JP2882438B2 - Intake manifold for internal combustion engine - Google Patents
Intake manifold for internal combustion engineInfo
- Publication number
- JP2882438B2 JP2882438B2 JP25272692A JP25272692A JP2882438B2 JP 2882438 B2 JP2882438 B2 JP 2882438B2 JP 25272692 A JP25272692 A JP 25272692A JP 25272692 A JP25272692 A JP 25272692A JP 2882438 B2 JP2882438 B2 JP 2882438B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- mounting housing
- heat
- temperature
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2225/00—Synthetic polymers, e.g. plastics; Rubber
- F05C2225/08—Thermoplastics
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関の吸気マニホ
ールドに関し、とくに、合成樹脂製マニホールド本体
に、排気ガス再循環装置用バルブ(EGRバルブ)等の
高温部品を取付けるための構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake manifold for an internal combustion engine, and more particularly to a structure for mounting a high temperature component such as an exhaust gas recirculation valve (EGR valve) to a synthetic resin manifold body.
【0002】[0002]
【従来の技術】特開平2−146251号公報は、合成
樹脂製マニホールド本体に、排気ガス再循環装置用バル
ブ等の高温部品を、耐熱性アダプタを介して取付けた内
燃機関の吸気マニホールドを開示している。そこでは、
耐熱性アダプタの裏面に、補強用リブ部を兼ねた冷却フ
ィンを形成し、高温部品の熱が樹脂製吸気マニホールド
本体に多量伝わることを防止している。2. Description of the Related Art Japanese Patent Laying-Open No. 2-146251 discloses an intake manifold for an internal combustion engine in which a high-temperature component such as a valve for an exhaust gas recirculation device is attached to a synthetic resin manifold body via a heat-resistant adapter. ing. Where,
Cooling fins, which also serve as reinforcing ribs, are formed on the back surface of the heat-resistant adapter to prevent a large amount of heat from high-temperature components from being transmitted to the resin intake manifold body.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来構造
では、300℃以上の高温の排気ガスの還流によって加
熱されたEGRバルブからの伝導熱を取除く方法が、冷
却フィンが吸気によって冷却される効果のみに頼ってお
り、冷却速度も遅く、大量EGR化(20−30%排気
ガスを戻す)に追随するのは困難であった。However, in the above-mentioned conventional structure, a method for removing the conduction heat from the EGR valve heated by the recirculation of the exhaust gas having a high temperature of 300 ° C. or more is to cool the cooling fins by the intake air. Relying only on the effect, the cooling rate was slow, and it was difficult to keep up with EGR conversion (returning exhaust gas by 20-30%).
【0004】本発明の目的は、高温部品から合成樹脂製
吸気マニホルド本体への熱伝導を、大量EGR時でも十
分低減できる内燃機関の吸気マニホルドを提供すること
にある。An object of the present invention is to provide an intake manifold for an internal combustion engine that can sufficiently reduce heat conduction from a high-temperature component to a synthetic resin intake manifold body even during a large amount of EGR.
【0005】[0005]
【課題を解決するための手段】上記目的は、本発明によ
れば、内部に吸気通路を形成する合成樹脂製マニホール
ド本体に、排気ガス再循環装置用バルブ等の高温部品を
耐熱性アッタチメントを介して取付け、該アタッチメン
トの一部を波形状の取付ハウジングから構成し、該取付
ハウジングの波形の吸気通路側端部を吸気通路中に突出
させた内燃機関の吸気マニホールドによって、達成され
る。According to the present invention, a high-temperature component such as a valve for an exhaust gas recirculation device is connected to a synthetic resin manifold body forming an intake passage through a heat-resistant attachment. This is achieved by an intake manifold of an internal combustion engine in which a part of the attachment is formed of a corrugated mounting housing, and a waveform-shaped end of the mounting housing on the intake passage side projects into the intake passage.
【0006】[0006]
【作用】上記本発明の内燃機関の吸気マニホールドで
は、高温部品の熱は、アタッチメントの取付ハウジング
を介して、合成樹脂製マニホールド本体へと伝わる。し
かし、取付ハウジングが波形状に形成されていて、その
波形の吸気通路側端部(谷部)は吸気通路中に突き出て
いるので、低温の吸気ガス流れにさらされており、熱は
取付ハウジングの吸気通路側端部と吸気ガス流れとの間
の熱伝達によって吸気ガスにもち去られ、合成樹脂製マ
ニホールド本体まで熱伝導で伝わる熱は大幅に減少され
る。したがって、マニホールド本体を合成樹脂製として
も耐熱上問題はなくなる。In the above-described intake manifold for an internal combustion engine according to the present invention, the heat of the high-temperature component is transmitted to the synthetic resin manifold body via the attachment housing of the attachment. However, since the mounting housing is formed in a wave shape, and the end portion (valley portion) of the waveform on the intake passage side protrudes into the intake passage, the mounting housing is exposed to a low-temperature intake gas flow, and heat is removed from the mounting housing. The heat is transferred to the intake gas by the heat transfer between the end of the intake passage on the side of the intake passage and the intake gas flow, and the heat transmitted to the synthetic resin manifold body by heat conduction is greatly reduced. Therefore, even if the manifold body is made of synthetic resin, there is no problem in terms of heat resistance.
【0007】[0007]
【実施例】以下に、本発明に係る内燃機関の吸気マニホ
ールドの望ましい実施例を図面を参照して説明する。図
1に示すように、本発明実施例の内燃機関の吸気マニホ
ールドは、合成樹脂製のマニホールド本体Mと、マニホ
ールド本体Mに取付けられる排気ガス再循環装置用バル
ブ(EGRバルブ)6等の高温部品(以下、高温部品が
EGRバルブ6の場合を例にとる)と、EGRバルブを
マニホールド本体に取付ける耐熱性アタッチメント5
(以下、単にアタッチメントという)とを有する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an intake manifold for an internal combustion engine according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, the intake manifold of the internal combustion engine according to the embodiment of the present invention includes a high-temperature component such as a manifold body M made of synthetic resin and an exhaust gas recirculation device valve (EGR valve) 6 attached to the manifold body M. (Hereinafter, an example in which the high temperature component is the EGR valve 6) and a heat resistant attachment 5 for attaching the EGR valve to the manifold body.
(Hereinafter simply referred to as attachment).
【0008】マニホールド本体Mは、気筒数と同数のポ
ートを有するポート部1と、これらのポートが集合する
サージタンク部2と、シリンダヘッドへの取付用の取付
フランジ部3とから成る。EGRバルブ6はサージタン
ク部2にアタッチメント5を介して取付けられる。The manifold main body M includes a port portion 1 having the same number of ports as the number of cylinders, a surge tank portion 2 where these ports are assembled, and a mounting flange portion 3 for mounting to a cylinder head. The EGR valve 6 is attached to the surge tank 2 via the attachment 5.
【0009】図2は、アタッチメント5とその周辺部を
拡大して示している。アタッチメント5は、EGRバル
ブ6を取付けるための取付座部9、高温の排気ガスをサ
ージタンク部2内に導入する案内管10、EGRバルブ
側端とマニホールド本体側端部とを連結する取付ハウジ
ング11、取付座部とEGRバルブとの間のパッキン
8、および取付ハウジングとマニホールド本体との間の
シール材13から成る。FIG. 2 is an enlarged view of the attachment 5 and its peripheral portion. The attachment 5 includes a mounting seat 9 for mounting the EGR valve 6, a guide tube 10 for introducing high-temperature exhaust gas into the surge tank 2, and a mounting housing 11 for connecting an end of the EGR valve to an end of the manifold body. , A packing 8 between the mounting seat and the EGR valve, and a seal member 13 between the mounting housing and the manifold body.
【0010】300℃以上にもなる還流排気ガス14に
より高温となるEGRバルブ6からの熱を冷却して、マ
ニホールド本体のアタッチメント取付部7a、7bの温
度を、樹脂の耐熱温度である120℃以下にするため
に、アタッチメント5を次のように構成する。The heat from the EGR valve 6, which is heated to a high temperature by the recirculated exhaust gas 14 of 300 ° C. or more, is cooled, and the temperature of the attachment mounting portions 7a and 7b of the manifold body is reduced to 120 ° C. or less, which is the heat resistant temperature of resin. In order to achieve this, the attachment 5 is configured as follows.
【0011】まず、案内管10は取付ハウジング11と
別体とされ、サージタンク部2内の吸気通路の中央付近
まで延ばされて開口されている。これによって、流入し
てくる吸気速度の最も大きいところで、還流排気ガス1
4を低温の吸気ガスと効率よくまぜることができ、その
結果、サージタンク部2内での排気ガス温が十分に低く
なる。First, the guide tube 10 is formed separately from the mounting housing 11, and is extended and opened to the vicinity of the center of the intake passage in the surge tank 2. As a result, the recirculated exhaust gas 1
4 can be efficiently mixed with the low-temperature intake gas. As a result, the temperature of the exhaust gas in the surge tank 2 becomes sufficiently low.
【0012】また、案内管10は取付ハウジング11の
内側に配設されており、取付ハウジング11よりもサー
ジタンク部2内に突き出ている。これによって、案内管
10の中を流れる還流排気ガス14が、高温の状態で直
接取付ハウジング11に接触することが防止される。す
なわち、還流排気ガス14から取付ハウジング11への
直接の熱伝達はなくなる。The guide tube 10 is arranged inside the mounting housing 11 and protrudes into the surge tank 2 from the mounting housing 11. This prevents the recirculated exhaust gas 14 flowing through the guide tube 10 from directly contacting the mounting housing 11 at a high temperature. That is, there is no direct heat transfer from the recirculated exhaust gas 14 to the mounting housing 11.
【0013】取付ハウジング11は、薄肉(0.1〜3
mm程度)のステンレス材から成り、かつ波形状に形成
されている。この波形は、サージタンク部2の壁面が延
びる方向(すなわち吸気流れ方向)に直角の方向に上下
するように波うっており、1波以上の波形(図2の例で
は2波)とされている。The mounting housing 11 is thin (0.1 to 3).
mm) and formed in a wave shape. This waveform undulates so as to rise and fall in a direction perpendicular to the direction in which the wall surface of the surge tank portion 2 extends (that is, the direction of intake air flow), and is a waveform of one or more waves (two waves in the example of FIG. 2). I have.
【0014】波形が複数波を有する場合、波形の吸気通
路側端部(谷部)は案内管10から遠いもの程吸気通路
中への突出し量を順次小さく設定してある。たとえば、
図2の例では、2つの波があり、案内管10のサージタ
ンク部内壁面からの突出し量lを基準にとると、案内管
10に近い波端部Aの突出し長さlA は2/3lに、案
内管10から遠い波端部Bの突出し長さlB は1/3l
に設定されている。In the case where the waveform has a plurality of waves, the end of the waveform on the intake passage side (valley) is set such that the farther from the guide pipe 10 the smaller the amount of protrusion into the intake passage. For example,
In the example of FIG. 2, there are two waves, and based on the amount of protrusion l of the guide tube 10 from the inner wall surface of the surge tank, the protrusion length l A of the wave end A near the guide tube 10 is 2 / 3l The projecting length l B of the wave end B far from the guide tube 10 is 1/3 l
Is set to
【0015】上記のように波の突出し量を変えることに
よって、全ての波の吸気通路側端部に吸気ガスの流れが
あたるようになり、取付ハウジング11の波形のまわり
に、吸気流れ12aからの流れ12b、12c、12d
と12b′、12c′、12d′が形成される。流れが
あるときの表面から流体への熱伝達は自然対流熱伝達に
比べて飛躍的に向上するから、取付ハウジング11から
低温の吸気ガスへの熱伝達は大であり、取付ハウジング
11を熱伝導によってEGRバルブ6側からマニホルド
本体側へ流れる熱の大部分は、吸気ガスに熱伝達により
奪われていく。波形とすることにより、放熱表面積が大
きくなることによる冷却効果の増大は当然にあるが、上
記のように取付ハウジング11まわりに強制的に流れを
作ることによる冷却効果の増大も大きく認められる。By changing the amount of protrusion of the waves as described above, the flow of the intake gas is applied to the end of the intake passage on the side of all the waves. Streams 12b, 12c, 12d
And 12b ', 12c' and 12d 'are formed. Since the heat transfer from the surface to the fluid when there is a flow is greatly improved as compared with the natural convection heat transfer, the heat transfer from the mounting housing 11 to the low-temperature intake gas is large, and the heat is transferred through the mounting housing 11. Most of the heat flowing from the EGR valve 6 side to the manifold body side is taken away by the heat transfer to the intake gas. By forming the waveform, the cooling effect is naturally increased by increasing the heat radiation surface area, but the cooling effect is also greatly increased by forcibly creating a flow around the mounting housing 11 as described above.
【0016】なお、案内管10の突出し量lの方が取付
ハウジング11の突出し量よりは大とされている。これ
は、案内管10が取付ハウジング11の陰になって、案
内管10から出た還流排気ガス14が取付ハウジング1
1の陰で滞留してヒートスポットを形成するのを防止す
るためである。Note that the protrusion l of the guide tube 10 is larger than the protrusion of the mounting housing 11. This is because the guide pipe 10 is shaded by the mounting housing 11 and the recirculated exhaust gas 14 coming out of the guide pipe 10 is
This is to prevent a heat spot from forming due to staying in the shade of 1.
【0017】次に、作用を説明する。EGRバルブ6部
位での排気ガス温度は、通常、約320℃になる。した
がって、EGRバルブ6を直接合成樹脂製マニホールド
本体のサージタンク部2に取付けることはできない。還
流排気ガス14は、案内管10により案内されて、取付
ハウジング11に接触することなくサージタンク部内吸
気通路の中央付近に排出され、吸気ガスと混じり、低温
になる。Next, the operation will be described. The exhaust gas temperature at the EGR valve 6 is usually about 320 ° C. Therefore, the EGR valve 6 cannot be directly attached to the surge tank 2 of the synthetic resin manifold body. The recirculated exhaust gas 14 is guided by the guide pipe 10 and is discharged to the vicinity of the center of the intake passage in the surge tank without contacting the mounting housing 11, and mixes with the intake gas to become low in temperature.
【0018】EGRバルブ6は内部を流れる排気ガス温
度近く迄高温となるが、EGRバルブ6から合成樹脂製
のサージタンク部2には、取付ハウジング11を介して
の熱伝導によってのみ、熱が伝わることができる。The temperature of the EGR valve 6 rises to a value close to the temperature of the exhaust gas flowing therein, but heat is transmitted from the EGR valve 6 to the surge tank 2 made of synthetic resin only by heat conduction through the mounting housing 11. be able to.
【0019】しかし、取付ハウジング11は波形とされ
ており、かつ吸気通路中に突出されているので、取付ハ
ウジング11まわりに吸気流れが形成され、取付ハウジ
ング11から低温の吸気ガスへの熱伝達が促進される。
これは、取付ハウジング11中をEGRバルブ6からサ
ージタンク部2に向って熱伝導によって伝わる熱が吸気
ガスによって奪われることを意味する。したがって、取
付ハウジング11のサージタンク部2への取付側端部で
は、取付ハウジング11の温度は十分に低下されてい
る。However, since the mounting housing 11 is corrugated and protrudes into the intake passage, an intake air flow is formed around the mounting housing 11, and heat transfer from the mounting housing 11 to low-temperature intake gas is performed. Promoted.
This means that heat transmitted by heat conduction from the EGR valve 6 to the surge tank portion 2 in the mounting housing 11 is taken away by the intake gas. Therefore, the temperature of the mounting housing 11 is sufficiently reduced at the end on the mounting side of the mounting housing 11 to the surge tank portion 2.
【0020】還流排気ガス温325℃(案内管温242
℃)の場合、図2のように2波をもつ取付ハウジング1
1で温度を測定してみたところ、図2のA部で201
℃、B部で146℃、取付ハウジング11のサージタン
ク部2への取付側端部で103℃であり、樹脂の耐熱温
度120℃以下の目標を十分に達成することができた。Reflux exhaust gas temperature 325 ° C. (guide tube temperature 242
° C), the mounting housing 1 having two waves as shown in FIG.
When the temperature was measured at 1 in FIG.
C., 146 ° C. for the part B, and 103 ° C. for the end of the mounting housing 11 on the mounting side of the surge tank 2, and the target of the heat-resistant temperature of the resin of 120 ° C. or less was sufficiently achieved.
【0021】従来は、大量EGR化に対応できるように
するために、アルミニウム鋳物で吸気マニホールドは作
製されているが、上記のように100℃近傍に温度を下
げることができたため、吸気マニホールド本体を樹脂化
できる。合成樹脂製吸気マニホールドとした場合、アル
ミニウム製に比べて約50%の軽量化、10〜20%の
コストダウン、約2〜3%のエンジン性能の向上が得ら
れる。Conventionally, the intake manifold is made of aluminum casting in order to be able to cope with a large amount of EGR. However, since the temperature could be lowered to around 100 ° C. as described above, the intake manifold body was Can be resinified. When the intake manifold is made of a synthetic resin, the weight is reduced by about 50%, the cost is reduced by 10 to 20%, and the engine performance is improved by about 2 to 3% as compared with the aluminum manifold.
【0022】また、従来の樹脂製吸気マニホールドで大
量EGR化に対応するには、特別の高耐熱性樹脂の使用
が必要であり、製造工程での成形型温も高くなり、エネ
ルギ費も高くつくが、100℃近傍にまで下げられる本
発明では、樹脂材料も従来程高耐熱性である必要がな
く、樹脂材料の選択の自由度が向上し、かつコストダウ
ンもはかれる。Further, in order to cope with a large amount of EGR with a conventional resin intake manifold, it is necessary to use a special heat-resistant resin, and the mold temperature in the manufacturing process becomes high, and the energy cost becomes high. However, in the present invention, which can be lowered to around 100 ° C., the resin material does not need to have high heat resistance as compared with the conventional one, and the degree of freedom in selecting the resin material is improved, and the cost can be reduced.
【0023】さらに、EGRバルブ6にも従来のEGR
バルブがそのまま使用でき、他のエンジンとの部品共通
化に有利である。したがって、部品数低減、コスト低減
がはれる。また、EGRシステムにEGR排気ガスを冷
却するための特別な装置、たとえばEGRクーラーを設
けることを必要としない。Further, the EGR valve 6 has a conventional EGR valve.
The valve can be used as it is, which is advantageous for sharing parts with other engines. Therefore, the number of parts and the cost can be reduced. Further, it is not necessary to provide the EGR system with a special device for cooling the EGR exhaust gas, for example, an EGR cooler.
【0024】[0024]
【発明の効果】本発明によれば、取付ハウジングを波形
状とし、波形の吸気通路側端部(波形の谷部)を吸気通
路中に突出させたので、突出し部まわりに吸気流れを形
成でき、取付ハウジング中を伝導している熱を、取付ハ
ウジングと吸気ガスとの間の熱伝達により奪うことがで
き、合成樹脂のマニホールド本体への取付部での取付ハ
ウジングの温度を樹脂の耐熱温度以下に下げることがで
きる。According to the present invention, the mounting housing has a corrugated shape, and the end of the corrugated intake passage (the valley of the corrugated portion) protrudes into the intake passage. The heat conducted in the mounting housing can be removed by heat transfer between the mounting housing and the intake gas, and the temperature of the mounting housing at the mounting portion of the synthetic resin to the manifold body is equal to or lower than the heat resistant temperature of the resin. Can be lowered.
【図1】本発明の一実施例に係る内燃機関の吸気マニホ
ールドの全体斜視図である。FIG. 1 is an overall perspective view of an intake manifold of an internal combustion engine according to one embodiment of the present invention.
【図2】図1のうちアタッチメントとその近傍の拡大断
面図である。FIG. 2 is an enlarged sectional view of an attachment and its vicinity in FIG.
2 サージタンク部 5 アタッチメント 6 EGRバルブ 8 パッキン 9 取付座部 10 案内管 11 取付ハウジング 13 シール材 2 Surge tank part 5 Attachment 6 EGR valve 8 Packing 9 Mounting seat part 10 Guide tube 11 Mounting housing 13 Sealing material
Claims (1)
ニホールド本体に、排気ガス再循環装置用バルブ等の高
温部品を耐熱性アタッチメントを介して取付けた内燃機
関の吸気マニホールドにおいて、前記アタッチメントの
一部を波形状の取付ハウジングから構成し、該取付ハウ
ジングの波形の吸気通路側端部を吸気通路中に突出させ
たことを特徴とする内燃機関の吸気マニホールド。An intake manifold for an internal combustion engine in which a high-temperature component such as a valve for an exhaust gas recirculation device is attached to a synthetic resin manifold body forming an intake passage therein via a heat-resistant attachment. An intake manifold for an internal combustion engine, wherein a portion of the intake manifold is constituted by a corrugated mounting housing, and an end portion of a waveform of the mounting housing on the intake passage side protrudes into the intake passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25272692A JP2882438B2 (en) | 1992-09-22 | 1992-09-22 | Intake manifold for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25272692A JP2882438B2 (en) | 1992-09-22 | 1992-09-22 | Intake manifold for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06101587A JPH06101587A (en) | 1994-04-12 |
JP2882438B2 true JP2882438B2 (en) | 1999-04-12 |
Family
ID=17241413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25272692A Expired - Fee Related JP2882438B2 (en) | 1992-09-22 | 1992-09-22 | Intake manifold for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2882438B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69622277T2 (en) | 1995-09-18 | 2003-03-27 | Hitachi, Ltd. | SEMICONDUCTOR MATERIAL, METHOD FOR PRODUCING SEMICONDUCTOR MATERIAL AND SEMICONDUCTOR DEVICE |
US5970960A (en) | 1996-09-18 | 1999-10-26 | Nissan Motor Co., Ltd. | Exhaust gas recirculation system of internal combustion engine |
US5669364A (en) * | 1996-11-21 | 1997-09-23 | Siemens Electric Limited | Exhaust gas recirculation valve installation for a molded intake manifold |
US6293265B1 (en) * | 1999-10-04 | 2001-09-25 | Siemens Canada Limited | Exhaust gas recirculation system |
DE10004552A1 (en) * | 2000-02-02 | 2001-08-09 | Mann & Hummel Filter | Intake pipe with integrated exhaust gas recirculation |
FR2833312A1 (en) * | 2001-12-11 | 2003-06-13 | Qualetude | Exhaust gas recirculation duct for motor vehicle internal combustion engine has tube with end couplings and corrugated section at one end to absorb vibration |
JP4657250B2 (en) | 2007-05-29 | 2011-03-23 | 株式会社デンソー | Intake device |
-
1992
- 1992-09-22 JP JP25272692A patent/JP2882438B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06101587A (en) | 1994-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3669275B2 (en) | EGR gas cooling device for internal combustion engine | |
RU2718387C2 (en) | System (versions) and method for cooler of exhaust gas recirculation system | |
US6470865B2 (en) | Engine cylinder head | |
KR101341469B1 (en) | Egr cooler with dual coolant loop | |
US6595274B2 (en) | Exhaust gas heat exchanger | |
JP2000186639A (en) | Intake manifold of engine air having built-in intermediate cooler | |
US6976530B2 (en) | Exhaust heat exchanger | |
JP2002188526A (en) | Egr device | |
JP2882438B2 (en) | Intake manifold for internal combustion engine | |
JP4248095B2 (en) | EGR cooler | |
JPH10509225A (en) | Device installed in the intake manifold of an internal combustion engine | |
JP6361719B2 (en) | Engine intake system with EGR device | |
JP2001221106A (en) | Circulated gas cooling system | |
US20100059010A1 (en) | Heat Insulator For An Intake Manifold Of An Air-Cooled Charge Air Cooler | |
JPH0540294Y2 (en) | ||
EP3112655B1 (en) | Intake manifold | |
US20190226422A1 (en) | Multi-cylinder engine | |
US20150136369A1 (en) | Egr cooler header casting | |
CN218325042U (en) | Engine cylinder cover water jacket and engine | |
JP2803206B2 (en) | Lubricating oil cooling system for motorcycle engines | |
JP7239024B2 (en) | vehicle cooling system | |
CN219587668U (en) | Engine with overhead EGR cooling system | |
JPH0130581Y2 (en) | ||
JPS5851374Y2 (en) | Intake system for supercharged engines | |
JPH0236886Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |