JP2892922B2 - Method for manufacturing photovoltaic element - Google Patents

Method for manufacturing photovoltaic element

Info

Publication number
JP2892922B2
JP2892922B2 JP5279793A JP27979393A JP2892922B2 JP 2892922 B2 JP2892922 B2 JP 2892922B2 JP 5279793 A JP5279793 A JP 5279793A JP 27979393 A JP27979393 A JP 27979393A JP 2892922 B2 JP2892922 B2 JP 2892922B2
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
thin
polycrystalline silicon
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5279793A
Other languages
Japanese (ja)
Other versions
JPH07135332A (en
Inventor
隆夫 松山
豪 高濱
幹朗 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP5279793A priority Critical patent/JP2892922B2/en
Publication of JPH07135332A publication Critical patent/JPH07135332A/en
Application granted granted Critical
Publication of JP2892922B2 publication Critical patent/JP2892922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜多結晶シリコンを
光活性層として用いた光起電力素子の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photovoltaic device using thin-film polycrystalline silicon as a photoactive layer.

【0002】[0002]

【従来の技術】光起電力素子の光活性層として、薄膜多
結晶シリコンを用いることが知られており、このような
光起電力素子においては光電変換効率の向上が求められ
ている。光電変換効率を向上させるための1つの手段と
して、薄膜多結晶シリコンにおける結晶粒を大型化し、
薄膜内におけるキャリア移動度を高める方法がある。
2. Description of the Related Art It is known that a thin-film polycrystalline silicon is used as a photoactive layer of a photovoltaic device, and such a photovoltaic device is required to have improved photoelectric conversion efficiency. One means for improving photoelectric conversion efficiency is to increase the size of crystal grains in thin-film polycrystalline silicon,
There is a method of increasing carrier mobility in a thin film.

【0003】薄膜多結晶シリコンの製造方法の1つとし
て、基板上に非晶質シリコン薄膜を形成し、この非晶質
シリコン薄膜を熱処理して結晶化させる、いわゆる固相
成長法が知られている。固相成長法により結晶粒径の大
きな薄膜多結晶シリコンを製造する方法として、いわゆ
るパーシャルドーピング法が知られている。パーシャル
ドーピング法は、非晶質シリコン薄膜の一部にリン
(P)あるいはボロン(B)等をドーピングすることに
より、非晶質シリコンの荷電状態を変化させ、ドーピン
グされた部分から選択的に結晶化を開始させる方法であ
る。パーシャルドーピング法によれば、非晶質シリコン
薄膜中の特定の部分から結晶化が開始されるため、結晶
核の発生を制御することができ、比較的大きな結晶粒径
を有する薄膜多結晶シリコンを得ることができる。
As one of the methods for producing thin-film polycrystalline silicon, there is known a so-called solid phase growth method in which an amorphous silicon thin film is formed on a substrate, and the amorphous silicon thin film is crystallized by heat treatment. I have. A so-called partial doping method is known as a method for producing thin-film polycrystalline silicon having a large crystal grain size by a solid phase growth method. In the partial doping method, the charge state of the amorphous silicon is changed by doping a part of the amorphous silicon thin film with phosphorus (P) or boron (B), and the crystal is selectively formed from the doped part. It is a method to start the conversion. According to the partial doping method, crystallization starts from a specific portion in the amorphous silicon thin film, so that the generation of crystal nuclei can be controlled, and a thin film polycrystalline silicon having a relatively large crystal grain size can be obtained. Obtainable.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、光起電
力素子の光電変換効率をさらに向上させるためには、従
来のパーシャルドーピング法により得られる薄膜多結晶
シリコンでは限界があった。
However, in order to further improve the photoelectric conversion efficiency of the photovoltaic element, there has been a limit to the thin-film polycrystalline silicon obtained by the conventional partial doping method.

【0005】本発明の目的は、固相成長法により大きな
結晶粒径を有する薄膜多結晶シリコンを形成し、該薄膜
多結晶シリコンを光活性層として用いる光起電力素子の
製造方法を提供することにある。
It is an object of the present invention to provide a method for manufacturing a photovoltaic device in which a thin film polycrystalline silicon having a large crystal grain size is formed by a solid phase growth method and the thin film polycrystalline silicon is used as a photoactive layer. It is in.

【0006】[0006]

【課題を解決するための手段】本発明の製造方法は、薄
膜多結晶シリコンを光活性層として用いた光起電力素子
を製造する方法であり、膜厚より大きな直径の棒状部を
有する非晶質シリコン膜を形成し、該非晶質シリコン膜
から固相成長法により前記薄膜多結晶シリコンを形成す
ることを特徴としているなお、本発明において、非晶質
シリコン膜の棒状部の直径とは、棒状部の最大直径部分
の直径を意味している。
The manufacturing method of the present invention is a method of manufacturing a photovoltaic element using thin-film polycrystalline silicon as a photoactive layer. The amorphous silicon film is formed, and the thin-film polycrystalline silicon is formed from the amorphous silicon film by a solid-phase growth method.In the present invention, the diameter of the rod-shaped portion of the amorphous silicon film is It means the diameter of the largest diameter portion of the bar.

【0007】[0007]

【作用】本発明の製造方法では、膜厚より大きな直径の
棒状部を有する非晶質シリコン膜を形成し、該非晶質シ
リコン膜から固相成長法により薄膜多結晶シリコンを形
成している。膜厚より大きな直径の棒状部を有する非晶
質シリコン膜を固相成長法により結晶化することによ
り、棒状部から結晶化を開始させている。このような棒
状部を有する非晶質シリコン膜は、凹凸形状の表面を有
する基板上に、熱CVD法等により非晶質シリコン薄膜
を形成することにより得ることができる。この際の原料
ガスとしてはSin 2n+2(n=1,2,3,4)を用
い、ガス流量を10〜100sccm、基板温度500
〜600℃、反応圧力100〜10000Paの条件と
することが好ましい。基板としては、ブラスト法等によ
り凹凸形状を付与した基板を用いることが好ましい。
According to the manufacturing method of the present invention, an amorphous silicon film having a rod-shaped portion having a diameter larger than the film thickness is formed, and a thin-film polycrystalline silicon is formed from the amorphous silicon film by a solid phase growth method. By crystallizing an amorphous silicon film having a rod portion having a diameter larger than the film thickness by a solid phase growth method, crystallization is started from the rod portion. Such an amorphous silicon film having a rod-shaped portion can be obtained by forming an amorphous silicon thin film on a substrate having an uneven surface by a thermal CVD method or the like. At this time, Si n H 2n + 2 (n = 1, 2, 3, 4) was used as a source gas, the gas flow rate was 10 to 100 sccm, and the substrate temperature was 500.
It is preferable to set the temperature to 600 ° C. and the reaction pressure 100 to 10,000 Pa. As the substrate, a substrate provided with a concavo-convex shape by a blast method or the like is preferably used.

【0008】図1(a)は、このような凹凸面を有する
基板上に非晶質シリコン膜を形成した状態を示す断面図
である。図1(a)を参照して、基板1の凹凸面1a内
には、非晶質シリコン膜2が形成されており、この非晶
質シリコン膜2には、膜厚より大きな直径の棒状部2a
が形成されている。非晶質シリコン膜2は、一般に10
μm〜20μmの膜厚で形成されるので、棒状部2aの
直径はこれよりも大きな直径を有しており、通常16μ
m〜30μmの直径で形成される。また棒状部2aの厚
みは、一般に数10μm〜数mmの高さで形成される。
FIG. 1A is a sectional view showing a state in which an amorphous silicon film is formed on a substrate having such an uneven surface. Referring to FIG. 1A, an amorphous silicon film 2 is formed in an uneven surface 1a of a substrate 1, and a rod-shaped portion having a diameter larger than the film thickness is formed on the amorphous silicon film 2. 2a
Are formed. The amorphous silicon film 2 generally has a thickness of 10
Since the rod-shaped portion 2a is formed with a thickness of 20 μm to 20 μm, the diameter of the rod portion 2a is larger than this,
It is formed with a diameter of m to 30 μm. Further, the thickness of the rod-shaped portion 2a is generally formed at a height of several tens μm to several mm.

【0009】本発明に従えば、次に、固相成長法により
非晶質シリコン膜を結晶化する。図1(b)を参照し
て、非晶質シリコン膜2において結晶化は棒状部2aの
部分から開始される。従って、図1(b)に示すような
矢印の方向で結晶化が進行する。固相成長条件として
は、一般に固相成長温度550〜700℃、成長時間1
0〜250時間で行われる。
According to the present invention, the amorphous silicon film is crystallized by a solid phase growth method. Referring to FIG. 1B, crystallization of the amorphous silicon film 2 starts from a rod-shaped portion 2a. Therefore, crystallization proceeds in the direction of the arrow as shown in FIG. The solid phase growth conditions are generally as follows: solid phase growth temperature 550-700 ° C., growth time 1
Performed in 0 to 250 hours.

【0010】本発明に従えば、上述のように非晶質シリ
コン膜の棒状部より結晶化が開始されるので、図1
(c)に示すように、非晶質シリコン膜の結晶化により
得られる薄膜多結晶シリコン3においては大きな結晶粒
が形成され、膜厚方向に連なった結晶粒となる。必要に
応じて薄膜多結晶シリコン3の棒状部3aを除去した
後、この薄膜多結晶シリコン3上に半導体膜等を積層
し、光起電力素子を構成させる。
According to the present invention, crystallization starts from the rod-shaped portion of the amorphous silicon film as described above.
As shown in (c), large crystal grains are formed in the thin-film polycrystalline silicon 3 obtained by crystallization of the amorphous silicon film, and the crystal grains are continuous in the film thickness direction. After removing the rod-shaped portion 3a of the thin-film polycrystalline silicon 3 if necessary, a semiconductor film or the like is stacked on the thin-film polycrystalline silicon 3 to form a photovoltaic element.

【0011】以上のように、本発明に従えば、大きな結
晶粒径を有する薄膜多結晶シリコンを形成させることが
できるので、薄膜内におけるキャリア移動度が高められ
光電変換効率を向上させることができる。
As described above, according to the present invention, a polycrystalline silicon thin film having a large crystal grain size can be formed, so that the carrier mobility in the thin film can be increased and the photoelectric conversion efficiency can be improved. .

【0012】[0012]

【実施例】石英からなる基板を用い、ダイヤモンド粒子
を用いたブラスト法により、この基板の表面に凹凸形状
を形成し、この基板の凹凸面の上にジシラン(Si2
6)ガスを原料ガスとして用い、熱CVD法により、図
1(a)に示すような棒状部2aを有する非晶質シリコ
ン膜2を形成した。薄膜堆積条件は、Si2 6 ガス流
量40sccm、基板温度600℃、反応圧力400P
aとした。熱CVD装置としては、図5に示すような装
置を用いた。図5を参照して、石英管11内に設置され
たサセプター12上に基板1が載せられている。基板温
度は、石英管11の回りに設けられたヒーター13によ
って制御される。石英管11内にはジシランのガスボン
ベ14からジシランが供給される。必要に応じてジボラ
ン(B 2 6 )またはホスフィン(PH3 )のガスボン
ベ15から、n型ドーパントのソースガスであるホスフ
ィンまたはp型ドーパントのソースガスであるジボラン
が供給される。
EXAMPLE A diamond substrate was used on a quartz substrate.
The surface of this substrate is made uneven by the blast method using
Is formed, and disilane (Si) is formed on the uneven surface of the substrate.TwoH
6) Using a gas as a source gas, thermal CVD
Amorphous silicon having a rod-like portion 2a as shown in FIG.
A film 2 was formed. The thin film deposition conditions were SiTwoH6Gas flow
40sccm, substrate temperature 600 ℃, reaction pressure 400P
a. As a thermal CVD apparatus, an apparatus as shown in FIG.
Was used. With reference to FIG.
The substrate 1 is placed on the susceptor 12. Substrate temperature
The temperature is controlled by a heater 13 provided around the quartz tube 11.
Is controlled. Disilane gas bon
Disilane is supplied from the vessel 14. Zebora as needed
(B TwoH6) Or phosphine (PHThreeGasbon
From 15, the phosphine, which is the source gas of the n-type dopant,
Diborane, which is a source gas for quinine or p-type dopant
Is supplied.

【0013】図1(a)に示す非晶質シリコン膜2の形
成に際しては、n型ドーパントであるホスフィンガスを
供給し、n型の非晶質シリコン膜2を形成した。膜厚は
10μmであり、棒状部2aの直径は16μmであり、
高さは1mmであった。
In forming the amorphous silicon film 2 shown in FIG. 1A, a phosphine gas as an n-type dopant was supplied to form the n-type amorphous silicon film 2. The film thickness is 10 μm, the diameter of the rod portion 2a is 16 μm,
The height was 1 mm.

【0014】次に、図1(b)に示すように熱処理によ
り固相成長を行った。固相成長条件としては、650
℃、120時間とした。以上のようにして図2(a)に
示すような棒状部3aを有する薄膜多結晶シリコン3を
形成した。
Next, as shown in FIG. 1B, solid phase growth was performed by heat treatment. The solid phase growth conditions are 650
° C and 120 hours. As described above, a thin-film polycrystalline silicon 3 having a rod-like portion 3a as shown in FIG. 2A was formed.

【0015】次に薄膜多結晶シリコン3の棒状部3aを
除去した。棒状部3aの除去は物理的に行い、棒状部3
aを除去した後、化学的エッチングにより図2(b)に
示すようななめらかな凹凸形状とした。次に図2(c)
に示すように、薄膜多結晶シリコン3の上にi型非晶質
シリコン膜4及びp型非晶質シリコン膜5を形成し、p
−n接合を形成した。i型非晶質シリコン膜4及びp型
非晶質シリコン膜5の膜厚は全体で100Åとした。
Next, the rod portion 3a of the thin film polycrystalline silicon 3 was removed. Removal of the rod portion 3a is performed physically, and the rod portion 3a is removed.
After removing a, a smooth uneven shape as shown in FIG. 2B was formed by chemical etching. Next, FIG.
As shown in FIG. 1, an i-type amorphous silicon film 4 and a p-type amorphous silicon film 5 are formed on
An -n junction was formed. The total thickness of the i-type amorphous silicon film 4 and the p-type amorphous silicon film 5 was 100 °.

【0016】次に、図3(a)に示すように、p型非晶
質シリコン膜5の上にITOからなる透明導電膜6(膜
厚700Å)を形成した。さらに、図3(b)に示すよ
うに、この透明導電膜6の上に取り出し電極として串型
のアルミニウム電極7を形成した。図4は、このような
串型アルミニウム電極7の形状を示す平面図である。
Next, as shown in FIG. 3A, a transparent conductive film 6 (thickness: 700 °) made of ITO was formed on the p-type amorphous silicon film 5. Further, as shown in FIG. 3B, a skewer-shaped aluminum electrode 7 was formed on the transparent conductive film 6 as an extraction electrode. FIG. 4 is a plan view showing the shape of such a skewer-shaped aluminum electrode 7.

【0017】以上のようにして得られた本発明に従う実
施例の光起電力素子について、電流−電圧特性を測定し
図6に示した。また、比較として、薄膜多結晶シリコン
3を与える非晶質シリコン膜として棒状部を有さない非
晶質シリコン膜を、ジシランガス流量40sccm、基
板温度600℃、反応圧力133Paの条件で作製し、
その他の条件は上記実施例と同様にして比較例の光起電
力素子を作製した。この比較例の光起電力素子の電流−
電圧特性も図6に示した。
The current-voltage characteristics of the photovoltaic device of the embodiment according to the present invention obtained as described above were measured and are shown in FIG. As a comparison, an amorphous silicon film having no rod-shaped portion as an amorphous silicon film for providing the thin-film polycrystalline silicon 3 was formed under the conditions of a disilane gas flow rate of 40 sccm, a substrate temperature of 600 ° C. and a reaction pressure of 133 Pa,
The other conditions were the same as in the above example to produce a photovoltaic element of a comparative example. The current of the photovoltaic element of this comparative example
The voltage characteristics are also shown in FIG.

【0018】図6から明らかなように、本発明に従う実
施例の光起電力素子では短絡電流とフィルファクター
(F.F.)が向上しており、比較例と比べ高い光電変
換効率を示している。
As is apparent from FIG. 6, the short-circuit current and the fill factor (FF) of the photovoltaic device of the embodiment according to the present invention are improved, and the photovoltaic device exhibits higher photoelectric conversion efficiency than the comparative example. I have.

【0019】上記実施例では、薄膜多結晶シリコンの上
に非晶質シリコン膜を形成しヘテロ接合を形成させてい
るが、薄膜多結晶シリコンに熱拡散またはイオン注入法
等により逆導電型のドーパントをドープしホモ接合を形
成させてもよい。
In the above embodiment, a heterojunction is formed by forming an amorphous silicon film on a thin-film polycrystalline silicon. However, a dopant of an opposite conductivity type is formed in the thin-film polycrystalline silicon by thermal diffusion or ion implantation. To form a homojunction.

【0020】また、上記実施例では棒状部を有する非晶
質シリコン膜を結晶化させて形成する薄膜多結晶シリコ
ンをn型としているが、当然のことながら、この薄膜多
結晶シリコンはp型として形成させてもよく、さらには
真性半導体として形成させてもよい。
Further, in the above embodiment, the thin-film polycrystalline silicon formed by crystallizing the amorphous silicon film having the rod-shaped portion is of the n-type. It may be formed, or may be formed as an intrinsic semiconductor.

【0021】[0021]

【発明の効果】本発明の製造方法では、膜厚より大きな
直径の棒状部を有する非晶質シリコン膜を形成し、該非
晶質シリコン膜から固相成長法により薄膜多結晶シリコ
ンを形成し、この薄膜多結晶シリコンを光活性層として
用いている。この薄膜多結晶シリコンは、従来よりも大
きな結晶粒径の薄膜多結晶シリコンとなるので、薄膜内
におけるキャリア移動度が高められ、従来よりも高い光
電変換効率を有する光起電力素子とすることができる。
According to the manufacturing method of the present invention, an amorphous silicon film having a rod-shaped portion having a diameter larger than the film thickness is formed, and a thin film polycrystalline silicon is formed from the amorphous silicon film by a solid phase growth method. This thin-film polycrystalline silicon is used as a photoactive layer. Since this thin-film polycrystalline silicon becomes thin-film polycrystalline silicon having a larger crystal grain size than before, the carrier mobility in the thin film is increased, and a photovoltaic device having higher photoelectric conversion efficiency than before can be obtained. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従い、棒状部を有する非晶質シリコン
膜を固相成長法により結晶化する工程を示す断面図。
FIG. 1 is a cross-sectional view showing a step of crystallizing an amorphous silicon film having a rod portion by a solid phase growth method according to the present invention.

【図2】本発明の実施例における光起電力素子の製造工
程を示す断面図。
FIG. 2 is a sectional view showing a manufacturing process of the photovoltaic element according to the embodiment of the present invention.

【図3】図2に示す製造工程の続きの工程を示す断面
図。
FIG. 3 is a sectional view showing a step that follows the manufacturing step shown in FIG. 2;

【図4】図3(b)に示す串型アルミニウム電極を示す
平面図。
FIG. 4 is a plan view showing the skewer-shaped aluminum electrode shown in FIG. 3 (b).

【図5】本発明に従う実施例において用いた熱CVD装
置を示す概略構成図。
FIG. 5 is a schematic configuration diagram showing a thermal CVD apparatus used in an example according to the present invention.

【図6】本発明に従う実施例において製造した光起電力
素子の電流−電圧特性を示す図。
FIG. 6 is a diagram showing current-voltage characteristics of a photovoltaic device manufactured in an example according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板 1a…基板の凹凸面 2…非晶質シリコン膜 2a…非晶質シリコン膜の棒状部 3…薄膜多結晶シリコン 3a…薄膜多結晶シリコンの棒状部 4…n型非晶質シリコン膜 5…p型非晶質シリコン膜 6…透明導電膜 7…串型アルミニウム電極 DESCRIPTION OF SYMBOLS 1 ... Substrate 1a ... Uneven surface of substrate 2 ... Amorphous silicon film 2a ... Bar-shaped part of amorphous silicon film 3 ... Thin-film polycrystalline silicon 3a ... Rod-shaped part of thin-film polycrystalline silicon 4 ... N-type amorphous silicon film 5: p-type amorphous silicon film 6: transparent conductive film 7: skewer type aluminum electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 H01L 21/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/04 H01L 21/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 薄膜多結晶シリコンを光活性層として用
いた光起電力素子を製造する方法において、 膜厚より大きな直径の棒状部を有する非晶質シリコン膜
を形成し、該非晶質シリコン膜から固相成長法により前
記薄膜多結晶シリコンを形成することを特徴とする光起
電力素子の製造方法。
1. A method for manufacturing a photovoltaic device using thin-film polycrystalline silicon as a photoactive layer, comprising: forming an amorphous silicon film having a rod-shaped portion having a diameter larger than the film thickness; Forming the thin-film polycrystalline silicon by a solid phase growth method from the above.
JP5279793A 1993-11-09 1993-11-09 Method for manufacturing photovoltaic element Expired - Fee Related JP2892922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5279793A JP2892922B2 (en) 1993-11-09 1993-11-09 Method for manufacturing photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5279793A JP2892922B2 (en) 1993-11-09 1993-11-09 Method for manufacturing photovoltaic element

Publications (2)

Publication Number Publication Date
JPH07135332A JPH07135332A (en) 1995-05-23
JP2892922B2 true JP2892922B2 (en) 1999-05-17

Family

ID=17615992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5279793A Expired - Fee Related JP2892922B2 (en) 1993-11-09 1993-11-09 Method for manufacturing photovoltaic element

Country Status (1)

Country Link
JP (1) JP2892922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082254C (en) * 1995-08-22 2002-04-03 松下电器产业株式会社 Silicon Structure, its mfg. method and apparatus, and solar cell using same
KR101411808B1 (en) 2010-12-10 2014-06-25 데이진 가부시키가이샤 Semiconductor laminate, semiconductor device, method for producing semiconductor laminate, and method for manufacturing semiconductor device
JP2012234994A (en) * 2011-05-02 2012-11-29 Teijin Ltd Semiconductor silicon film and semiconductor device, and method for manufacturing them

Also Published As

Publication number Publication date
JPH07135332A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
CA1068805A (en) Low cost substrates for polycrystalline solar cells
JP3822238B2 (en) Multilayer solar cell manufacturing method
JP3322440B2 (en) Method for producing thin-film polycrystalline silicon
JP2003298078A (en) Photoelectromotive element
JPH0794431A (en) Substrate for amorphous semiconductor, amorphous semiconductor substrate having the same, and manufacture of amorphous semiconductor substrate
JPH04245683A (en) Manufacture of solar cell
JP2003298077A (en) Solar cell
US8211738B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
JP2892922B2 (en) Method for manufacturing photovoltaic element
JPH0864851A (en) Photovoltaic element and fabrication thereof
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JP2002261305A (en) Thin-film polycrystalline silicon solar cell and manufacturing method therefor
JPH04333288A (en) Manufacture of solar cell
JP2667218B2 (en) Solar cell and method of manufacturing the same
JP3105310B2 (en) Polycrystalline semiconductor film and thin film transistor manufacturing method
JPH0834177B2 (en) Method for manufacturing semiconductor polycrystalline thin film
JP2875493B2 (en) Method for manufacturing thin-film polycrystalline semiconductor
JPH0888189A (en) Thin film polycrystalline semiconductor and its manufacture, and photovoltaic device and its manufacture
JP3067821B2 (en) Solar cell and method of manufacturing the same
JPH07335660A (en) Manufacture of thin film polycrystalline silicon
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JP2846704B2 (en) Photoelectric conversion element
JP2802180B2 (en) Solar cell manufacturing method
JP2692683B2 (en) Semiconductor device and manufacturing method thereof
JP2771667B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees