JPH06101587A - Intake manifold for internal combustion engine - Google Patents

Intake manifold for internal combustion engine

Info

Publication number
JPH06101587A
JPH06101587A JP25272692A JP25272692A JPH06101587A JP H06101587 A JPH06101587 A JP H06101587A JP 25272692 A JP25272692 A JP 25272692A JP 25272692 A JP25272692 A JP 25272692A JP H06101587 A JPH06101587 A JP H06101587A
Authority
JP
Japan
Prior art keywords
intake
mounting housing
heat
synthetic resin
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25272692A
Other languages
Japanese (ja)
Other versions
JP2882438B2 (en
Inventor
Hideaki Takahashi
秀昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25272692A priority Critical patent/JP2882438B2/en
Publication of JPH06101587A publication Critical patent/JPH06101587A/en
Application granted granted Critical
Publication of JP2882438B2 publication Critical patent/JP2882438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics

Abstract

PURPOSE:To reduce the amount of heat transfer from a high-temperature component such as an EGR valve to a manifold main body made of synthetic resin. CONSTITUTION:Attachment 5 for mounting an EGR valve 6 on a manifold main body made of synthetic resin is provided with a wavy, thin-walled attachment housing 11, and the intake-passage side wavy end portion (valley portion) of the housing is projected into an intake passage and thereby a flow of intake is created around the wavy form and heat transfer from the attachment housing 11 to intake gas is accelerated and heat that the attachment housing 11 conducts is absorbed so that the manifold main body made of synthetic resin is thermally protected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の吸気マニホ
ールドに関し、とくに、合成樹脂製マニホールド本体
に、排気ガス再循環装置用バルブ(EGRバルブ)等の
高温部品を取付けるための構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake manifold of an internal combustion engine, and more particularly to a structure for mounting high temperature parts such as an exhaust gas recirculation valve (EGR valve) on a synthetic resin manifold body.

【0002】[0002]

【従来の技術】特開平2−146251号公報は、合成
樹脂製マニホールド本体に、排気ガス再循環装置用バル
ブ等の高温部品を、耐熱性アダプタを介して取付けた内
燃機関の吸気マニホールドを開示している。そこでは、
耐熱性アダプタの裏面に、補強用リブ部を兼ねた冷却フ
ィンを形成し、高温部品の熱が樹脂製吸気マニホールド
本体に多量伝わることを防止している。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 2-146251 discloses an intake manifold for an internal combustion engine in which high temperature parts such as a valve for an exhaust gas recirculation device are attached to a synthetic resin manifold body through a heat resistant adapter. ing. Where,
Cooling fins that also function as reinforcing ribs are formed on the back surface of the heat resistant adapter to prevent a large amount of heat from the high temperature components from being transferred to the resin intake manifold body.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来構造
では、300℃以上の高温の排気ガスの還流によって加
熱されたEGRバルブからの伝導熱を取除く方法が、冷
却フィンが吸気によって冷却される効果のみに頼ってお
り、冷却速度も遅く、大量EGR化(20−30%排気
ガスを戻す)に追随するのは困難であった。
However, in the conventional structure described above, the cooling fin is cooled by the intake air in the method of removing the conduction heat from the EGR valve heated by the recirculation of the exhaust gas having a high temperature of 300 ° C. or more. Since it depends only on the effect, the cooling rate is slow, and it was difficult to follow a large amount of EGR (returning exhaust gas by 20-30%).

【0004】本発明の目的は、高温部品から合成樹脂製
吸気マニホルド本体への熱伝導を、大量EGR時でも十
分低減できる内燃機関の吸気マニホルドを提供すること
にある。
An object of the present invention is to provide an intake manifold for an internal combustion engine which can sufficiently reduce heat conduction from a high temperature component to a synthetic resin intake manifold body even during a large amount of EGR.

【0005】[0005]

【課題を解決するための手段】上記目的は、本発明によ
れば、内部に吸気通路を形成する合成樹脂製マニホール
ド本体に、排気ガス再循環装置用バルブ等の高温部品を
耐熱性アッタチメントを介して取付け、該アタッチメン
トの一部を波形状の取付ハウジングから構成し、該取付
ハウジングの波形の吸気通路側端部を吸気通路中に突出
させた内燃機関の吸気マニホールドによって、達成され
る。
According to the present invention, a high temperature component such as a valve for an exhaust gas recirculation device is provided in a synthetic resin manifold body having an intake passage formed therein through a heat resistant attachment. It is achieved by an intake manifold of an internal combustion engine in which a part of the attachment is composed of a corrugated mounting housing, and a corrugated intake passage side end portion of the mounting housing is projected into the intake passage.

【0006】[0006]

【作用】上記本発明の内燃機関の吸気マニホールドで
は、高温部品の熱は、アタッチメントの取付ハウジング
を介して、合成樹脂製マニホールド本体へと伝わる。し
かし、取付ハウジングが波形状に形成されていて、その
波形の吸気通路側端部(谷部)は吸気通路中に突き出て
いるので、低温の吸気ガス流れにさらされており、熱は
取付ハウジングの吸気通路側端部と吸気ガス流れとの間
の熱伝達によって吸気ガスにもち去られ、合成樹脂製マ
ニホールド本体まで熱伝導で伝わる熱は大幅に減少され
る。したがって、マニホールド本体を合成樹脂製として
も耐熱上問題はなくなる。
In the intake manifold for an internal combustion engine according to the present invention, the heat of the high temperature component is transmitted to the synthetic resin manifold main body through the attachment housing of the attachment. However, since the mounting housing is formed in a corrugated shape, and the end portion (valley) on the side of the intake passage of the corrugation projects into the intake passage, it is exposed to the low-temperature intake gas flow, and heat is attached to the mounting housing. The heat transferred between the intake passage side end portion and the intake gas flow is removed by the intake gas, and the heat transferred to the synthetic resin manifold body by heat conduction is greatly reduced. Therefore, there is no problem in heat resistance even if the manifold body is made of synthetic resin.

【0007】[0007]

【実施例】以下に、本発明に係る内燃機関の吸気マニホ
ールドの望ましい実施例を図面を参照して説明する。図
1に示すように、本発明実施例の内燃機関の吸気マニホ
ールドは、合成樹脂製のマニホールド本体Mと、マニホ
ールド本体Mに取付けられる排気ガス再循環装置用バル
ブ(EGRバルブ)6等の高温部品(以下、高温部品が
EGRバルブ6の場合を例にとる)と、EGRバルブを
マニホールド本体に取付ける耐熱性アタッチメント5
(以下、単にアタッチメントという)とを有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of an intake manifold for an internal combustion engine according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, an intake manifold for an internal combustion engine according to an embodiment of the present invention is a high temperature component such as a synthetic resin manifold body M and an exhaust gas recirculation device valve (EGR valve) 6 attached to the manifold body M. (Hereinafter, the case where the high temperature component is the EGR valve 6 will be taken as an example) and the heat resistant attachment 5 for mounting the EGR valve on the manifold body.
(Hereinafter, simply referred to as an attachment).

【0008】マニホールド本体Mは、気筒数と同数のポ
ートを有するポート部1と、これらのポートが集合する
サージタンク部2と、シリンダヘッドへの取付用の取付
フランジ部3とから成る。EGRバルブ6はサージタン
ク部2にアタッチメント5を介して取付けられる。
The manifold body M comprises a port portion 1 having the same number of ports as the number of cylinders, a surge tank portion 2 where these ports are gathered, and a mounting flange portion 3 for mounting on the cylinder head. The EGR valve 6 is attached to the surge tank portion 2 via the attachment 5.

【0009】図2は、アタッチメント5とその周辺部を
拡大して示している。アタッチメント5は、EGRバル
ブ6を取付けるための取付座部9、高温の排気ガスをサ
ージタンク部2内に導入する案内管10、EGRバルブ
側端とマニホールド本体側端部とを連結する取付ハウジ
ング11、取付座部とEGRバルブとの間のパッキン
8、および取付ハウジングとマニホールド本体との間の
シール材13から成る。
FIG. 2 is an enlarged view of the attachment 5 and its peripheral portion. The attachment 5 includes a mounting seat portion 9 for mounting the EGR valve 6, a guide pipe 10 for introducing high temperature exhaust gas into the surge tank portion 2, and a mounting housing 11 for connecting the EGR valve side end and the manifold main body side end. , A packing 8 between the mounting seat portion and the EGR valve, and a seal member 13 between the mounting housing and the manifold body.

【0010】300℃以上にもなる還流排気ガス14に
より高温となるEGRバルブ6からの熱を冷却して、マ
ニホールド本体のアタッチメント取付部7a、7bの温
度を、樹脂の耐熱温度である120℃以下にするため
に、アタッチメント5を次のように構成する。
By cooling the heat from the EGR valve 6 which becomes high temperature by the reflux exhaust gas 14 which becomes 300 ° C. or more, the temperature of the attachment mounting portions 7a, 7b of the manifold body is kept at 120 ° C. or less which is the heat resistant temperature of the resin. In order to achieve this, the attachment 5 is configured as follows.

【0011】まず、案内管10は取付ハウジング11と
別体とされ、サージタンク部2内の吸気通路の中央付近
まで延ばされて開口されている。これによって、流入し
てくる吸気速度の最も大きいところで、還流排気ガス1
4を低温の吸気ガスと効率よくまぜることができ、その
結果、サージタンク部2内での排気ガス温が十分に低く
なる。
First, the guide tube 10 is formed separately from the mounting housing 11, and is extended and opened to the vicinity of the center of the intake passage in the surge tank portion 2. As a result, the recirculated exhaust gas 1
4 can be efficiently mixed with low-temperature intake gas, and as a result, the exhaust gas temperature in the surge tank section 2 becomes sufficiently low.

【0012】また、案内管10は取付ハウジング11の
内側に配設されており、取付ハウジング11よりもサー
ジタンク部2内に突き出ている。これによって、案内管
10の中を流れる還流排気ガス14が、高温の状態で直
接取付ハウジング11に接触することが防止される。す
なわち、還流排気ガス14から取付ハウジング11への
直接の熱伝達はなくなる。
The guide tube 10 is disposed inside the mounting housing 11 and projects into the surge tank portion 2 more than the mounting housing 11. This prevents the recirculated exhaust gas 14 flowing in the guide tube 10 from directly contacting the mounting housing 11 at high temperature. That is, there is no direct heat transfer from the recirculated exhaust gas 14 to the mounting housing 11.

【0013】取付ハウジング11は、薄肉(0.1〜3
mm程度)のステンレス材から成り、かつ波形状に形成
されている。この波形は、サージタンク部2の壁面が延
びる方向(すなわち吸気流れ方向)に直角の方向に上下
するように波うっており、1波以上の波形(図2の例で
は2波)とされている。
The mounting housing 11 is thin (0.1-3
It is made of a stainless material of about (mm) and is formed in a wave shape. This waveform undulates up and down in a direction perpendicular to the direction in which the wall surface of the surge tank portion 2 extends (that is, the intake air flow direction), and is defined as one or more waveforms (two waves in the example of FIG. 2). There is.

【0014】波形が複数波を有する場合、波形の吸気通
路側端部(谷部)は案内管10から遠いもの程吸気通路
中への突出し量を順次小さく設定してある。たとえば、
図2の例では、2つの波があり、案内管10のサージタ
ンク部内壁面からの突出し量lを基準にとると、案内管
10に近い波端部Aの突出し長さlA は2/3lに、案
内管10から遠い波端部Bの突出し長さlB は1/3l
に設定されている。
When the waveform has a plurality of waves, the amount of protrusion into the intake passage is set to be gradually smaller as the end (valley) of the waveform on the intake passage side is farther from the guide pipe 10. For example,
In the example of FIG. 2, there are two waves, and when the projecting amount l from the inner wall surface of the surge tank of the guide tube 10 is used as a reference, the projecting length l A of the wave end A near the guide tube 10 is 2/3 l. In addition, the protruding length l B of the wave end B far from the guide tube 10 is 1/3 l
Is set to.

【0015】上記のように波の突出し量を変えることに
よって、全ての波の吸気通路側端部に吸気ガスの流れが
あたるようになり、取付ハウジング11の波形のまわり
に、吸気流れ12aからの流れ12b、12c、12d
と12b′、12c′、12d′が形成される。流れが
あるときの表面から流体への熱伝達は自然対流熱伝達に
比べて飛躍的に向上するから、取付ハウジング11から
低温の吸気ガスへの熱伝達は大であり、取付ハウジング
11を熱伝導によってEGRバルブ6側からマニホルド
本体側へ流れる熱の大部分は、吸気ガスに熱伝達により
奪われていく。波形とすることにより、放熱表面積が大
きくなることによる冷却効果の増大は当然にあるが、上
記のように取付ハウジング11まわりに強制的に流れを
作ることによる冷却効果の増大も大きく認められる。
By changing the protruding amount of the waves as described above, the flow of the intake gas is made to hit the end portions on the intake passage side of all the waves, and around the waveform of the mounting housing 11, from the intake flow 12a. Flow 12b, 12c, 12d
And 12b ', 12c', 12d 'are formed. The heat transfer from the surface to the fluid when there is a flow is dramatically improved compared to the natural convection heat transfer, so that the heat transfer from the mounting housing 11 to the low temperature intake gas is large, and the heat transfer through the mounting housing 11 is conducted. As a result, most of the heat flowing from the EGR valve 6 side to the manifold main body side is taken away by the intake gas by heat transfer. The corrugation naturally increases the cooling effect by increasing the heat radiation surface area, but the cooling effect by forcibly forming the flow around the mounting housing 11 as described above is also significantly recognized.

【0016】なお、案内管10の突出し量lの方が取付
ハウジング11の突出し量よりは大とされている。これ
は、案内管10が取付ハウジング11の陰になって、案
内管10から出た還流排気ガス14が取付ハウジング1
1の陰で滞留してヒートスポットを形成するのを防止す
るためである。
The amount of protrusion l of the guide tube 10 is larger than the amount of protrusion of the mounting housing 11. This is because the guide tube 10 is behind the mounting housing 11 and the recirculated exhaust gas 14 emitted from the guide tube 10 is in the mounting housing 1.
This is to prevent the formation of heat spots by staying in the shade of 1.

【0017】次に、作用を説明する。EGRバルブ6部
位での排気ガス温度は、通常、約320℃になる。した
がって、EGRバルブ6を直接合成樹脂製マニホールド
本体のサージタンク部2に取付けることはできない。還
流排気ガス14は、案内管10により案内されて、取付
ハウジング11に接触することなくサージタンク部内吸
気通路の中央付近に排出され、吸気ガスと混じり、低温
になる。
Next, the operation will be described. The exhaust gas temperature at the EGR valve 6 is usually about 320 ° C. Therefore, the EGR valve 6 cannot be directly attached to the surge tank portion 2 of the synthetic resin manifold body. The recirculation exhaust gas 14 is guided by the guide pipe 10 and is discharged to the vicinity of the center of the intake passage in the surge tank portion without coming into contact with the mounting housing 11, and is mixed with the intake gas to have a low temperature.

【0018】EGRバルブ6は内部を流れる排気ガス温
度近く迄高温となるが、EGRバルブ6から合成樹脂製
のサージタンク部2には、取付ハウジング11を介して
の熱伝導によってのみ、熱が伝わることができる。
Although the EGR valve 6 reaches a temperature close to the temperature of the exhaust gas flowing inside, heat is transmitted from the EGR valve 6 to the surge tank portion 2 made of synthetic resin only by heat conduction through the mounting housing 11. be able to.

【0019】しかし、取付ハウジング11は波形とされ
ており、かつ吸気通路中に突出されているので、取付ハ
ウジング11まわりに吸気流れが形成され、取付ハウジ
ング11から低温の吸気ガスへの熱伝達が促進される。
これは、取付ハウジング11中をEGRバルブ6からサ
ージタンク部2に向って熱伝導によって伝わる熱が吸気
ガスによって奪われることを意味する。したがって、取
付ハウジング11のサージタンク部2への取付側端部で
は、取付ハウジング11の温度は十分に低下されてい
る。
However, since the mounting housing 11 is corrugated and protrudes into the intake passage, an intake flow is formed around the mounting housing 11, and heat transfer from the mounting housing 11 to the low temperature intake gas is performed. Be promoted.
This means that the heat transferred from the EGR valve 6 to the surge tank portion 2 in the mounting housing 11 by heat conduction is removed by the intake gas. Therefore, the temperature of the mounting housing 11 is sufficiently lowered at the end of the mounting housing 11 on the side where the surge tank 2 is mounted.

【0020】還流排気ガス温325℃(案内管温242
℃)の場合、図2のように2波をもつ取付ハウジング1
1で温度を測定してみたところ、図2のA部で201
℃、B部で146℃、取付ハウジング11のサージタン
ク部2への取付側端部で103℃であり、樹脂の耐熱温
度120℃以下の目標を十分に達成することができた。
Reflux exhaust gas temperature 325 ° C. (guide pipe temperature 242
In case of (° C), the mounting housing 1 having two waves as shown in FIG.
When I measured the temperature at 1
C., 146.degree. C. in the B part, and 103.degree. C. at the end of the mounting housing 11 on the side where the surge tank part 2 is attached, and the target of the heat resistant temperature of the resin of 120.degree. C. or less was sufficiently achieved.

【0021】従来は、大量EGR化に対応できるように
するために、アルミニウム鋳物で吸気マニホールドは作
製されているが、上記のように100℃近傍に温度を下
げることができたため、吸気マニホールド本体を樹脂化
できる。合成樹脂製吸気マニホールドとした場合、アル
ミニウム製に比べて約50%の軽量化、10〜20%の
コストダウン、約2〜3%のエンジン性能の向上が得ら
れる。
Conventionally, the intake manifold is made of aluminum casting in order to cope with a large amount of EGR, but since the temperature could be lowered to around 100 ° C. as described above, the intake manifold main body was Can be made into resin. In the case of using a synthetic resin intake manifold, weight reduction of about 50%, cost reduction of 10 to 20%, and improvement of engine performance of about 2 to 3% can be obtained as compared with those made of aluminum.

【0022】また、従来の樹脂製吸気マニホールドで大
量EGR化に対応するには、特別の高耐熱性樹脂の使用
が必要であり、製造工程での成形型温も高くなり、エネ
ルギ費も高くつくが、100℃近傍にまで下げられる本
発明では、樹脂材料も従来程高耐熱性である必要がな
く、樹脂材料の選択の自由度が向上し、かつコストダウ
ンもはかれる。
Further, in order to cope with a large amount of EGR with the conventional resin intake manifold, it is necessary to use a special high heat resistant resin, the mold temperature in the manufacturing process becomes high, and the energy cost becomes high. However, in the present invention in which the temperature can be lowered to around 100 ° C., the resin material does not need to have high heat resistance as compared with the conventional one, so that the degree of freedom in selecting the resin material is improved and the cost can be reduced.

【0023】さらに、EGRバルブ6にも従来のEGR
バルブがそのまま使用でき、他のエンジンとの部品共通
化に有利である。したがって、部品数低減、コスト低減
がはれる。また、EGRシステムにEGR排気ガスを冷
却するための特別な装置、たとえばEGRクーラーを設
けることを必要としない。
Further, the EGR valve 6 is also provided with a conventional EGR valve.
The valve can be used as it is, which is advantageous for sharing parts with other engines. Therefore, the number of parts and cost can be reduced. Also, it is not necessary to provide the EGR system with a special device for cooling the EGR exhaust gas, for example an EGR cooler.

【0024】[0024]

【発明の効果】本発明によれば、取付ハウジングを波形
状とし、波形の吸気通路側端部(波形の谷部)を吸気通
路中に突出させたので、突出し部まわりに吸気流れを形
成でき、取付ハウジング中を伝導している熱を、取付ハ
ウジングと吸気ガスとの間の熱伝達により奪うことがで
き、合成樹脂のマニホールド本体への取付部での取付ハ
ウジングの温度を樹脂の耐熱温度以下に下げることがで
きる。
According to the present invention, since the mounting housing has a wavy shape and the end portion of the corrugated intake passage side (the valley portion of the corrugated portion) is projected into the intake passage, the intake flow can be formed around the protruding portion. , The heat conducted in the mounting housing can be taken away by the heat transfer between the mounting housing and the intake gas, and the temperature of the mounting housing at the mounting part of the synthetic resin to the manifold body is below the heat resistant temperature of the resin. Can be lowered to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る内燃機関の吸気マニホ
ールドの全体斜視図である。
FIG. 1 is an overall perspective view of an intake manifold of an internal combustion engine according to an embodiment of the present invention.

【図2】図1のうちアタッチメントとその近傍の拡大断
面図である。
FIG. 2 is an enlarged cross-sectional view of the attachment and its vicinity in FIG.

【符号の説明】[Explanation of symbols]

2 サージタンク部 5 アタッチメント 6 EGRバルブ 8 パッキン 9 取付座部 10 案内管 11 取付ハウジング 13 シール材 2 Surge tank 5 Attachment 6 EGR valve 8 Packing 9 Mounting seat 10 Guide tube 11 Mounting housing 13 Sealing material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に吸気通路を形成する合成樹脂製マ
ニホールド本体に、排気ガス再循環装置用バルブ等の高
温部品を耐熱性アタッチメントを介して取付けた内燃機
関の吸気マニホールドにおいて、前記アタッチメントの
一部を波形状の取付ハウジングから構成し、該取付ハウ
ジングの波形の吸気通路側端部を吸気通路中に突出させ
たことを特徴とする内燃機関の吸気マニホールド。
1. An intake manifold for an internal combustion engine in which a high temperature component such as a valve for an exhaust gas recirculation device is attached to a synthetic resin manifold main body that forms an intake passage therein through a heat resistant attachment, and one of the attachments An intake manifold for an internal combustion engine, characterized in that the portion is composed of a corrugated mounting housing, and a corrugated intake passage side end portion of the mounting housing is projected into the intake passage.
JP25272692A 1992-09-22 1992-09-22 Intake manifold for internal combustion engine Expired - Fee Related JP2882438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25272692A JP2882438B2 (en) 1992-09-22 1992-09-22 Intake manifold for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25272692A JP2882438B2 (en) 1992-09-22 1992-09-22 Intake manifold for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06101587A true JPH06101587A (en) 1994-04-12
JP2882438B2 JP2882438B2 (en) 1999-04-12

Family

ID=17241413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25272692A Expired - Fee Related JP2882438B2 (en) 1992-09-22 1992-09-22 Intake manifold for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2882438B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844381A3 (en) * 1996-11-21 1998-09-02 Siemens Canada Limited Exhaust gas recirculation valve installation for a molded intake manifold
US5970960A (en) * 1996-09-18 1999-10-26 Nissan Motor Co., Ltd. Exhaust gas recirculation system of internal combustion engine
WO2001025609A1 (en) * 1999-10-04 2001-04-12 Siemens Canada Limited Exhaust gas recirculation system
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
EP1122421A3 (en) * 2000-02-02 2002-06-12 Filterwerk Mann + Hummel Gmbh Intake conduit with integrated exhaust gas recirculation
FR2833312A1 (en) * 2001-12-11 2003-06-13 Qualetude Exhaust gas recirculation duct for motor vehicle internal combustion engine has tube with end couplings and corrugated section at one end to absorb vibration
US7926472B2 (en) 2007-05-29 2011-04-19 Denso Corporation Inlet system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
US6459712B2 (en) 1995-09-18 2002-10-01 Hitachi, Ltd. Semiconductor devices
US5970960A (en) * 1996-09-18 1999-10-26 Nissan Motor Co., Ltd. Exhaust gas recirculation system of internal combustion engine
US6173701B1 (en) 1996-09-18 2001-01-16 Nissan Motor Co., Ltd. Exhaust gas recirculation system of internal combustion engine
EP0844381A3 (en) * 1996-11-21 1998-09-02 Siemens Canada Limited Exhaust gas recirculation valve installation for a molded intake manifold
WO2001025609A1 (en) * 1999-10-04 2001-04-12 Siemens Canada Limited Exhaust gas recirculation system
EP1122421A3 (en) * 2000-02-02 2002-06-12 Filterwerk Mann + Hummel Gmbh Intake conduit with integrated exhaust gas recirculation
US6422221B2 (en) 2000-02-02 2002-07-23 Filterwerk Mann & Hummel Gmbh Intake manifold with integrated exhaust gas recirculation system
FR2833312A1 (en) * 2001-12-11 2003-06-13 Qualetude Exhaust gas recirculation duct for motor vehicle internal combustion engine has tube with end couplings and corrugated section at one end to absorb vibration
EP1319826A1 (en) * 2001-12-11 2003-06-18 Qualetude Exhaust gas recirculation device for internal combustion engines
US7926472B2 (en) 2007-05-29 2011-04-19 Denso Corporation Inlet system

Also Published As

Publication number Publication date
JP2882438B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JP2000186639A (en) Intake manifold of engine air having built-in intermediate cooler
JPH042791B2 (en)
JP2002188526A (en) Egr device
US8567374B2 (en) Internal combustion engine
JPH06101587A (en) Intake manifold for internal combustion engine
JP2001065344A (en) Cooling structure of engine on snowmobile
JP4248095B2 (en) EGR cooler
EP0312229B1 (en) Air-cooling mechanism for the internal centre of an internal-combustion engine
US20030051703A1 (en) Direct-injection type diesel engine
JP2001221106A (en) Circulated gas cooling system
JPH10220305A (en) Egr device with intercooler
WO2020216465A8 (en) Internal combustion engine with exhaust-gas recirculation
EP3112655B1 (en) Intake manifold
JPH0968118A (en) Exhaust gas recirculation device for intake manifold made of resin
JP7425635B2 (en) Cylinder head of multi-cylinder engine
JP2803206B2 (en) Lubricating oil cooling system for motorcycle engines
CN219587668U (en) Engine with overhead EGR cooling system
WO2021148829A1 (en) Cooling system for vehicle
CN208534651U (en) Cast EGR valve
JPS5820924A (en) Intake device for engine with supercharger
JP2004332656A (en) Indirect injection diesel engine
JPH0435608B2 (en)
JPH0236886Y2 (en)
JP2962114B2 (en) Heat insulator for exhaust manifold of internal combustion engine
TWM626207U (en) Ignition structure of motorbike engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees