JP2890483B2 - Charge coupled device and driving method thereof - Google Patents

Charge coupled device and driving method thereof

Info

Publication number
JP2890483B2
JP2890483B2 JP1152626A JP15262689A JP2890483B2 JP 2890483 B2 JP2890483 B2 JP 2890483B2 JP 1152626 A JP1152626 A JP 1152626A JP 15262689 A JP15262689 A JP 15262689A JP 2890483 B2 JP2890483 B2 JP 2890483B2
Authority
JP
Japan
Prior art keywords
charge
electrode
barrier
coupled device
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1152626A
Other languages
Japanese (ja)
Other versions
JPH0318060A (en
Inventor
弘三 織原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1152626A priority Critical patent/JP2890483B2/en
Publication of JPH0318060A publication Critical patent/JPH0318060A/en
Application granted granted Critical
Publication of JP2890483B2 publication Critical patent/JP2890483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電荷転送チャネルに蓄積領域およびバリヤ領
域とを有する電荷結合素子およびその駆動方法に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge-coupled device having a charge transfer channel having a storage region and a barrier region, and a method of driving the same.

〔従来の技術〕[Conventional technology]

第3図(a)は電荷結合素子の従来例を示す平面構成
図、第3図(b)は第3図(a)のB−B線相当部で切
断した半導体チップの断面模式図、第3図(c)は駆動
パルスの信号波形図、第3図(d)は信号電荷転送を説
明するためのポテンシャル図である。
FIG. 3 (a) is a plan view showing a conventional example of a charge-coupled device, FIG. 3 (b) is a schematic cross-sectional view of a semiconductor chip taken along a line BB in FIG. 3 (a), FIG. 3C is a signal waveform diagram of the driving pulse, and FIG. 3D is a potential diagram for explaining signal charge transfer.

本例では、半導体基板301中に半導体基板とは逆導電
型を有する埋込み層302を備えた埋込みチャネル型の電
荷結合素子を仮定し、埋込みチャネル表面にイオン注入
法によって埋込み層とは逆導電型の不純物を導入してバ
リヤ領域304〜307を形成している。蓄積電極308〜312と
これに隣接する一方のバリヤ電極313〜316とは、それぞ
れ素子内部で接続されており、さらに、本例では2相の
パルスφ1で駆動することを仮定しているので、蓄
積電極とバリヤ電極との電極対一対おきに共通に接続さ
れ、素子外部に駆動パルスを印加するための端子317,31
8が設けられている。
In this example, a buried channel type charge-coupled device having a buried layer 302 having a conductivity type opposite to that of the semiconductor substrate 301 in a semiconductor substrate 301 is assumed, and the conductivity type opposite to that of the buried layer is ion-implanted into the buried channel surface. Are formed to form barrier regions 304 to 307. The storage electrodes 308 to 312 and one of the barrier electrodes 313 to 316 adjacent to the storage electrodes 308 to 312 are respectively connected inside the element, and in this example, it is assumed that they are driven by two-phase pulses φ 1 and φ 2. Therefore, terminals 317, 31 for applying a drive pulse to the outside of the element are connected in common every other pair of electrodes of the storage electrode and the barrier electrode.
8 are provided.

外部端子317,318にそれぞれ駆動パルスφ1を印
加する場合を考える。φがハイレベル、φがローレ
ベルになっている時刻t1では、信号電荷319,320は蓄積
電極309,311下に蓄積されている。時刻t2,t3で、φ
ローレベル、φをハイレベルにすることによって、前
記信号電荷319,320はそれぞれ蓄積電極309,311下から蓄
積電極308,310下に転送、蓄積される。このような動作
を繰り返すことによって、信号電荷は電荷転送チャネル
中を図の右側から左側へ向かう方向に転送される。
Consider a case where drive pulses φ 1 and φ 2 are applied to external terminals 317 and 318, respectively. phi 1 is high level at time t 1 phi 2 is at low level, the signal charge 319 and 320 are accumulated under the storage electrode 309, 311. At time t 2, t 3, a low level of phi 1, by the phi 2 to the high level, the signal charge 319 and 320 is transferred to under the storage electrode 308 and 310 from the bottom, respectively the storage electrodes 309 and 311, are accumulated. By repeating such operations, signal charges are transferred in the charge transfer channel in a direction from the right side to the left side in the figure.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

以上のように従来の電荷結合素子では、蓄積電極とこ
れと対になるバリヤ電極とが素子内部で接続されている
ために信号電荷の転送方向が一義的に決定される。
As described above, in the conventional charge-coupled device, the transfer direction of the signal charge is uniquely determined because the storage electrode and the barrier electrode that is paired with the storage electrode are connected inside the device.

第4図は、電荷結合素子の駆動パルス振幅と転送信号
電荷量との関係を模式的に示す図である。ここで、Δψ
は第3図における蓄積電極とバリヤ電極とのポテンシャ
ル差を表わしている。このポテンシャル差Δψが大きい
と最大転送信号電荷量は増加するが、一方で転送可能な
最低駆動パルス振幅も増加する。逆に、Δψが小さいと
最大転送信号電荷量は減少するが、最低駆動パルス振幅
も低減することができる。第3図のように蓄積電極とバ
リヤ電極とに同一の駆動パルスを印加する場合には、イ
オン注入による不純物の注入量によってΔψの大きさが
決まる。すなわち、最大信号電荷量や最低駆動パルス振
幅は製造条件にのみ依存し、駆動方法によってこれらを
変化させることはできない。
FIG. 4 is a diagram schematically showing a relationship between a drive pulse amplitude of the charge-coupled device and a transfer signal charge amount. Where Δψ
Represents the potential difference between the storage electrode and the barrier electrode in FIG. When the potential difference Δψ is large, the maximum transfer signal charge amount increases, but the transferable minimum drive pulse amplitude also increases. Conversely, when Δψ is small, the maximum transfer signal charge amount decreases, but the minimum drive pulse amplitude can also be reduced. When the same drive pulse is applied to the storage electrode and the barrier electrode as shown in FIG. 3, the magnitude of Δψ is determined by the amount of impurity implanted by ion implantation. That is, the maximum signal charge amount and the minimum drive pulse amplitude depend only on the manufacturing conditions, and cannot be changed by the drive method.

本発明の目的は、このような従来の欠点を除去した新
しい電荷結合素子およびその駆動方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new charge-coupled device that eliminates such conventional disadvantages and a driving method thereof.

〔課題を解決するための手段〕[Means for solving the problem]

本発明電荷結合素子は、蓄積領域とバリヤ領域とを交
互に配置した電荷転送チャネルを半導体基板を一主面側
に設け、前記蓄積領域を覆って、その上方に蓄積電極を
設け、前記バリヤ領域を覆ってその上方にバリヤ電極を
設けてなる電荷結合素子であって、前記蓄積電極への配
線を前記バリヤ電極への配線と独立して設けたというも
のである。
The charge-coupled device of the present invention includes a semiconductor substrate provided on one main surface side of a charge transfer channel in which storage regions and barrier regions are alternately arranged, a storage electrode covering the storage region, and a storage electrode provided thereabove. , And a barrier electrode is provided above the cover electrode, wherein the wiring to the storage electrode is provided independently of the wiring to the barrier electrode.

又、本発明電荷結合素子の駆動方法は、蓄積領域とバ
リヤ領域とを交互に配置した電荷転送チャネルを半導体
基板の一主面側に設け、前記蓄積領域を覆って、その上
方に蓄積電極を設け、前記バリヤ領域を覆ってその上方
にバリヤ電極を設けてなる電荷結合素子であって、前記
蓄積電極への配線を前記バリヤ電極への配線と独立して
設けた電荷結合素子の蓄積電極に隣接するいずれか一方
のバリヤ電極に前記蓄積電極と同位相のパルスを印加す
るというものである。
Further, in the method of driving the charge-coupled device of the present invention, a charge transfer channel in which storage regions and barrier regions are alternately provided is provided on one main surface side of a semiconductor substrate, the storage region is covered, and a storage electrode is provided above the storage region. A charge-coupled device comprising a barrier electrode provided above and covering the barrier region, wherein a wiring to the storage electrode is provided to a storage electrode of the charge-coupled device provided independently of a wiring to the barrier electrode. A pulse having the same phase as that of the storage electrode is applied to one of the adjacent barrier electrodes.

〔作用〕[Action]

本発明では、蓄積電極とバリヤ電極とが独立に配線さ
れているために、駆動パルスの印加方法によって電荷の
転送方向を決定することができる。また、蓄積電極とこ
れと対になるバリヤ電極とに異なる振幅の駆動パルスを
印加することによって、最大転送信号電荷量および最低
駆動パルス振幅の値を変化させることが可能となる。
In the present invention, since the storage electrode and the barrier electrode are independently wired, the transfer direction of the charge can be determined by the method of applying the drive pulse. Further, by applying drive pulses having different amplitudes to the storage electrode and the barrier electrode that is paired with the storage electrode, it is possible to change the maximum transfer signal charge amount and the minimum drive pulse amplitude.

〔実施例〕〔Example〕

第1図(a)は本発明電荷結合素子を示す平面構成
図、第1図(b)は第1図(a)のA−A線相当部で切
断した半導体チップの断面模式図、第1図(c)は駆動
パルスの信号波形図である。
FIG. 1 (a) is a plan view showing a charge-coupled device of the present invention, FIG. 1 (b) is a schematic cross-sectional view of a semiconductor chip cut along a line AA in FIG. 1 (a), and FIG. FIG. 3C is a signal waveform diagram of the driving pulse.

本実施例も第3図の従来例と同様に、半導体基板101
中に半導体基板とは逆導電型を有する埋込み層102を備
えた埋込みチャネル型の電荷結合素子であり、埋込みチ
ャネル表面にイオン注入法によって埋込み層とは逆導電
型の不純物を導入してバリヤ領域104〜107を形成してい
る。本実施例においても基本的には2相のパルスで駆動
することを仮定しているが、第3図の従来例と異なる蓄
積電極とバリヤ電極とは内部では接続されておらず3電
極おきに共通に接続され素子外部に駆動パルスを印加す
るための4つの端子117〜120が設けられている。
In this embodiment, as in the conventional example shown in FIG.
This is a buried channel type charge-coupled device having a buried layer 102 having a conductivity type opposite to that of the semiconductor substrate, and an impurity of a conductivity type opposite to that of the buried layer is introduced into the buried channel surface by ion implantation to form a barrier region. 104 to 107 are formed. In this embodiment as well, it is basically assumed that driving is performed by two-phase pulses. However, the storage electrode and the barrier electrode which are different from the conventional example of FIG. Four terminals 117 to 120 which are connected in common and apply a driving pulse to the outside of the element are provided.

以下の説明では、蓄積電極に接続されている外部端子
117,118にそれぞれ駆動パルスφ1S2Sを印加する場合
を仮定する。
In the following description, the external terminal connected to the storage electrode
It is assumed that drive pulses φ 1S and φ 2S are applied to 117 and 118, respectively.

バリヤ電極に接続されている外部端子119,120にそれ
ぞれ外部端子117,118と同一の駆動パルスφ1S2Sを印
加すれば第3図の従来例と全く同じ状態となり、信号電
荷は図の右側から左側へ向かう方向に転送される。ま
た、外部端子119,120にそれぞれ駆動パルスφ2S1S
印加すれば、逆に信号電荷は図の左側から右側へ向かう
方向に転送される。すなわち、バリヤ電極に印加する駆
動パルスによって信号電荷の転送方向を制御することが
可能となる。
If the same drive pulses φ 1S and φ 2S as those of the external terminals 117 and 118 are applied to the external terminals 119 and 120 connected to the barrier electrodes, respectively, the state becomes exactly the same as the conventional example of FIG. Transferred in the direction to go. When drive pulses φ 2S and φ 1S are applied to the external terminals 119 and 120, respectively, the signal charges are transferred in the direction from the left to the right in the figure. That is, the transfer direction of the signal charge can be controlled by the drive pulse applied to the barrier electrode.

バリヤ電極に接続されている外部端子119,120にそれ
ぞれφ1S2Sと同位相の駆動パルスφ1B2Bを印加す
る場合を考える。φ1B2Bの振幅がφ1S2Sと同一の
ときには上述の例と同様である。φ1B2Bの振幅をφ
1S2Sと異なる値にすることによって、第3図に示し
た蓄積電極とバリヤ電極とのポテンシャル差Δψを変化
させることができる。すなわち第4図に示したように、
最大転送信号電荷量および最低駆動パルス振幅の値を動
作状態に応じて最適な条件に設定することが可能とな
る。また、外部端子119,120にそれぞれφ2S1Sと同位
相の駆動パルスφ2B1Bを印加することによって、前
述の例と同様に信号電荷を逆方向に転送させることも可
能である。
It is assumed that drive pulses φ 1B and φ 2B having the same phase as φ 1S and φ 2S are applied to external terminals 119 and 120 connected to the barrier electrode, respectively. When the amplitudes of φ 1B and φ 2B are the same as those of φ 1S and φ 2S, it is the same as the above-described example. phi 1B, the amplitude of phi 2B phi
1S, by a different value and phi 2S, it is possible to change the potential difference Δψ between the storage electrode and the barrier electrode shown in Figure 3. That is, as shown in FIG.
The values of the maximum transfer signal charge amount and the minimum drive pulse amplitude can be set to optimal conditions according to the operation state. Also, by applying drive pulses φ 2B and φ 1B having the same phase as φ 2S and φ 1S to the external terminals 119 and 120, respectively, it is possible to transfer the signal charges in the opposite direction as in the above-described example.

第2図は、本発明の応用例を示すブロック図で、第1
図に示した電荷結合素子をインターライン転送型固体撮
像装置の水平レジスタに適用した例を示す。本例が従来
のインターライン転送型固体撮像装置と異なるのは、垂
直レジスタ203の両端にそれぞれ水平レジスタ204,205を
配置し、さらにそれぞれの水平レジスタの両端に電荷検
出部206〜209を設けてある点である。垂直レジスタ203
は4相駆動とし、水平レジスタ204,205は第1図に示す
ように蓄電電極とバリヤ電極とは独立に配線してある。
通常の再生画像を得るには、フォトダイオードに蓄積さ
れた信号電荷をトランスファーゲートを介して垂直レジ
スタに読み出して水平レジスタ204側に垂直転送した
後、水平レジスタ204中を電荷検出部206側に水平転送
し、電荷検出部206によって外部に信号として出力す
る。また、水平レジスタ204中を電荷検出部207側に水平
転送し、電荷検出部207によって外部に信号として出力
することにより、通常とは左右に反転した再生画像を得
ることができる。一方、フォトダイオードに蓄積された
信号電荷をトランスファーゲートを介して垂直レジスタ
に読み出して水平レジスタ205側に垂直転送した後、水
平レジスタ205中を電荷検出部208側あるいは電荷検出部
209側に水平転送し、電荷検出部208あるいは電荷検出部
209によって外部に信号として出力することによって、
それぞれ通常とは上下に反転したあるいは108度回転し
た再生画像を得ることができる。このように、本応用例
では従来のインターライン転送型固体撮像装置では不可
能な再生画像を得ることができる。
FIG. 2 is a block diagram showing an application example of the present invention.
An example in which the charge-coupled device shown in the figure is applied to a horizontal register of an interline transfer type solid-state imaging device is shown. This example is different from the conventional interline transfer type solid-state imaging device in that horizontal registers 204 and 205 are arranged at both ends of a vertical register 203, and charge detection units 206 to 209 are provided at both ends of each horizontal register. It is. Vertical register 203
Is a four-phase drive, and the horizontal registers 204 and 205 are wired independently of the storage electrode and the barrier electrode as shown in FIG.
In order to obtain a normal reproduced image, the signal charges stored in the photodiode are read out to a vertical register via a transfer gate and vertically transferred to the horizontal register 204 side, and then the horizontal signal is horizontally transferred to the charge detection unit 206 side in the horizontal register 204. The signal is transferred and output as a signal to the outside by the charge detection unit 206. In addition, by horizontally transferring the data in the horizontal register 204 to the charge detection unit 207 side and outputting the signal as an external signal by the charge detection unit 207, a reproduced image that is inverted left and right from normal can be obtained. On the other hand, the signal charge stored in the photodiode is read out to the vertical register via the transfer gate and vertically transferred to the horizontal register 205, and then the charge in the horizontal register 205 is transferred to the charge detection unit 208 or the charge detection unit.
Horizontal transfer to 209 side, charge detection unit 208 or charge detection unit
By outputting it as a signal by 209,
It is possible to obtain a reproduced image which is turned upside down or rotated by 108 degrees from the normal. As described above, in this application example, it is possible to obtain a reproduced image that cannot be obtained with the conventional interline transfer type solid-state imaging device.

以上、埋込みチャネル型の電荷結合素子を仮定し埋込
みチャネル表面にイオン注入法によってバリヤ領域を形
成したものについて説明したが、表面チャネル型の電荷
結合素子に対しても本発明を適用できる。また、イオン
注入法ではなく、例えば蓄積電極下とバリヤ電極下のゲ
ート絶縁膜の膜厚を変えるなど、他の手段によってバリ
ヤ領域を形成した場合にも本発明は有効である。さら
に、2相駆動の例を示したが、本発明は3相以上の駆動
パルスによる動作においても実現可能である。
As described above, the buried channel type charge-coupled device is assumed and the barrier region is formed on the buried channel surface by the ion implantation method. However, the present invention can be applied to the surface channel type charge-coupled device. The present invention is also effective when the barrier region is formed by other means, for example, by changing the thickness of the gate insulating film below the storage electrode and below the barrier electrode, instead of the ion implantation method. Further, although the example of the two-phase driving has been described, the present invention can be realized by an operation using a driving pulse of three or more phases.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明の電荷結合素子では蓄積電
極とバリヤ電極とが独立に配線されているために、駆動
パルスの印加方法によって電荷の転送方向を決定するこ
とができる。また、蓄積電極とこれと対になるバリヤ電
極とに異なる振幅の駆動パルスを印加することによっ
て、最大転送信号電荷量および最低駆動パルス振幅の値
を変化させることが可能となる。また、本発明の電荷結
合素子をインターライン転送型固体撮像装置に適用する
ことによって、従来の撮像装置では不可能であった再生
画像を得ることが可能となる。
As described above, in the charge-coupled device of the present invention, since the storage electrode and the barrier electrode are independently wired, the transfer direction of the charge can be determined by the driving pulse application method. Further, by applying drive pulses having different amplitudes to the storage electrode and the barrier electrode that is paired with the storage electrode, it is possible to change the maximum transfer signal charge amount and the minimum drive pulse amplitude. Further, by applying the charge-coupled device of the present invention to an interline transfer type solid-state imaging device, it is possible to obtain a reproduced image that cannot be obtained with a conventional imaging device.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(c)は本発明による電荷結合素子とそ
の駆動方法の一実施例を示す平面構成図、断面模式図お
よび駆動パルスの信号波形図、第2図は本発明の電荷結
合素子を応用したインターライン転送型固体撮像装置の
構成図、第3図(a)〜(d)は従来の電荷結合素子と
その駆動方法を示す平面構成図、断面模式図、駆動パル
スの信号波形図および信号電荷転送を説明するためのポ
テンシャル図、第4図は電荷結合素子の駆動パルス振動
と転送信号電荷量との関係を示す模式図である。 101,301……半導体基板、102,302……埋込み層、103,30
3……電荷転送チャネル。104〜107,304〜307……バリヤ
領域、108〜112,308〜312……蓄積電極、113〜116,313
〜316……バリヤ電極、117〜120,317,318……外部端
子、319,320……信号電荷、201……フォトダイオード、
202……トランスファーゲート、203……垂直レジスタ、
204,205……水平レジスタ、206〜209……電荷検出部。
1 (a) to 1 (c) are plan views, schematic sectional views and signal waveforms of driving pulses showing an embodiment of a charge-coupled device and a method for driving the same according to the present invention, and FIG. 3 (a) to 3 (d) are plan views showing a conventional charge-coupled device and its driving method, schematic sectional views, and driving pulse signals. FIG. 4 is a waveform diagram and a potential diagram for explaining signal charge transfer. FIG. 4 is a schematic diagram showing the relationship between the drive pulse oscillation of the charge coupled device and the amount of transfer signal charge. 101,301 ... semiconductor substrate, 102,302 ... buried layer, 103,30
3 ... Charge transfer channel. 104 to 107, 304 to 307: barrier region, 108 to 112, 308 to 312: storage electrode, 113 to 116, 313
... 316 ... barrier electrode, 117-120,317,318 ... external terminal, 319,320 ... signal charge, 201 ... photodiode,
202 ... transfer gate, 203 ... vertical register,
204, 205 ... horizontal registers, 206 to 209 ... charge detection units.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/339 H01L 29/762 H01L 27/148 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) H01L 21/339 H01L 29/762 H01L 27/148

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄積領域とバリア領域とを交互に配置した
電荷転送チャネルを半導体基板を一主面側に設け、前記
蓄積領域を覆って、その上方に蓄積電極を設け、前記バ
リア領域を覆ってその上方にバリア電極を設けてなる2
相駆動の電荷結合素子であって、前記蓄積電極への配線
を前記バリア電極への配線と独立して設け、前記蓄積電
極および前記バリア電極はそれぞれ3電極おきに共通接
続されて外部に取り出され、外部に取り出された各クロ
ック信号入力端子に独立にクロック信号を印加できるこ
とを特徴とする電荷結合素子。
A semiconductor substrate is provided on one main surface side of a charge transfer channel in which storage regions and barrier regions are alternately arranged, a storage electrode is provided above the storage region, and a storage electrode is provided above the storage region. A barrier electrode is provided above the
A phase-driven charge-coupled device, wherein a wiring to the storage electrode is provided independently of a wiring to the barrier electrode, and the storage electrode and the barrier electrode are commonly connected to every third electrode and taken out to the outside. A charge-coupled device capable of independently applying a clock signal to each clock signal input terminal taken out.
【請求項2】請求項1記載の電荷結合素子の蓄積電極に
隣接するいずれか一方のバリア電極に前記蓄積電極に印
加されるパルスと同位相で振幅の異なるパルスを印加す
ることを特徴とする電荷結合素子の駆動方法。
2. A pulse having the same phase as the pulse applied to the storage electrode and having a different amplitude is applied to one of the barrier electrodes adjacent to the storage electrode of the charge-coupled device according to claim 1. A method for driving a charge-coupled device.
【請求項3】前記蓄積電極に印加されるパルスの振幅と
前記バリア電極に印加されるパルスの振幅とが異なるこ
とを特徴とする請求項2記載の電荷結合素子の駆動方
法。
3. The method according to claim 2, wherein the amplitude of the pulse applied to the storage electrode is different from the amplitude of the pulse applied to the barrier electrode.
JP1152626A 1989-06-14 1989-06-14 Charge coupled device and driving method thereof Expired - Fee Related JP2890483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152626A JP2890483B2 (en) 1989-06-14 1989-06-14 Charge coupled device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152626A JP2890483B2 (en) 1989-06-14 1989-06-14 Charge coupled device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH0318060A JPH0318060A (en) 1991-01-25
JP2890483B2 true JP2890483B2 (en) 1999-05-17

Family

ID=15544493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152626A Expired - Fee Related JP2890483B2 (en) 1989-06-14 1989-06-14 Charge coupled device and driving method thereof

Country Status (1)

Country Link
JP (1) JP2890483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837239B2 (en) * 2003-01-20 2011-12-14 ソニー株式会社 Solid-state image sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669048B2 (en) * 1983-12-27 1994-08-31 株式会社東芝 Charge transfer device

Also Published As

Publication number Publication date
JPH0318060A (en) 1991-01-25

Similar Documents

Publication Publication Date Title
US4807037A (en) Low noise CCD image sensor having a plurality of horizontal CCD registers
EP0093411B1 (en) Solid state image-sensing device
US4131950A (en) Charge transfer device
US4733302A (en) Image sensor or an image sensing apparatus
EP0333260B1 (en) Charge-coupled device
JPS61184062A (en) Charge-coupled image sensor
JPS5983477A (en) Image pickup system
JP2890483B2 (en) Charge coupled device and driving method thereof
JPH0374997B2 (en)
EP0161023B1 (en) Charge-coupled semiconductor device with dynamic control
WO1981000323A1 (en) Apparatus for storing and processing charge-packets
JPH0695536B2 (en) Charge transfer device
EP0495521B1 (en) Solid state imager
JPH0682693B2 (en) Charge transfer device
JP2550078B2 (en) Solid-state imaging device
JPH07322143A (en) Method for driving solid-state image pickup device
US5379066A (en) Horizontal register for CCD imager
JPS60251781A (en) Drive method of charge transfer image pickup device
JPH11266003A (en) Semiconductor device and its manufacture
JPH0669048B2 (en) Charge transfer device
JP3008629B2 (en) Solid-state imaging device
JPH06105719B2 (en) Charge transfer device and driving method thereof
JPS58175372A (en) Solid-state image pickup element
JPH0245345B2 (en)
JPS60254888A (en) Solid-state image pickup device and its driving method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees