JP2882131B2 - Method for manufacturing oxide semiconductor for thermistor - Google Patents

Method for manufacturing oxide semiconductor for thermistor

Info

Publication number
JP2882131B2
JP2882131B2 JP29550591A JP29550591A JP2882131B2 JP 2882131 B2 JP2882131 B2 JP 2882131B2 JP 29550591 A JP29550591 A JP 29550591A JP 29550591 A JP29550591 A JP 29550591A JP 2882131 B2 JP2882131 B2 JP 2882131B2
Authority
JP
Japan
Prior art keywords
thermistor
oxide semiconductor
silicon oxide
manufacturing
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29550591A
Other languages
Japanese (ja)
Other versions
JPH05135910A (en
Inventor
賢昌 金沢
奨 松島
健治 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29550591A priority Critical patent/JP2882131B2/en
Publication of JPH05135910A publication Critical patent/JPH05135910A/en
Application granted granted Critical
Publication of JP2882131B2 publication Critical patent/JP2882131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、−60℃〜450℃の
温度範囲で中高温用温度センサとして利用される負の抵
抗温度係数を有するサーミスタ用酸化物半導体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermistor oxide semiconductor having a negative temperature coefficient of resistance, which is used as a temperature sensor for medium and high temperatures in a temperature range of -60.degree.

【0002】[0002]

【従来の技術】一般にこの種のサーミスタ用酸化物半導
体としては、Mn−Ni−Cr系酸化物を主成分とし、
これに抵抗値を制御する働きをもつSiやAlを少量添
加したものが用いられている。その製造方法は、まず、
原材料の上記各種金属元素の酸化物を所定量秤量し、こ
れらをボールミルに入れて混合する。さらにこの混合物
にバインダーを加えて成形し、この成形体を焼成してサ
ーミスタ用酸化物半導体を作製している。
2. Description of the Related Art In general, this type of oxide semiconductor for a thermistor contains a Mn-Ni-Cr-based oxide as a main component,
A material obtained by adding a small amount of Si or Al having a function of controlling the resistance value is used. First, the manufacturing method
Predetermined amounts of the oxides of the above-mentioned various metal elements as raw materials are weighed, and they are put into a ball mill and mixed. Further, a binder is added to the mixture and the mixture is molded, and the molded body is fired to produce an oxide semiconductor for a thermistor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
製造方法においては、原材料の酸化ケイ素としてケイ酸
ソーダを酸で中和する湿式法で作製された酸化ケイ素を
用いており、この湿式法による酸化ケイ素はかさ密度が
小さい、凝集し易い、固くて粉砕されにくいといった性
質を持つために短時間の混合では均一に分散できず、長
時間の混合を必要としていた。また、酸化ケイ素の均一
な分散が難しいために焼成後のサーミスタ用酸化物半導
体における比抵抗等の特性のばらつきが大きいという問
題点も有していた。
However, in the conventional manufacturing method, silicon oxide produced by a wet method of neutralizing sodium silicate with an acid is used as a raw material silicon oxide. Since silicon has properties such as low bulk density, easy aggregation, and hardness and pulverization, it cannot be uniformly dispersed by short-time mixing, and requires long-time mixing. In addition, since it is difficult to uniformly disperse silicon oxide, there is also a problem that characteristics such as specific resistance of the oxide semiconductor for a thermistor after firing are largely varied.

【0004】本発明は上記従来の問題点を解決するもの
で、酸化ケイ素の均一分散を容易にすることで、混合時
間の短縮化と特性ばらつきの低減を図ることを目的とす
るものである。
An object of the present invention is to solve the above-mentioned conventional problems, and it is an object of the present invention to facilitate the uniform dispersion of silicon oxide, thereby shortening the mixing time and reducing the variation in characteristics.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明のサーミスタ用酸化物半導体の製造方法は、原
材料として用いる酸化ケイ素に、珪石を溶融した後冷却
し粉砕する溶融法によって製造された酸化ケイ素を用い
るものである。
In order to achieve this object, a method of manufacturing an oxide semiconductor for a thermistor according to the present invention is manufactured by a melting method in which silica is melted in silicon oxide used as a raw material, and then cooled and ground. In this case, silicon oxide is used.

【0006】[0006]

【作用】この溶融法によって製造された酸化ケイ素は、
かさ密度が従来の一般的な酸化ケイ素より大きく、また
凝集し難いなどの性質を持つため、これを短時間の混合
で容易に均一に分散させることができる。さらに、抵抗
値を制御する働きを有するこの酸化ケイ素が均一に分散
されるため、焼成後のサーミスタ用酸化物半導体の比抵
抗のばらつきも極めて小さくなる。
The silicon oxide produced by this melting method is
Since the bulk density is higher than that of conventional general silicon oxide, and it has properties such as being less likely to aggregate, it can be easily and uniformly dispersed by mixing in a short time. Further, since the silicon oxide having a function of controlling the resistance value is uniformly dispersed, the variation in the specific resistance of the baked oxide semiconductor for a thermistor becomes extremely small.

【0007】[0007]

【実施例】以下本発明の一実施例について説明する。ま
ず、(表1)のサーミスタ用酸化物半導体の組成表に示
すAまたはBの組成となるように炭酸マンガン,酸化ニ
ッケル,酸化クロム,珪石を溶融した後冷却し粉砕する
溶融法によって製造された酸化ケイ素(例えば電気化学
工業(株)製、品番FS−20)を秤量し、これらをボ
ールミルに入れて5時間湿式混合した。
An embodiment of the present invention will be described below. First, manganese carbonate, nickel oxide, chromium oxide, and silica were melted so as to have the composition of A or B shown in the composition table of the oxide semiconductor for thermistor in Table 1 and then manufactured by a melting method of cooling and pulverizing. Silicon oxide (for example, product number FS-20, manufactured by Denki Kagaku Kogyo KK) was weighed, placed in a ball mill, and wet-mixed for 5 hours.

【0008】[0008]

【表1】 [Table 1]

【0009】次にその混合物を乾燥させた後、ポリビニ
ールアルコールをバインダーとして添加混合し、成形し
て直径12mm,厚み2mmのディスク状の成形体を作製し
た。
Next, after drying the mixture, polyvinyl alcohol was added and mixed as a binder, and the mixture was molded to produce a disk-shaped molded body having a diameter of 12 mm and a thickness of 2 mm.

【0010】さらに、この成形体を1300℃で2時間
空気中焼成し、サーミスタ用酸化物半導体を得た。得ら
れたディスク状の酸化物半導体に銀電極を設けて特性測
定用試料とした。
Further, the molded body was fired in air at 1300 ° C. for 2 hours to obtain an oxide semiconductor for a thermistor. A silver electrode was provided on the obtained disk-shaped oxide semiconductor to obtain a sample for measuring characteristics.

【0011】また、比較例として従来の湿式法(ケイ酸
ソーダを酸で中和する方法)によって製造された酸化ケ
イ素を用いて、上記実施例と同じ製造条件で試料を作製
し、さらに従来例として、ボールミルによる湿式混合を
16時間行った試料も作製した。そして、これらの実施
例,比較例および従来例の各多数個の試料について、2
5℃における比抵抗と25℃および50℃におけるサー
ミスタ定数(B定数)を測定し、その測定値から平均値
As a comparative example, a sample was prepared under the same manufacturing conditions as in the above example using silicon oxide manufactured by a conventional wet method (a method of neutralizing sodium silicate with an acid). As another example, a sample in which wet mixing was performed for 16 hours using a ball mill was also manufactured. Then, for each of these many samples of the examples, comparative examples and conventional examples, 2
The specific resistance at 5 ° C. and the thermistor constant (B constant) at 25 ° C. and 50 ° C. were measured, and the average value was obtained from the measured values.

【0012】[0012]

【外1】[Outside 1]

【0013】、標準偏差σおよび変動係数The standard deviation σ and the coefficient of variation

【0014】[0014]

【外2】 σ/[2] σ /

【0015】を計算した。その計算結果を、比抵抗につ
いては(表2)に、サーミスタ定数については(表3)
にそれぞれ示す。
Was calculated. The calculation results are shown in Table 2 for specific resistance and Table 3 for thermistor constant.
Are shown below.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】(表2)および(表3)から明らかなよう
に、溶融法による酸化ケイ素を原材料に用いた本実施例
の試料は、混合時間が従来例の1/3以下に短縮されて
いるにもかかわらず、比抵抗やサーミスタ定数のばらつ
きの度合を表わすσ値や
As is clear from Tables 2 and 3, the mixing time of the sample of this example using silicon oxide as a raw material by the melting method is reduced to 1/3 or less of that of the conventional example. Nevertheless, the σ value, which indicates the degree of variation in specific resistance and thermistor constant,

【0019】[0019]

【外3】 σ/[Outside 3] σ /

【0020】値が従来例と比べて同等かまたはそれより
小さく、特性のばらつき度合が向上している。特に、比
抵抗のσ値および
The value is equal to or smaller than that of the conventional example, and the degree of variation in characteristics is improved. In particular, the σ value of the specific resistance and

【0021】[0021]

【外4】 σ/[Outside 4] σ /

【0022】値においては、本実施例の場合は従来例の
ほぼ半分と小さく、本実施例の製造方法により比抵抗の
ばらつきが大幅に低減される。なお、比抵抗およびサー
ミスタ定数の
The value of this embodiment is as small as approximately half that of the conventional example, and the variation of the specific resistance is greatly reduced by the manufacturing method of this embodiment. The specific resistance and thermistor constant

【0023】[0023]

【外5】[Outside 5]

【0024】値は従来例とほぼ同等であり、所定の規格
値のものが得られる。一方、湿式法による酸化ケイ素を
原材料に用いて混合時間を短縮したものは、比較例の結
果から明らかなように、比抵抗およびサーミスタ定数と
もその値は所定の規格値のものが得られるもののσ値お
よび
The values are almost the same as those of the conventional example, and a value of a predetermined standard value can be obtained. On the other hand, in the case where the mixing time was shortened by using silicon oxide by the wet method as a raw material, as can be seen from the results of the comparative examples, the values of the specific resistance and the thermistor constant were obtained at predetermined standard values, although σ Value and

【0025】[0025]

【外6】 σ/[6] σ /

【0026】値がかなり大きくてばらつきが激しく、湿
式法による原材料を用いて混合時間を短縮することは極
めて難しい。
The values are quite large and vary widely, and it is extremely difficult to shorten the mixing time by using raw materials by a wet method.

【0027】このように、酸化ケイ素の原材料として溶
融法によるものを用いることによって混合時間が大幅に
短縮でき、かつ比抵抗のばらつきが著しく低減される理
由は、溶融法による酸化ケイ素は湿式法によるものより
もかさ密度が大きくて凝集し難いため、短時間の混合で
容易に酸化ケイ素が均一に分散される。したがって、抵
抗値を制御する働きをする酸化ケイ素の分散性が優れて
いるため、焼成後のサーミスタ用酸化物半導体の比抵抗
のばらつきも極めて小さく抑えられる。
As described above, the mixing time can be greatly reduced by using the silicon oxide raw material by the melting method, and the variation in the specific resistance is significantly reduced. Since the bulk density is higher than that of the material and it is hard to aggregate, the silicon oxide is easily and uniformly dispersed by mixing in a short time. Therefore, since the dispersibility of the silicon oxide that functions to control the resistance value is excellent, the variation in the specific resistance of the baked oxide semiconductor for thermistor can be suppressed to an extremely small value.

【0028】[0028]

【発明の効果】以上の説明から明らかなように本発明
は、原材料として用いる酸化ケイ素に溶融法によって製
造された酸化ケイ素を用いることにより、混合時間を著
しく短縮し、かつ特性ばらつきの小さい精度の良いサー
ミスタ用酸化物半導体が得られる簡便な製造方法を実現
できるものである。
As is apparent from the above description, the present invention uses silicon oxide produced by a melting method for silicon oxide used as a raw material, thereby significantly shortening the mixing time and achieving high precision with small characteristic variations. A simple manufacturing method capable of obtaining a good oxide semiconductor for a thermistor can be realized.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−264854(JP,A) 特開 昭60−106107(JP,A) 特開 昭59−208804(JP,A) 特開 昭57−64903(JP,A) 特開 昭57−15403(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01C 7/02 - 7/22 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-264854 (JP, A) JP-A-60-106107 (JP, A) JP-A-59-208804 (JP, A) JP-A-57-208 64903 (JP, A) JP-A-57-15403 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01C 7/02-7/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マンガン,ニッケル,クロムおよびケイ素
の酸化物を含有するサーミスタ用酸化物半導体の前記酸
化ケイ素の原材料に、珪石を溶融させた後冷却し粉砕す
る溶融法によって製造された酸化ケイ素を用いることを
特徴とするサーミスタ用酸化物半導体の製造方法。
1. A method for producing a thermistor oxide semiconductor containing oxides of manganese, nickel, chromium and silicon, wherein silicon oxide produced by a melting method in which silica is melted, and then cooled and pulverized. A method for manufacturing an oxide semiconductor for a thermistor, which is used.
JP29550591A 1991-11-12 1991-11-12 Method for manufacturing oxide semiconductor for thermistor Expired - Fee Related JP2882131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29550591A JP2882131B2 (en) 1991-11-12 1991-11-12 Method for manufacturing oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29550591A JP2882131B2 (en) 1991-11-12 1991-11-12 Method for manufacturing oxide semiconductor for thermistor

Publications (2)

Publication Number Publication Date
JPH05135910A JPH05135910A (en) 1993-06-01
JP2882131B2 true JP2882131B2 (en) 1999-04-12

Family

ID=17821484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29550591A Expired - Fee Related JP2882131B2 (en) 1991-11-12 1991-11-12 Method for manufacturing oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JP2882131B2 (en)

Also Published As

Publication number Publication date
JPH05135910A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
JP3362651B2 (en) Thermistor element and manufacturing method thereof
JP2882131B2 (en) Method for manufacturing oxide semiconductor for thermistor
JP3362659B2 (en) Thermistor element and manufacturing method thereof
JPH02143502A (en) Manufacture of ntc thermistor
JPH10233303A (en) Ntc thermistor
KR970007509B1 (en) Ntc thermistor
JP3038906B2 (en) Method for producing barium titanate-based semiconductor porcelain
JP3211536B2 (en) Method for manufacturing a thermistor element
JPH0383855A (en) Production of barium titanate-based semiconductor porcelain
JPH11176612A (en) Manufacture of voltage non-linear resistor
JP2000286104A (en) Manufacture of positive temperature coefficient thermistor
JPH0684605A (en) Positive characteristic thermister and production thereof
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPS63110601A (en) Manufacture of semiconductor porcelain material
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JP2001102204A (en) Thermistor composition, manufacturing method therefor and thermistor
JPH07211515A (en) Production of thermistor element
JPH0582307A (en) Composition for thermistor
JPH03271154A (en) Composition for thermistor
JPS63315556A (en) Thermistor porcelain composition
JPS6138841B2 (en)
JPH0259462A (en) Composition for thermistor
JPH05251204A (en) Manufacturing method of positive temperature coefficient thermistor ceramics
JPH05129101A (en) Manufacture of positive temperature coefficient thermistor
JPH08138911A (en) Manufacture of voltage non-linearity resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees