JP2892450B2 - Circumferential welding method for ERW line pipe for reel barge installation - Google Patents
Circumferential welding method for ERW line pipe for reel barge installationInfo
- Publication number
- JP2892450B2 JP2892450B2 JP17634890A JP17634890A JP2892450B2 JP 2892450 B2 JP2892450 B2 JP 2892450B2 JP 17634890 A JP17634890 A JP 17634890A JP 17634890 A JP17634890 A JP 17634890A JP 2892450 B2 JP2892450 B2 JP 2892450B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- less
- welding
- extra
- toe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、リールバージ敷設に優れた電縫鋼管ライン
パイプの円周溶接施工方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for circumferential welding of an ERW steel pipe line pipe excellent in laying a reel barge.
〈従来の技術〉 従来、海底ラインパイプの敷設方法としては、第6図
に示すように、バージ1上に手溶接、MIG(Metal Inert
Gas)溶接またはMAG(Metal Active Gas)溶接により
円周溶接を行い、接続したパイプ2を送り出して海底4
に敷設する方法が最も一般的である。しかし、この方法
はバージ1上にて溶接、溶接部の検査、コーティング等
を行う必要があり、作業スペースが狭いために作業効率
が劣ること、あるいは天候の影響を大きく受けるために
作業能率が悪いなどの問題があった。<Conventional technology> Conventionally, as a method of laying a submarine line pipe, as shown in FIG.
Girth welding or MAG (Metal Active Gas) welding is performed, and the connected pipe 2 is sent out to the sea floor 4
The most common method is to lay it. However, this method requires welding, inspection of a welded portion, coating, and the like on the barge 1, resulting in poor working efficiency due to a small working space, or poor working efficiency due to a large influence of weather. There was such a problem.
このため、第7図(a)に示すように、陸上5で円周
溶接、検査、およびコーティング等を行い、できあがっ
た長尺のパイプ2を海上のバージ1のリール3上に巻き
取り、第7図(b)に示すように目的とする海上におい
て、リール3からパイプ2を巻き戻しながら海底4に敷
設する、いわゆるリールバージ法が多用されつつある。Therefore, as shown in FIG. 7 (a), circumferential welding, inspection, coating, and the like are performed on the land 5, and the completed long pipe 2 is wound up on the reel 3 of the barge 1 on the sea. As shown in FIG. 7 (b), a so-called reel barge method, in which a pipe 2 is rewound from a reel 3 and laid on a seabed 4 while being rewound, is being frequently used.
このリールバージ法では、非常に効率的に作業を行う
ことができるものの、リール3に巻き取る時あるいは海
底に敷設するためにリール3から巻き戻す時に、パイプ
2の一部に引張及び圧縮の応力がかかり、第8図に示す
ようにパイプ2の母材9の円周溶接部7のトウ部に割れ
6が生じやすいという問題があった。In this reel barge method, although it is possible to work very efficiently, when winding on the reel 3 or rewinding from the reel 3 for laying on the seabed, tensile and compressive stress is applied to a part of the pipe 2. As a result, as shown in FIG. 8, there is a problem that a crack 6 is likely to occur in a toe portion of a circumferential weld 7 of the base material 9 of the pipe 2.
他方、使用されるラインパイプは品質、強度の面から
シームレスパイプが多用されてきたが、近年品質および
強度が向上し、コストダウンを図る意味から電縫鋼管を
使用する試みがなされるようになった。On the other hand, seamless pipes have been widely used in terms of quality and strength of line pipes, but in recent years quality and strength have been improved, and attempts to use ERW steel pipes have been made in order to reduce costs. Was.
しかし、電縫鋼管はシームレスパイプに比べて、なお
一層円周溶接部のトウ部割れ対策が困難である。However, the ERW steel pipe is more difficult to prevent the toe portion from cracking at the circumferential weld than the seamless pipe.
その理由は、電縫鋼管用の鋼板を製造するとき、高強
度、高靭性を得るためにコントロールドローリング(以
下CRという)法が採用されるが、円周溶接時の熱により
Ac3点以上に加熱され、CR効果がなくなるため溶接熱影
響部が母材より軟化し、トウ部割れが発生しやすくなる
ためと考えられる。The reason is that when manufacturing steel sheets for ERW steel pipes, the control drawing (hereinafter referred to as CR) method is adopted to obtain high strength and high toughness.
It is considered that the material is heated to three or more points of Ac and the CR effect disappears, so that the heat affected zone is softened more than the base metal, and the toe portion cracks easily occur.
〈発明が解決しようとする課題〉 従来より、溶接部の靭性を改良する方法として、特公
昭60−31888号あるいは特開昭53−12751号がある。前者
は、母材成分の炭素当量を規定しかつ溶接後熱処理を行
うものであり、後者は溶接時に被溶接材料に超音波振動
を付与して行うものである。これらは、溶接部の靭性向
上に効果はあるものの、前者では特に熱処理工程の追加
が必要である。後者は超音波を付与するための装置およ
び適当な振動数の調整が必要であり、また振動数が不適
当であると付与しないほうがかえって靭性が優れるとい
う問題がある。<Problems to be Solved by the Invention> Conventionally, as a method for improving the toughness of a welded portion, there is JP-B-60-31888 or JP-A-53-12751. The former specifies the carbon equivalent of the base metal component and performs heat treatment after welding, and the latter performs ultrasonic vibration to the material to be welded during welding. Although these are effective in improving the toughness of the weld, the former requires an additional heat treatment step. The latter requires a device for applying an ultrasonic wave and an appropriate adjustment of the frequency, and if the frequency is not appropriate, the application of the ultrasonic wave does not result in a higher toughness.
本発明は、上記の状況に鑑み、リールバージ敷設に対
して溶接部の割れがない円周溶接方法を提供するために
なされたものである。The present invention has been made in view of the above circumstances, and has been made in order to provide a circumferential welding method in which a welded portion is not cracked when a reel barge is laid.
〈課題を解決するための手段〉 本発明は、ラインパイプを円周溶接するに際し、最
終層を前層までに用いた溶接材料より少なくとも5kg/mm
2以上低い強度の溶接材料を用いて溶接することを特徴
とするリールバージ敷設用電縫鋼管ラインパイプを円周
溶接方法であり、ラインパイプを円周溶接するに際
し、余盛形状を、 2mm≦余盛止端部曲率半径, 120°≦余盛止端部角度, 0.8mm≦余盛高さ≦1.8mm に規制して溶接することを特徴とする前項記載のリー
ルバージ敷設用電縫鋼管ラインパイプの円周溶接方法で
あり、さらに電縫鋼管の化学組成が、 C :0.03〜0.20重量%, Mn:0.50〜1.5重量%, Si:0.05〜0.50重量%, Al:0.005〜0.060重量% の範囲内で、Nb,V,Tiが、 Nb+V+Ti≦0.040重量% を満足し、残部は実質的に鉄および不可避的不純物より
なり、かつ下記で与えられる炭素当量Ceqが0.20以上0.3
6以下、および溶接割れ感受性Pcmが0.25以下である前項
または記載のリールバージ敷設用電縫鋼管ラインパ
イプの円周溶接方法、 Ceq=C+Mn/6+V/5 Pcm=C+Si/30+Mn/20+V/10 であり、また電縫管の化学組成が、 C :0.03〜0.20重量%, Mn:0.50〜1.5重量%, Si:0.05〜0.50重量%, Al:0.005〜0.060重量% の範囲内で、Nb,V,Tiが、 Nb+V+Ti≦0.040重量% を満足し、さらに、 Mo:0.30重量%以下, B :0.002重量%以下 のうち1種または2種を含み、残部は実質的に鉄及び不
可避的不純物からなり、かつ下記で与えられる炭素当量
Ceqが0.20以上0.36以下、および溶接割れ感受性Pcmが0.
25以下である前項または記載のリールバージ敷設用
電縫鋼管ラインパイプの円周溶接方法、 Ceq=C+Mn/6+Mo/5+V/5 Pcm=C+Si/30+Mn/20+Mo/15+V/10+5B であり、また、電縫管の化学組成が、 C :0.03〜0.20重量%, Mn:0.50〜1.5重量%, Si:0.05〜0.50重量%, Al:0.005〜0.060重量% の範囲内で、Nb,V,Tiが、 Nb+V+Ti≦0.040重量% を満足し、さらに、 Ni:0.50重量%以下, Cu:0.50重量%以下, Ca:0.005重量%以下, Cr:0.3重量%以下 のうちから選ばれた1種もしくは2種以上を含有し、残
部は実質的に鉄及び不可避的不純物からなり、かつ下記
で与えられる炭素当量Ceqが0.20以上0.36以下、および
溶接割れ感受性Pcmが0.25以下である前項または記
載のリールバージ敷設用電縫鋼管ラインパイプの円周溶
接方法、 Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+V/5 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+V/10 であり、電縫管の化学組成が、 C :0.03〜0.20重量%, Mn:0.50〜1.5重量%, Si:0.05〜0.50重量%, Al:0.005〜0.060重量% の範囲内で、Nb,V,Tiが、 Nb+V+Ti≦0.040重量% を満足し、さらに、 Ni:0.50重量%以下, Cu:0.50重量%以下, Ca:0.005重量%以下, Cr:0.3重量%以下 のうちから選ばれた1種もしくは2種以上を含有し、さ
らに、 Mo:0.30重量%以下, B :0.002重量%以下 のうち1種または2種を含み、残部は実質的に鉄及び不
可避的不純物からなり、かつ下記で与えられる炭素当量
Ceqが0.20以上0.36以下、および溶接割れ感受性Pcmが0.
25以下である前項または記載のリールバージ敷設用
電縫鋼管ラインパイプの円周溶接方法、 Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B である。<Means for Solving the Problems> The present invention, when circumferential welding the line pipe, at least 5kg / mm from the welding material used the last layer up to the previous layer
This is a method of circumferentially welding a line pipe of ERW steel pipe for reel barge laying, characterized by welding using a welding material with a strength of at least 2 or less. An electric resistance welded steel pipe line for laying a reel barge as described in the preceding paragraph, wherein welding is performed by restricting the radius of curvature of the extra toe portion, 120 ° ≦ the extra toe angle, and 0.8 mm ≦ the extra height ≦ 1.8 mm. It is a method of circumferential welding of pipes, and the chemical composition of the ERW steel pipe is as follows: C: 0.03 to 0.20 wt%, Mn: 0.50 to 1.5 wt%, Si: 0.05 to 0.50 wt%, Al: 0.005 to 0.060 wt% Within the range, Nb, V, Ti satisfies Nb + V + Ti ≦ 0.040% by weight, the balance substantially consists of iron and unavoidable impurities, and the carbon equivalent Ceq given below is 0.20 to 0.3.
Circumferential welding method of ERW steel pipe line pipe for reel barge laying of 6 or less and welding crack susceptibility Pcm of 0.25 or less, Ceq = C + Mn / 6 + V / 5 Pcm = C + Si / 30 + Mn / 20 + V / 10 The chemical composition of the electric resistance welded tube is as follows: C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight, Nb, V, Ti satisfies Nb + V + Ti ≦ 0.040% by weight, further contains one or two of Mo: 0.30% by weight or less, B: 0.002% by weight or less, and the balance substantially consists of iron and inevitable impurities; And the carbon equivalent given below
Ceq is 0.20 or more and 0.36 or less, and weld crack susceptibility Pcm is 0.
Ceq = C + Mn / 6 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Mo / 15 + V / 10 + 5B When the chemical composition of the tube is within the following range: C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight, Nb, V, Ti is Nb + V + Ti ≤0.040% by weight, and one or more selected from Ni: 0.50% by weight or less, Cu: 0.50% by weight or less, Ca: 0.005% by weight or less, and Cr: 0.3% by weight or less And the remainder is substantially composed of iron and inevitable impurities, and the carbon equivalent Ceq given below is 0.20 or more and 0.36 or less, and the welding crack susceptibility Pcm is 0.25 or less. Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 Ni / 60 + Cr / 20 + V / 10, and the chemical composition of the ERW pipe is as follows: C: 0.03 to 0.20 wt%, Mn: 0.50 to 1.5 wt%, Si: 0.05 to 0.50 wt%, Al: 0.005 to 0.060 wt% Within the range, Nb, V, Ti satisfies Nb + V + Ti ≦ 0.040% by weight. Ni: 0.50% by weight or less, Cu: 0.50% by weight or less, Ca: 0.005% by weight or less, Cr: 0.3% by weight or less Contains one or more selected from among them, further contains one or two of Mo: 0.30% by weight or less, B: 0.002% by weight or less, and the balance is substantially iron and unavoidable impurities And the carbon equivalent given below
Ceq is 0.20 or more and 0.36 or less, and weld crack susceptibility Pcm is 0.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5B.
〈作用〉 以下に本発明の作用を説明する。<Operation> The operation of the present invention will be described below.
本発明者らは、上記した円周溶接トウ部の割れについ
て、第9図に示すようにAPI規格1104に従って電縫鋼管
ラインパイプの円周溶接部から試験片10を取り出し、曲
げ試験機11を用いて繰り返し曲げ試験(歪量5%)によ
って再現試験を実施し検討した結果、第8図に示す典型
例にみられるような割れ6が円周溶接トウ部より発生し
ていることが確認できた。この割れは最終層の溶接金属
と母材部の硬度の差が大きい時に発生する傾向が多いこ
とが明らかとなった。The present inventors took out the test piece 10 from the circumferential weld portion of the ERW line pipe according to the API standard 1104 as shown in FIG. As a result of conducting a repetition test by a repeated bending test (strain amount 5%) and using the same, it was confirmed that a crack 6 as shown in the typical example shown in FIG. 8 was generated from the circumferential weld toe. Was. It became clear that the cracks tended to occur when the difference in hardness between the weld metal of the final layer and the base material was large.
従って、この種の割れは第10図に示した硬さ分布の模
式図から判るように溶接金属と母材部との硬度差に起因
するものであり、巻き取り、巻き戻し時に溶接金属と母
材部で塑性変形の不均一が生じるために発生すると考え
られる。すなわち、母材部の塑性変形が母材部より硬度
の高い溶接金属により拘束されるためであると考えられ
る。また、第10図に示すように最終層の溶接金属の硬度
が母材部と比較して高くなる理由は、最終層では次パス
の溶接熱で軟化することがないためである。Accordingly, as can be seen from the schematic diagram of the hardness distribution shown in FIG. 10, this type of crack is caused by a difference in hardness between the weld metal and the base material. This is considered to be caused by non-uniform plastic deformation in the material part. That is, it is considered that the plastic deformation of the base material portion is restricted by the weld metal having higher hardness than the base material portion. Further, as shown in FIG. 10, the reason that the hardness of the weld metal in the final layer is higher than that in the base material portion is that the final layer is not softened by welding heat in the next pass.
上記の検討結果から最終層の溶接金属の硬度を母材部
に近づけるために、最終層を前層までに用いた溶接材料
より低い強度の溶接材料を用いて円周溶接を行い、繰り
返し曲げ試験を実施した。この試験結果を第1図に示し
たが、採取層を前層までに用いた溶接材料より少なくと
も5kg/mm2以上低い強度の溶接材料を用いる方が、著し
く割れ発生率が低減することがわかる。From the above examination results, in order to make the hardness of the weld metal of the final layer closer to the base metal part, a girth welding was performed using a welding material with a lower strength than the welding material used for the final layer up to the previous layer, and repeated bending tests Was carried out. FIG. 1 shows the test results. It can be seen that the use of a welding material having a strength lower by at least 5 kg / mm 2 or more than that of the welding material using the sampled layer up to the previous layer significantly reduces the crack generation rate. .
この場合の溶接方法は通常手溶接で行われるが、MIG
溶接またはMAG溶接でもよい。ここで、溶接材料は溶接
棒を指し、セルロース系の溶接棒を使用する方が望まし
い。The welding method in this case is usually performed by hand welding, but MIG
Welding or MAG welding may be used. Here, the welding material refers to a welding rod, and it is more preferable to use a cellulosic welding rod.
また、最終層の溶接材料の強度は、前層と比較して、
継手強度の面から、15kg/mm2減以下が望ましい。In addition, the strength of the welding material in the final layer is
From the viewpoint of joint strength, it is desirable to reduce the weight by 15 kg / mm 2 or less.
次に円周溶接部の余盛形状を、 2mm≦余盛止端部曲率半径, 120°≦余盛止端部角度, 0.8mm≦余盛高さ≦1.8mm に規制した理由について述べる。 Next, the reasons for restricting the extra weld shape of the girth weld to 2mm ≤ extra toe radius of curvature, 120 ° ≤ extra toe angle, 0.8mm ≤ extra height ≤ 1.8mm are described.
第11図に示すように前記溶接トウ部の割れ6は、余盛
高さH、余盛止端部曲率半径r、および余盛止端部角度
αに関しては、余盛高さが高い程発生しやすく、また余
盛高さが等しい場合は余盛止端部曲率半径あるいは余盛
止端部角度が小さいほど発生する傾向が大きく、これら
3つの値を適当な範囲に規定すれば割れを有効に防止し
えることが明らかとなった。As shown in FIG. 11, the crack 6 in the weld toe portion is generated as the extra height increases, the extra height H, the extra radius of the toe curvature radius r, and the extra extra toe angle α increase. In the case where the height of the overfilling is equal, the tendency of occurrence is large as the radius of curvature of the overfilling toe or the angle of the overfilling toe is small. If these three values are set in appropriate ranges, cracking is effective. It became clear that it could be prevented.
従って、この種の割れは継手部における形状的不連続
に起因するものであり、巻き取り、巻き戻し時に引張応
力・圧縮応力を受けた場合、止端部つまりトウ部に応力
集中が起こり発生すると考えられる。すなわち、溶接部
での幾何学的形状の急激な変化のため、溶接部での応力
の流れが複雑になりトウ部に大きな応力集中が生じ、割
れが発生すると考えられる。Therefore, this kind of crack is caused by the shape discontinuity in the joint part, and when tensile stress and compressive stress are applied during winding and unwinding, if stress concentration occurs at the toe part, that is, toe part, Conceivable. That is, it is considered that a sudden change in the geometrical shape at the welded portion complicates the flow of stress at the welded portion, causes a large stress concentration at the toe portion, and causes cracking.
この検討結果より、本発明の目的を有効に達成するた
めに必要とされるべき要件を見出すため、余盛形状を種
々変化させて円周溶接を行い、前記条件と同じ条件で繰
り返し曲げ実験を実施し、トウ部の割れ発生について調
査したところ、次のような要件が新たに見出された。From this examination result, in order to find out the requirements that need to be achieved in order to effectively achieve the object of the present invention, circumferential welding is performed with variously changed overfill shapes, and repeated bending tests are performed under the same conditions as the above conditions. The following requirements were newly found as a result of conducting a survey and investigating the occurrence of cracks in the toe.
余盛止端部曲率半径γが2mmより大きいこと。The radius of curvature γ of the extra toe must be greater than 2 mm.
第2図に余盛止端部曲率半径γとトウ部の割れ発生率
との関係を示す。第2図は、余盛高さH:0.8〜1.8mm、余
盛止端部角度α:120〜150°の条件下で余盛止端部曲率
半径γの変化に対するトウ部の割れの発生率を調べた結
果である。FIG. 2 shows the relationship between the radius of curvature γ of the extra toe and the crack occurrence rate at the toe. Fig. 2 shows the rate of occurrence of cracks in the toe portion with respect to the change in the radius of curvature γ of the extra toe under the conditions of the extra height H: 0.8 to 1.8 mm and the extra toe angle α: 120 to 150 °. It is the result of having investigated.
第2図から、余盛止端部曲率半径がトウ部の割れの発
生率に大きく影響していることが定性的に認められる。
また、第2図を定量的にみた場合、余盛止端部曲率半径
が、1mm以上より効果が現れ始め、2mm以上で満足すべき
効果に至っていることが確認できる。なお、10mm以上で
は、若干の効果向上は認められるものの、必要以上に余
盛止端部曲率半径を大きくすることは開先角度を大きく
する等の必要があるため、溶接自体が不安定になり溶接
欠陥を生じやすく、かえって溶接部での割れを生むこと
になる。従って、実用上は、余盛止端部曲率半径は2〜
10mmが望ましい。From FIG. 2, it is qualitatively recognized that the radius of curvature of the extra toe portion has a large effect on the incidence of cracking in the toe portion.
In addition, when quantitatively viewed in FIG. 2, it can be confirmed that the effect starts to appear when the radius of curvature of the extra toe is 1 mm or more, and the effect is satisfactory when the radius of curvature is 2 mm or more. With 10 mm or more, although the effect is slightly improved, it is necessary to increase the radius of curvature of the extra toe beyond the necessity, such as increasing the groove angle, so that the welding itself becomes unstable. Welding defects are likely to occur, and cracks at the weld are rather created. Therefore, in practice, the radius of curvature of the extra toe is 2 to 2.
10 mm is desirable.
余盛止端部角度αが120°より大であること。The extra toe angle α is greater than 120 °.
第3図に余盛止端部角度とトウ部の割れの発生率との
関係を示す。第3図は、余盛高さH:0.8〜1.8mm、余盛止
端部曲率半径r:2〜10mmの条件下で余盛止端部角度の変
化に対するトウ部の割れの発生率を調べた結果である。FIG. 3 shows the relationship between the extra toe angle and the incidence of cracks in the toe. Fig. 3 shows the rate of occurrence of cracks in the toe with respect to the change in the angle of the toe toe under the condition that the height of the extra toe is H: 0.8 to 1.8 mm and the radius of curvature of the toe toe at the extra toe r: 2 to 10 mm. It is a result.
第3図から、余盛止端部角度がトウ部の割れの発生率
に大きく影響していることが定性的に認められる。ま
た、第3図を定量的にみた場合、余盛止端部角度が100
°以上で効果が現れ始め、120°以上で満足すべき効果
に至っていることが確認できれる。なお、150°以上で
は、若干の効果向上は認められるものの、必要以上に余
盛止端部角度を大きくすることはの場合と同様に開先
角度を大きくする等の必要があるため、溶接自体が不安
定になり溶接欠陥を生じやすく、かえって溶接部での割
れを生むことになる。従って、実用上は、余盛止端部角
度は、120〜150°となることが望ましい。From FIG. 3, it is qualitatively recognized that the extra toe angle greatly affects the incidence of cracks in the toe. In addition, when quantitatively looking at FIG. 3, the extra toe angle is 100
It can be confirmed that the effect starts to be exhibited at an angle of 120 ° or more, and a satisfactory effect is achieved at an angle of 120 ° or more. If the angle is 150 ° or more, although a slight improvement in the effect is recognized, it is necessary to increase the groove angle similarly to the case of increasing the excess toe angle more than necessary. Becomes unstable and a welding defect is apt to occur, and rather, a crack is generated in a welded portion. Therefore, in practical use, it is desirable that the extra toe angle be 120 to 150 °.
0.8mm≦余盛高さ≦1.8mmであること。0.8mm ≤ extra height ≤ 1.8mm.
第4図に余盛高さとトウ部の割れの発生率との関係を
示す。第4図は、余盛止端部曲率半径:2〜10mm、余盛止
端部角度:120〜150°の条件下で余盛高さの変化に対す
るトウ部の割れの発生率を調べた結果である。FIG. 4 shows the relationship between the extra height and the incidence of cracks in the toe. Fig. 4 shows the results of examining the rate of occurrence of cracks in the toe portion with respect to the change in the height of the extra embankment under the conditions of the radius of curvature of the extra embankment toe: 2 to 10 mm and the angle of the extra embankment toe: 120 to 150 °. It is.
第4図から、余盛高さがトウ部の割れの発生率に大き
く影響していることが定性的に認められる。また、第4
図を定量的にみた場合、余盛高さが、2.6mm以下から効
果が現れ始め、1.8mm以下で満足すべき効果に至ってい
ることが確認できる。なお、0.8mm未満においては、若
干の効果向上は認められるものの、継手強度の面から悪
影響があり、溶接部破断を起こしやすい。このため、余
盛高さは0.8〜1.8mmとなることが望ましい。From FIG. 4, it can be qualitatively recognized that the extra height greatly affects the incidence of cracks in the toe portion. Also, the fourth
When the figure is quantitatively observed, it can be confirmed that the effect starts to appear when the extra height is 2.6 mm or less and reaches a satisfactory effect when the height is 1.8 mm or less. If the thickness is less than 0.8 mm, although a slight improvement in the effect is recognized, there is an adverse effect on the joint strength, and the weld is likely to break. For this reason, it is desirable that the extra height be 0.8 to 1.8 mm.
前述の溶接金属の強度および溶接部の余盛形状の適用
については電縫鋼管製のラインパイプについて述べた
が、シームレスまたはその他のラインパイプであっても
適用される。The application of the strength of the weld metal and the extra shape of the welded portion has been described for the line pipe made of ERW steel pipe, but the invention is also applicable to a seamless or other line pipe.
発明者らは、さらに円周溶接トウ部の割れ発生には溶
接熱影響部の軟化が悪影響を及ぼしていることを見出
し、溶接時の熱を受けても軟化の程度が事実上問題のな
い以下に示す高靭性電縫鋼管を用いることによって、前
記した溶接金属の強度および溶接部の余盛形状と併せて
使用することによって、円周溶接部の割れがない溶接法
を見出した。The inventors have further found that softening of the weld heat-affected zone has an adverse effect on the occurrence of cracks in the circumferential weld toe, and the degree of softening does not cause any problem even when receiving heat during welding. By using the high-toughness ERW steel pipe shown in (1) above and using it together with the above-mentioned strength of the weld metal and the extra shape of the welded part, a welding method without cracks in the circumferential welded part was found.
(a)電縫鋼管ラインパイプ母材の成分として、 C :0.03〜0.20重量%, Mn:0.50〜1.5重量%, Si:0.05〜0.50重量%, Al:0.005〜0.060重量% の範囲内で含有し、かつ、Nb,V,Tiについて、 Nb+V+Ti≦0.040重量% を満足し、残部は実質的に鉄および不可避的不純物より
なる鋼で、かつ炭素当量Ceqおよび溶接割れ感受性Pcm
が、 0.20≦Ceq≦0.36 Pcm≦0.25 を満足することを特徴とするリールバージ敷設に優れた
高靭性電縫鋼管ラインパイプとするのが望ましい。(A) As a component of the ERW steel linepipe base metal, C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight And Nb + V + Ti ≦ 0.040% by weight with respect to Nb, V and Ti, the balance being steel substantially consisting of iron and unavoidable impurities, and carbon equivalent Ceq and weld cracking susceptibility Pcm
However, it is desirable to provide a high toughness ERW steel pipe line pipe excellent in laying a reel barge, characterized by satisfying 0.20 ≦ Ceq ≦ 0.36 Pcm ≦ 0.25.
また、上記鋼の成分に加えて、 (b)Ni:0.50重量%以下, Cu:0.50重量%以下, Ca:0.005重量%以下, Cr:0.3重量%以下 のうちから選ばれた1種もしくは2種以または/および (c)Mo:0.30重量%以下, B :0.002重量%以下 のうち1種または2種を含有するリールバージ敷設に優
れた高靭性電縫鋼管ラインパイプとするのが望ましい。In addition to the above steel components, (b) one or two selected from the group consisting of: Ni: 0.50% by weight or less, Cu: 0.50% by weight or less, Ca: 0.005% by weight or less, Cr: 0.3% by weight or less It is desirable to use a high toughness electric resistance welded steel pipe linepipe excellent in laying bar reels containing one or two of the following types and / or (c) Mo: 0.30% by weight or less, B: 0.002% by weight or less.
ただし、CeqおよびPcmは次式で与えられ、含有しない
合金元素については、その元素の項は0として計算する
ものとする。However, Ceq and Pcm are given by the following formulas. For alloying elements that are not contained, the element term is calculated as 0.
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B 本発明者らは、API規格1104に従って前記電縫鋼管ラ
インパイプの円周溶接部から試験片10を取り出し、第9
図に示すような曲げ試験機11を用いて繰り返し曲げ試験
(歪量5%)を実施し検討した。この結果割れ6が円周
溶接部7のトウ部より発生していることを確認し、この
割れは溶接熱影響部の軟化の程度が大きい時に発生する
傾向が大きく、溶接熱影響部の軟化を小さくすれば有効
に防止し得ることが明らかとなった。Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5B The present inventors took out the test piece 10 from the circumferential weld of the ERW line pipe according to API standard 1104, and
Using a bending tester 11 as shown in the figure, a repeated bending test (strain amount 5%) was carried out and examined. As a result, it was confirmed that the cracks 6 were generated from the toe portion of the circumferential welded portion 7, and the cracks tended to be generated when the degree of softening of the heat affected zone was large. It has become clear that a smaller size can be effectively prevented.
この種の割れは第10図のグラフに示した硬さHvの分布
の模式図から解るように、溶接部7による溶接熱影響部
8と母材9の硬度差に起因するものであり、巻き取り、
巻き戻し時に溶接熱影響部8と母材9で塑性変形の不均
一が生じるために発生すると考えられる。すなわち、割
れの発生は、軟化域をもつ溶接熱影響部8に変形が集中
し、局部的に加工硬化し脆化することにより起こると考
えられる。Cracking of this kind is due to difference in hardness between the first 10 as can be seen from the schematic diagram of the distribution of hardness H v shown in the graph of Figure, the weld heat affected zone 8 by welds 7 base material 9, Take-up,
This is considered to be caused by unevenness in plastic deformation between the heat affected zone 8 and the base material 9 during unwinding. That is, it is considered that the generation of cracks is caused by the deformation concentrated in the weld heat affected zone 8 having the softening zone, and the work hardening and embrittlement locally.
上記した検討結果から、溶接熱影響部の軟化の程度を
減少させるために、種々の成分系について軟化の度合
(ΔHv)を調査し、ある特定の成分系にすれば軟化の度
合を非常に小さく抑えることができることを発見した。From the above examination results, in order to reduce the degree of softening of the weld heat affected zone, the degree of softening (ΔH v ) was investigated for various component systems. I found that it can be kept small.
それは、第5図に示すように、Nb,V及びTiの合計量と
Ceq(炭素当量)の値を規制することである。第5図
は、Nb+V+Tiの量を0.040重量%以下および0.040重量
%超にした場合の軟化の度合(ΔHv)とCeqの関係を示
したものであり、定性的に、Ceqを増加させればΔHvを
減ずることができることがわかる。定量的には、Ceqを
0.20重量%以上にすればΔHvを8以下に抑えることがで
きる。ΔHvが8以下では第9図に示した繰り返し曲げ試
験より円周溶接トウ部からの割れはほどんど皆無であ
る。It is, as shown in FIG. 5, the total amount of Nb, V and Ti.
It is to regulate the value of Ceq (carbon equivalent). FIG. 5 shows the relationship between the degree of softening (ΔH v ) and Ceq when the amount of Nb + V + Ti is 0.040% by weight or less and more than 0.040% by weight. If Ceq is qualitatively increased, It can be seen that ΔH v can be reduced. Quantitatively, Ceq
[Delta] H v If more than 0.20 wt% can be the suppressed to 8 below. When ΔH v is 8 or less, there is almost no crack from the circumferential weld toe according to the repeated bending test shown in FIG.
Nb,V及びTiの合計量の制限が軟化抑制に効果があるの
は、これらは、単体あるいはそれらの複合により、母材
の強度を上げる、すなわちCRの効果を上げる元素であ
り、これらの元素を限定することにより、CRの効果を減
少することができるためと考えられる。さらに、Ceqの
上昇が軟化抑制に効果があるのは、基本的にCRの効果を
減らすためと考えられ、円周溶接時の熱による軟化の程
度が少なくなり均一変形が行われ、曲げ延性の改善には
寄与すると考えられる。The reason that the limitation of the total amount of Nb, V and Ti is effective in suppressing softening is that these are elements that increase the strength of the base material, that is, increase the effect of CR by a simple substance or a combination thereof, and these elements This is considered to be because the effect of CR can be reduced by limiting. Furthermore, it is considered that the increase in Ceq is effective in suppressing softening because the effect of CR is basically reduced, and the degree of softening due to heat during circumferential welding is reduced, uniform deformation is performed, and bending ductility is reduced. It is thought to contribute to improvement.
Nb+V+Tiを0.0040重量%以下に規制するのは、溶接
熱影響部の軟化を、実際上問題のない程度まで抑えるた
めに、Nb+V+Tiを0.040重量%以下であることが必要
である。よって、0.040重量%以下の範囲とするのが好
ましい。また、Ceqの範囲については0.20重量%未満で
は、その効果がなく、0.36重量%を超えると、Ceqの上
昇の効果が飽和するだけでなく、著しい靭性の劣化が起
こる。よって、0.20重量%以上、0.36重量%以下の範囲
とするのが好ましい。The reason why Nb + V + Ti is restricted to 0.0040% by weight or less is that Nb + V + Ti needs to be 0.040% by weight or less in order to suppress the softening of the heat affected zone to a practically acceptable level. Therefore, it is preferable that the content be in the range of 0.040% by weight or less. When the range of Ceq is less than 0.20% by weight, the effect is not obtained. When it exceeds 0.36% by weight, the effect of increasing Ceq is not only saturated, but also the toughness is significantly deteriorated. Therefore, the content is preferably in the range of 0.20% by weight or more and 0.36% by weight or less.
その他、本発明に用いて好適な鋼における各成分の限
定理由について説明する。Other reasons for limiting each component in steel suitable for use in the present invention will be described.
Cは必要な強度を得るために、0.03重量%以上の含有
が必須であるが、0.20重量%を超えると、溶接割れ感受
性が増大するため0.03〜0.20重量%の範囲とするのが好
ましい。In order to obtain the required strength, C must be contained in an amount of 0.03% by weight or more. However, if it exceeds 0.20% by weight, susceptibility to weld cracking increases, so it is preferable that C be in the range of 0.03 to 0.20% by weight.
Siは脱酸剤としてまた強度を確保する目的で0.05重量
%以上の添加が必要であるが、0.50重量%を超えると、
低温靭性の劣化および溶接割れ感受性を高めるので、0.
05〜0.50重量%の範囲とするのが好ましい。Si must be added as a deoxidizing agent and in an amount of 0.05% by weight or more for the purpose of securing strength. However, if it exceeds 0.50% by weight,
As the deterioration of low-temperature toughness and the susceptibility to weld cracking increase,
It is preferably in the range of 05 to 0.50% by weight.
Mnは強度を確保するために、0.50重量%以上の添加が
必要であるが、1.5重量%を超えると、溶接割れ感受性
が増大しラインパイプ敷設時に必要な曲げ延性の劣化を
招くため、0.50〜1.5重量%の範囲とするのが好まし
い。Mn must be added in an amount of 0.50% by weight or more in order to secure strength. However, if it exceeds 1.5% by weight, the susceptibility to weld cracking increases and the bending ductility required when laying a line pipe is deteriorated. Preferably, it is in the range of 1.5% by weight.
Alは強力な脱酸元素であるが、0.005重量%未満では
その効果がなく、一方0.060重量%を超えると効果はほ
ぼ飽和に達するだけでなく非金属介在物の増加をもたら
す。よって、0.005〜0.060重量%の範囲とするのが好ま
しい。Al is a strong deoxidizing element, but below 0.005% by weight has no effect, while above 0.060% by weight the effect not only reaches almost saturation but also increases nonmetallic inclusions. Therefore, the content is preferably in the range of 0.005 to 0.060% by weight.
Niは強度及び耐HIC性を向上させ、さらに母材および
溶接熱影響部の靭性を著しく改善するため有効である
が、0.50重量%を超えるとスケールきずの発生が著しく
なり、鋼板の表面性状を害するので、0.50重量%以下の
範囲とした。Ni is effective in improving the strength and HIC resistance, and also significantly improving the toughness of the base metal and the heat affected zone. However, if it exceeds 0.50% by weight, the generation of scale flaws becomes remarkable, and the surface properties of the steel sheet are reduced. Therefore, the content was limited to 0.50% by weight or less.
CuはpHが高い環境下で鋼表面に安定な皮膜を生成し
て、耐蝕性を向上させると共に、耐HIC性向上にも効果
を示す。しかしながら、Cu添加量が0.50重量%を超えれ
ば熱間加工性を損なうので0.50重量%以下の範囲とする
のが好ましい。Cu forms a stable film on the steel surface in an environment with a high pH, improves corrosion resistance, and is effective in improving HIC resistance. However, if the added amount of Cu exceeds 0.50% by weight, hot workability is impaired. Therefore, it is preferable to set the amount to 0.50% by weight or less.
Caは硫化物系介在物の形状を球状化して、硫化物系介
在物がHICの起点となることを抑制し、これにより耐HIC
性を確保するに有効な元素であるが、0.005重量%を超
えるCaの添加は大型介在物を増加させて耐HIC性及び耐
水素ふくれ性を低下させるおそれがあるから、0.005重
量%以外の範囲とするのが好ましい。Ca spheroidizes the shape of sulfide-based inclusions and suppresses sulfide-based inclusions from becoming the starting point of HIC.
Although it is an effective element for ensuring the water resistance, the addition of Ca exceeding 0.005% by weight may increase the size of large inclusions and reduce the HIC resistance and hydrogen blister resistance. It is preferred that
Crは鋼の耐蝕性を向上させて鋼中への水素侵入を低下
させると共に、Ni添加に伴う耐SSC性の劣化を防ぐ効果
がある。しかし、0.30重量%を超えれば特に溶接部の靭
性が劣化するため、0.30重量%以下の範囲とした。Cr has the effect of improving the corrosion resistance of steel to reduce hydrogen intrusion into the steel and also preventing the deterioration of SSC resistance due to the addition of Ni. However, if it exceeds 0.30% by weight, particularly the toughness of the welded portion is deteriorated. Therefore, the range is set to 0.30% by weight or less.
Mo,Bはともに強度を高めるために添加する。しかしMo
は0.30重量%を超えて添加しても効果が飽和し経済的で
なく、またBは0.002重量%を超えると靭性が劣化する
ので、Moは0.30重量%以下、Bは0.002重量%以下にそ
れぞれ限定するのが好ましい。Mo and B are both added to enhance the strength. But Mo
Is not economical because the effect is saturated even if it is added in excess of 0.30% by weight, and the toughness deteriorates if B exceeds 0.002% by weight. Therefore, Mo is reduced to 0.30% by weight or less and B is reduced to 0.002% by weight or less, respectively. Preferably, it is limited.
Pcmは、溶接割れ感受性の指標であり、該成分系では
0.25を超えると著しく溶接割れ感受性が高まり、円周溶
接部の曲げ延性が劣化する。よって、0.25以下の範囲と
した。Pcm is an index of susceptibility to weld cracking.
If it exceeds 0.25, the susceptibility to weld cracking will increase significantly and the bending ductility of the circumferential weld will deteriorate. Therefore, the range is set to 0.25 or less.
〈実施例〉 (実施例1) 本発明の実施例について説明する。<Example> (Example 1) An example of the present invention will be described.
外径273.1mm、肉厚12.7mmの第1表に示す組成の電縫
鋼管製ラインパイプを素材に、溶接棒の組み合わせを変
えてそれぞれ2回、被覆アーク溶接にて第2表に示す条
件で6層6パスの円周溶接を行った。さらに、API規格1
104に従って円周溶接部を含んで厚さ12.7mm、幅25.4m
m、長さ230mmの試験片(n=100)を採取し、歪量が5
%の繰り返し曲げ試験を行い合計10回曲げ後、溶接部近
傍の割れ発生の有無を調査した。なお、第2表中の溶接
棒の引張強さは、繰り返し曲げ試験に先立ちJIS Z 3111
に従い使用した溶接棒による溶着金属の引張試験を行い
求めたものである。繰り返し曲げ試験による割れ発生率
の結果を併せて第2表に示した。Using a line pipe made of ERW steel pipe with an outer diameter of 273.1 mm and a wall thickness of 12.7 mm and having the composition shown in Table 1, the combination of welding rods was changed twice, and each time, using the conditions shown in Table 2, by covering arc welding. Circumferential welding of 6 layers and 6 passes was performed. Furthermore, API standard 1
12.7mm thick and 25.4m wide including circumferential weld according to 104
A test piece (n = 100) with a length of 230 mm and a length of m
%, And after bending 10 times in total, the presence or absence of crack generation near the weld was examined. Note that the tensile strength of the welding rod in Table 2 was measured in accordance with JIS Z 3111 prior to the repeated bending test.
It was determined by performing a tensile test on the deposited metal with the welding rod used in accordance with the above. Table 2 also shows the results of the crack occurrence rate by the repeated bending test.
第2表において、本発明に基づいて、最終層を前層に
用いた溶接材料より少なくとも5kg/mm2以上低い強度の
溶接材料を用いた場合は、ほとんど割れの発生がみられ
なかった。これに対し、比較例では、割れ発生率が高
く、特に比較例1と実施例2では、母材成分が同じBで
あるのに最終層の溶接材料の強度をかえるだけで、割れ
発生率が1/77に減少していることがわかる。すなわち、
最終層を前層に用いた溶接材料より少なくとも5kg/mm2
以上低い強度の溶接材料を用いて溶接することによっ
て、溶接部の曲げ延性が改善され、リールバージ敷設用
電縫鋼管ラインパイプの円周溶接に対して極めて有効で
あることが実証された。In Table 2, when a welding material having a strength lower by at least 5 kg / mm 2 or more than the welding material using the final layer as the front layer according to the present invention, almost no cracking was observed. On the other hand, in the comparative example, the crack occurrence rate is high. In particular, in the comparative example 1 and the example 2, the crack occurrence rate is increased only by changing the strength of the welding material in the final layer even though the base material component is the same B. It can be seen that it has decreased to 1/77. That is,
At least 5 kg / mm 2 than the welding material used for the last layer as the front layer
Welding using a low-strength welding material improved the bending ductility of the welded portion and proved to be extremely effective for circumferential welding of ERW steel line pipes for reel barge laying.
なお、層(layer)とは、1つまたはそれ以上のパス
からなる溶接金属(weld metal)の層を意味し、パス
(pass)とは、溶接継手に沿って行う1回の溶接操作を
意味し、シングルパスおよびマルチパスに分かれる。In addition, a layer means a layer of a weld metal consisting of one or more passes, and a pass means a single welding operation performed along a weld joint. And split into single-pass and multi-pass.
(実施例2) 外径273.1mm、肉厚12.7mmの電縫鋼管製ラインパイプ
を素材に、被覆アーク溶接にて第3表に示す条件で円周
溶接を行い、API規格1104に従って円周溶接部を含んで
厚さ12.7mm、幅25.4mm、長さ230mmの試験片を採取し、
歪量が5%の繰り返し曲げ試験を行い合計10回曲げた
後、溶接部近傍の割れ発生の有無を調査した。さらに、
同じサイズの試験片を用いて引張試験を行い、破断状況
を調査した。これら2つの試験結果を、第4表に示し
た。 (Example 2) Using a line pipe made of ERW steel pipe having an outer diameter of 273.1 mm and a wall thickness of 12.7 mm, circumferential welding was performed by coated arc welding under the conditions shown in Table 3, and the circumferential welding was performed according to API standard 1104. Collect a test piece of thickness 12.7 mm, width 25.4 mm, length 230 mm including the part,
After repeated bending tests with a strain amount of 5% and bending a total of 10 times, the presence or absence of cracks near the weld was investigated. further,
A tensile test was performed using test pieces of the same size, and the state of breakage was investigated. The results of these two tests are shown in Table 4.
第4表において、本発明に基づいて、余盛高さ、余盛
止端部角度、および余盛止端部角度を適当な範囲に規定
したNo.7〜10は、ほとんど割れの発生がみられなかっ
た。これに対し、比較例では、No.1,No.2は、余盛高さ
が高すぎるため、No.3は、余盛高さ、余盛止端部角度お
よび余盛止端部曲率半径のいずれもが本発明範囲をはず
れるため、No.4は、余盛止端部曲率半径が小さずぎるた
め、No.5は、余盛高さと余盛止端部曲率半径は本発明範
囲内に入っているものの余盛止端部角度が小さいため、
トウ部の割れの発生率が著しかった。また、No.6は、余
盛高さが0.8mmより小さい場合であり、母材部以外での
破断が発生するが、実施例No.11,No.12では、余盛高さ
が0.8mmより大きい場合、すべて母材部破断が確認され
た。In Table 4, according to the present invention, No. 7 to 10 in which the extra height, extra toe angle, and extra toe angle were set in appropriate ranges based on the present invention, almost no cracking was observed. Couldn't. On the other hand, in the comparative example, No.1 and No.2 have excessive heights, and No.3 has no excess height, extra toe angle and extra toe curvature radius. No. 4 deviates from the scope of the present invention, No. 4 has a small radius of curvature of the extra filling toe, and No. 5 shows that the extra height and the radius of curvature of the extra filling toe are within the range of the present invention. Although it is included, the extra toe angle is small,
The incidence of cracks in the toe was remarkable. In addition, No. 6 is when the extra height is less than 0.8 mm, and breaks occur at portions other than the base material portion, but in Examples No. 11 and No. 12, the extra height is 0.8 mm. When it was larger, the fracture of the base material was confirmed in all cases.
すなわち、本発明に基づく余盛高さ、余盛止端部角度
と余盛止端部曲率半径に限定することによって、溶接部
の曲げ延性が改善され、リールバージ敷設用電縫鋼管ラ
インパイプの円周溶接に極めて有効であることが実証さ
れた。That is, by limiting to the extra fill height, the extra fill toe angle and the extra fill toe curvature radius according to the present invention, the bending ductility of the welded portion is improved and the ERW steel pipe line pipe for laying a reel barge is improved. It was proved to be extremely effective for girth welding.
(実施例3) 第5表に示す組成の電縫鋼管製パイプ(外径273.1m
m、肉厚12.7mm)を素材に、被覆アーク溶接にてセルロ
ース系の溶接棒を用いて6層6パスで円周溶接を行っ
た。 (Example 3) Pipe made of ERW steel pipe having the composition shown in Table 5 (outer diameter 273.1 m)
m, and a wall thickness of 12.7 mm), a circumference welding was performed in six layers and six passes using a cellulosic welding rod by covered arc welding.
なお本発明の溶接は実施例1と同じく最終層の前層ま
ではセルロース系E7010の溶接棒(引張強さ55.2kg/m
m2)を、最終層にはセルロース系E6010の溶接棒(引張
強さ50.2kg/mm2)を使用した。In the welding of the present invention, as in Example 1, a cellulosic E7010 welding rod (tensile strength 55.2 kg / m
The m 2), the final layer was used welding rod cellulosic E6010 (tensile strength 50.2kg / mm 2).
また余盛形状は実施例2と同じく、余盛止端部曲率半
径γ=4.6mm、余盛止端部角度α=132°、余盛高さ1.11
mmで溶接した。In addition, as in the second embodiment, the shape of the extra bank is the radius of curvature γ of the extra bank toe, 4.6 mm, the angle of the extra bank toe α = 132 °, and the height of the extra bank 1.11.
mm.
試験片は実施例1と同じ寸法のものを採取し、実施例
1と同じ繰り返し曲げ試験を合計10回行った後、溶接部
近傍のわれ発生の有無を調査した。その結果を第5表に
示す。Test pieces having the same dimensions as in Example 1 were taken, and after the same repeated bending test as in Example 1 was performed a total of 10 times, the presence or absence of cracking near the weld was examined. Table 5 shows the results.
第5表において、本発明に基づいた成分系No.8〜No.1
6は、ほとんど割れの発見が見られなかった。これに対
し、比較例No.1〜No.7はそれぞれの母材強度に合わせた
最終層の強度を前層までに用いた溶接材料と同じ溶接材
料を用いていること、また、以下に示す成分的なことに
より、全体的に割れ発生率は高い。比較例No.1は、母材
のC量及び溶接割れ感受性式(Pcm)の上限をはずれて
いる場合であり、割れ発生率は高い。比較例No.2は溶接
割れ感受性(Pcm)の値は0.099と小さいものの、炭素当
量(Ceq)の値が下限をはずれ、溶接熱影響部の軟化部
発生により34%の割れ発生率となっている。比較例No.3
及びNo.4はそれぞれ、Ceq及びPcmが上限値を超えている
ため、高い発生率になっている。比較例No.5、No.6、No
7は、Pcm、Ceqが規定値を満足しているものの、Nb+V
+Tiの含有量が規定値を超えているため割れの発生率が
高い。In Table 5, component systems No. 8 to No. 1 based on the present invention are shown.
For 6, no cracks were found. On the other hand, Comparative Examples No. 1 to No. 7 use the same welding material as the welding material used up to the previous layer with the strength of the final layer according to the respective base metal strength, and are shown below. The crack generation rate is high as a whole due to its composition. Comparative Example No. 1 is a case where the C content of the base material and the upper limit of the welding crack susceptibility equation (Pcm) are out of the upper limit, and the crack occurrence rate is high. In Comparative Example No. 2, although the value of the weld cracking susceptibility (Pcm) was as small as 0.099, the value of the carbon equivalent (Ceq) fell below the lower limit, and the crack occurrence rate was 34% due to the occurrence of the softened portion of the weld heat affected zone. I have. Comparative Example No.3
And No. 4 have high incidence rates because Ceq and Pcm respectively exceed the upper limit values. Comparative Examples No.5, No.6, No
7 is Nb + V, although Pcm and Ceq satisfy the specified values.
Since the content of + Ti exceeds the specified value, the rate of occurrence of cracks is high.
〈発明の効果〉 本発明方法によると、リールバージ敷設用電縫鋼管ラ
インパイプの円周溶接において、溶接部の余盛止端部の
トウ部の割れ発生は著しく減少した。 <Effect of the Invention> According to the method of the present invention, in the circumferential welding of the electric resistance welded steel pipe line pipe for laying the reel barge, the occurrence of cracks at the toe portion at the extra welded toe portion of the welded portion was significantly reduced.
【図面の簡単な説明】 第1図は、繰り返し曲げ試験結果の特性図、第2図は、
余盛止端部曲率半径とトウ部の割れの発生率との関係を
示す特性図、第3図は、余盛止端部角度とトウ部の割れ
の発生率との関係を示す特性図、第4図は、余盛高さと
トウ部の割れの発生率との関係を示す特性図、第5図は
軟化の度合い(ΔHv)とCeqの関係を示すグラフ、第6
図は一般的な海底ラインパイプの施工方法の説明図、第
7図(a)は陸上で準備されたパイプを海上のバージの
リーフに巻き取っている説明図、第7図(b)は目的の
海上でパイプを巻き戻しながら海底に敷設している説明
図、第8図は、円周溶接トウ部に見られる典型的な割れ
を示す溶接部断面図、第9図は、繰り返し曲げ試験方法
の説明図、第10図は、CR材での硬さ分布を示す模式図、
第11図は、余盛高さ、余盛止端部曲率半径および余盛止
端部角度の説明図である。 1……バージ、2……パイプ、3……リール、4……海
底、5……陸上、6……割れ、7……溶接部、8……溶
接熱影響部、9……母材、10……試験片、11……曲げ試
験機。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram of the results of a repeated bending test, and FIG.
FIG. 3 is a characteristic diagram showing the relationship between the radius of curvature of the extra toe portion and the incidence of cracks in the toe, FIG. 3 is a characteristic diagram showing the relationship between the angle of the extra toe and the incidence of cracks in the toe, FIG. 4 is a characteristic diagram showing the relationship between the extra height and the incidence of cracks in the toe, FIG. 5 is a graph showing the relationship between the degree of softening (ΔH v ) and Ceq, and FIG.
Fig. 7 is an explanatory view of a general method of constructing a submarine line pipe, Fig. 7 (a) is an explanatory view of winding a pipe prepared on land on a barge reef at sea, and Fig. 7 (b) is a purpose. FIG. 8 is a sectional view of a welded portion showing a typical crack seen in a circumferential welding toe portion, and FIG. 9 is a repeated bending test method. FIG. 10 is a schematic diagram showing hardness distribution in CR material,
FIG. 11 is an explanatory view of the extra height, the extra toe radius of curvature and the extra toe angle. 1 ... barge, 2 ... pipe, 3 ... reel, 4 ... seabed, 5 ... land, 6 ... cracking, 7 ... weld, 8 ... heat affected zone, 9 ... base metal, 10 ... Test specimen, 11 ... Bending tester.
Claims (6)
層を前層までに用いた溶接材料より少なくとも5kg/mm2
以上低い強度の溶接材料を用いて溶接することを特徴と
するリールバージ敷設用電縫鋼管ラインパイプの円周溶
接方法。When the line pipe is circumferentially welded, the final layer is at least 5 kg / mm 2 less than the welding material used up to the previous layer.
A circumferential welding method for an electric resistance welded steel pipe line pipe for laying a reel barge, wherein the welding is performed using a welding material having a low strength.
形状を、 2mm≦余盛止端部曲率半径, 120°≦余盛止端部角度, 0.8mm≦余盛高さ≦1.8mm に規制して溶接することを特徴とする請求項1記載のリ
ールバージ敷設用電縫鋼管ラインパイプの円周溶接方
法。2. When the line pipe is circumferentially welded, the shape of the extra bank is set to 2 mm ≦ the radius of curvature of the extra toe, 120 ° ≦ the angle of the extra toe, 0.8 mm ≦ the extra height ≦ 1.8 mm. 2. The method according to claim 1, wherein the welding is performed by restricting the welding.
り、かつ下記で与えられる炭素当量Ceqが0.20以上0.36
以下、および溶接割れ感受性Pcmが0.25以下である請求
項1または2記載のリールバージ敷設用電縫鋼管ライン
パイプの円周溶接方法。 記 Ceq=C+Mn/6+V/5 Pcm=C+Si/30+Mn/20+V/10The chemical composition of the electric resistance welded steel pipe is as follows: C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight; , V, Ti satisfy Nb + V + Ti ≦ 0.040% by weight, the balance substantially consists of iron and unavoidable impurities, and the carbon equivalent Ceq given below is 0.20 to 0.36.
3. The method of claim 1 or 2, wherein the weld crack susceptibility Pcm is 0.25 or less. Note Ceq = C + Mn / 6 + V / 5 Pcm = C + Si / 30 + Mn / 20 + V / 10
可避的不純物からなり、かつ下記で与えられる炭素当量
Ceqが0.20以上0.36以下、および溶接割れ感受性Pcmが0.
25以下である請求項1または2記載のリールバージ敷設
用電縫鋼管ラインパイプの円周溶接方法。 記 Ceq=C+Mn/6+Mo/5+V/5 Pcm=C+Si/30+Mn/20+Mo/15+V/10+5B4. The chemical composition of the electric resistance welded steel pipe is as follows: C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight; , V, and Ti satisfy Nb + V + Ti ≦ 0.040% by weight, and further contain one or two of Mo: 0.30% by weight or less and B: 0.002% by weight or less, with the balance being substantially iron and inevitable impurities. And the carbon equivalent given below
Ceq is 0.20 or more and 0.36 or less, and weld crack susceptibility Pcm is 0.
3. The method for circumferentially welding a line pipe of an ERW steel pipe for laying a reel barge according to claim 1 or 2, which is 25 or less. Note Ceq = C + Mn / 6 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Mo / 15 + V / 10 + 5B
部は実質的に鉄及び不可避的不純物からなり、かつ下記
で与えられる炭素当量Ceqが0.20以上0.36以下、および
溶接割れ感受性Pcmが0.25以下である請求項1または2
記載のリールバージ敷設用電縫鋼管ラインパイプの円周
溶接方法。 記 Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+V/5 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+V/10The chemical composition of the ERW pipe is as follows: C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight; , V, and Ti satisfy Nb + V + Ti ≦ 0.040% by weight, and are further selected from Ni: 0.50% by weight or less, Cu: 0.50% by weight or less, Ca: 0.005% by weight or less, Cr: 0.3% by weight or less 2. The composition according to claim 1, which comprises one or more kinds, the balance being substantially composed of iron and unavoidable impurities, and having a carbon equivalent Ceq given below of 0.20 or more and 0.36 or less, and a welding crack susceptibility Pcm of 0.25 or less. Or 2
A circumferential welding method for an ERW steel pipe line pipe for laying a reel barge as described above. Note Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + V / 10
らに、 Mo:0.30重量%以下, B :0.002重量%以下 のうち1種または2種を含み、残部は実質的に鉄及び不
可避的不純物からなり、かつ下記で与えられる炭素当量
Ceqが0.20以上0.36以下、および溶接割れ感受性Pcmが0.
25以下である請求項1または2記載のリールバージ敷設
用電縫鋼管ラインパイプの円周溶接方法。 記 Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B6. The chemical composition of the electric resistance welded steel pipe is as follows: C: 0.03 to 0.20% by weight, Mn: 0.50 to 1.5% by weight, Si: 0.05 to 0.50% by weight, Al: 0.005 to 0.060% by weight; , V, and Ti satisfy Nb + V + Ti ≦ 0.040% by weight, and are further selected from Ni: 0.50% by weight or less, Cu: 0.50% by weight or less, Ca: 0.005% by weight or less, Cr: 0.3% by weight or less Contains one or more, and further contains one or two of Mo: 0.30% by weight or less, B: 0.002% by weight or less, and the balance substantially consists of iron and unavoidable impurities. Carbon equivalent given by
Ceq is 0.20 or more and 0.36 or less, and weld crack susceptibility Pcm is 0.
3. The method for circumferentially welding a line pipe of an ERW steel pipe for laying a reel barge according to claim 1 or 2, which is 25 or less. Note Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5B
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17293189 | 1989-07-06 | ||
JP1-172931 | 1989-07-06 | ||
JP17293089 | 1989-07-06 | ||
JP1-172930 | 1989-07-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03133576A JPH03133576A (en) | 1991-06-06 |
JP2892450B2 true JP2892450B2 (en) | 1999-05-17 |
Family
ID=26495095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17634890A Expired - Fee Related JP2892450B2 (en) | 1989-07-06 | 1990-07-05 | Circumferential welding method for ERW line pipe for reel barge installation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2892450B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2808415B1 (en) | 2012-01-27 | 2017-11-22 | Nippon Steel & Sumitomo Metal Corporation | Pipeline and manufacturing method thereof |
CN102732798B (en) * | 2012-03-31 | 2014-04-02 | 攀钢集团成都钢钒有限公司 | Boron-containing high-strength high-toughness thick-wall seamless line pipe steel and manufacturing method thereof |
WO2020067064A1 (en) * | 2018-09-28 | 2020-04-02 | Jfeスチール株式会社 | Long steel pipe for reel method and manufacturing method for same |
-
1990
- 1990-07-05 JP JP17634890A patent/JP2892450B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03133576A (en) | 1991-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0867520B1 (en) | Welded high-strength steel structures and methods of manufacturing the same | |
JP3888058B2 (en) | Welded structures and welding materials made of low thermal expansion coefficient alloys | |
EP0407175B1 (en) | Method of conducting circumferential welding of electric welded steel line pipe to be laid by reel barge | |
JP4466320B2 (en) | Manufacturing method of low yield ratio ERW steel pipe for line pipe | |
JPH10324950A (en) | High-strength welded steel structure, and its manufacture | |
WO1997024203A1 (en) | Method of manufacturing large diameter welded steel pipe having high strength and toughness | |
JP2001246494A (en) | Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel | |
JP2001179485A (en) | Martensitic welded stainless steel pipe and producing method therefor | |
JP2892450B2 (en) | Circumferential welding method for ERW line pipe for reel barge installation | |
EP3733879A1 (en) | Steel material for line pipes, production method for same, and production method for line pipe | |
JP3543740B2 (en) | Martensitic stainless steel welded steel pipe | |
JP2006289482A (en) | Manufacturing method of electric resistance welded steel pipe with low yield ratio for line pipe | |
JP2002060910A (en) | HIGH Cr WELDED STEEL PIPE | |
JP2003266194A (en) | Wire for mig welding of martensitic stainless steel tube and method of welding martensitic stainless steel tube | |
KR20210124464A (en) | Covered arc welding rod for high-Cr ferritic heat-resistant steel | |
JP2009228099A (en) | Uoe steel pipe for line pipe, and method for manufacturing the same | |
JP2004261858A (en) | Wire for welding martensitic stainless steel pipe | |
JP2001140040A (en) | Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance | |
JP2003251489A (en) | Welded joint of low alloy steel material and its welding method | |
JP2004181527A (en) | Wire for mig welding of martensitic stainless steel pipe and welding method for the same pipe | |
JPH0653912B2 (en) | High toughness ERW steel pipe with excellent reel barge layability | |
JPH09137255A (en) | High corrosion resistant austenitic stainless steel excellent in welding operability and welding material | |
JP2002206140A (en) | Steel tube and production method therefor | |
JP3165902B2 (en) | High Cr steel welding method | |
JPH10211597A (en) | Gas shield arc welding wire for line pipe and circumference automatic welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |