Method for producing biodegradable fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263055A (en) * 1988-08-30 1990-03-02 Japan Synthetic Rubber Co Ltd Polymer composition sensitive for radiation
JP2815260B2 (en) * 1992-01-09 1998-10-27 中興化成工業 株式会社 Fiber manufacturing method

Also Published As

Publication number Publication date
JPH08284016A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
JP4562316B2 (en) Biodegradable fiber and method for producing the same
JP2008106410A (en) Crimped yarn and fiber structure using the same
JP2892964B2 (en) Biodegradable fiber
JP2883809B2 (en) Biodegradable fiber and method for producing the same
KR101821740B1 (en) Excellent Volume High Self-crimping Polyester Composite Yarn By Fiber Surface Shape And Method Preparing Same
JP3462977B2 (en) Method for producing polylactic acid fiber
JP4335987B2 (en) Method for producing polylactic acid-based multifilament
JP2000154425A (en) Production of biodegradable monofilament
JP3462983B2 (en) Method for producing polylactic acid fiber
JP3599310B2 (en) Polylactic acid monofilament and method for producing the same
JP2000239921A (en) Production of polyester fiber
JP4100092B2 (en) Polylactic acid fiber and method for producing the same
JPH11293519A (en) Biodegradable continuous filament and its production
JPH1060733A (en) Production of biodegradable monofilament
KR0133617B1 (en) Process for manufacturing polyester single fiber for non woven fabric
JP2000034619A (en) Production of heteroshrinkable polyester combined filament yarn
JP3615841B2 (en) Biodegradable fishing line and method for producing the same
KR101564470B1 (en) Method for Preparing Polybuthylene terephthalate fiber and Polybuthylene terephthalate fiber prepared by the same
JP2003342833A (en) Polylactate-based fiber and method for producing the same
JPH07278965A (en) Biodegradable conjugate monofilament and its production
JPH11302925A (en) Polylactic acid-based filament and its production
JPH0711513A (en) Production of polyester fiber with self-elongation nature
CN1034877C (en) Melt-spinning producing method for polyethylene uncrimping chain crystal fibre
JP5718164B2 (en) Structure processed yarn
JP4336384B2 (en) Polylactic acid based multifilament

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees